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Chapter 1

Introduction

In this report we describe a procedure called pseudo-spectral method to solve
the equations for the incompressible fluid flows under various conditions. The
problems attempted are

1.1 Incompressible fluid flow
The equations are

∂U
∂t

+ (U · ∇)U = −∇p+ ν∇2U + fU,

∇ ·U = 0,

where U, p, and fU are the velocity field, pressure field, and the forcing field
respectively, and ν is the viscosity.

Nondimensionalize
Re no.. turbulence.. reqd size etc.
Boundary condition

1.2 Flow of a passive scalar in an incompressible
flow

The equations are

∂U
∂t

+ (U · ∇)U = −∇p+ ν∇2U + fU

∂ζ

∂t
+ (U · ∇)ζ = κ∇2ζ + fζ ,

∇ ·U = 0,

where ζ, and fζ are the scalar and forcing fields respectively, and κ is the
diffusive coefficient.
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Nondimensionalize.
Boundary condition

1.3 MHD
The equations are

∂U
∂t

+ (U · ∇)U = −∇p+ ν∇2U + fU

∂B
∂t

+ (U · ∇)B = (B · ∇)U + η∇2B + fB,

∇ ·U = 0,

where B, and fB are the magnetic field and the magnetic-forcing field respec-
tively, and η is the diffusive coefficient.

Nondimensionalize.
Boundary condition

1.4 Rayleigh Benard convection
eqn

Nondimensionalize
Boundary condition

1.5 Magnetoconvection
eqn

Nondimensionalize
Boundary condition

1.6 Programming strategy
We implement the pseudo-spectral method in an object-oriented language C++.
We notice that most of the operations in the simulation are common for all the
solvers, be it fluid turbulence or MHD turbulence. Therefore, we create generic
library function. For example compute_nlin...

Library of basis functions
Lib Fields
Lib IncFlow
Lib IncFlow
then.. solvers
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1.7 Notation
• Vector fields V,W

• Scalar field ζ

• Forward transform F

• Inverse transform F−1

• Flux Π

• Shell-to-shell transfer Tuunm

• Derivative
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Basis Functions
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Chapter 2

Fourier Transform

A library named libfourier.a contains functions that performs Fourier transforms
in 1D, 2D, and 3D. There are functions that compute total energy, energy
spectrum, etc. for the function.

2.1 Definitions
Fourier transform is defined for a continuous differentiable function f(x) (strictly
speaking square Lebesgue integrable functions L2) defined in a D-dimensional
periodic box. If the size of the box along sth direction is Ls, then the Foward
Fourier transform is defined as

f̂K =
1∏
Ls

∫
dxf(x) exp(−iK · x),

where K is the wavenumber, and f̂K is the function in Fourier space. We can
invert the above function, and the inverse Fourier transform is

f(x) =
∑
K

f̂K exp(iK · x)

In numerical computation, we discretize the real space. Suppose the sth
direction is discretized in Ns segments, then xs = jsLs/Ns with js = (0, Ns−1).
The component of wave vector along s is

Ks = 2πks/Ls = kskfactor(s), (2.1)

where ks is an integer, and kfactor(s) = 2π/Ls. As a result of descretization,
the above equations translate to

f̂k = 1∏
Ns

∑
k

fj exp

(
−2πi

∑
s

jsks
Ns

)
, (2.2)
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fj =
∑
j

f̂k exp

(
2πi

∑
s

jsks
Ns

)
, (2.3)

where j and k are a vector comprising of js and ks respectively. These formulas
are called Discrete Fourier Transforms (DFT).

The number of independent variables fj or f̂k must be the same in Eqs.
(2.2,2.3) or in both real and Fourier space for the transformation in both forward
and inverse directions. In our turbulence simulation we take fj to be real. Since
the variables f̂k are complex, the number of wavenumbers in the Fourier space
is roughly half of the number of grid points in the real space. As an example,
take a periodic real function f(x) defined in one dimension and descretized into
N points (0 ≤ j < N). In the Fourier space, the range of wavenumbers are
0 ≤ k ≤ N/2 with f̂0 and f̂N/2 as real and f̂1, ..., f̂k−1 as complex. Hence the
number of independent variables in both real and Fourier space are N .

In the above two equations of DFT are independent of the box size Ls.
It is important to understand how the size of the system enters in spectral
simulations. The wavenumber Ks is connected to the integer index ks by Eq.
(2.1). If we choose kfactor(s) = 1 for all s, then Ks = ks, and the box size along
all directions are 2π. For this case the wavenumbers in the sth direction is Ks =
1, 2, ..., Ns/2, and the shortest wavelength in this direction is 2π/kmax = 4π/Ns.

The above example is trivial one. Let us consider a simulation in a box of
grids (N, 5N). What is the system size? System size cannot be fixed by the
definitions of DFT, but it is determined by kfactor. If kfactor(1) = kfactor(2) =
1, then the size in both the directions are 2π, andKs = ks withK1 = 0, 1, .., N/2
but K2 = 0, 1, 2, .., 5N/2. Clearly the shortest wavelength in the x2 direction is
five times shorter because the box size is the same in both the directions. On
the contrary, if we choose kfactor(1) = 1 and kfactor(2) = 1/5, then L1 = 2π
and L2 = 10π, and K1 = k1 and K2 = k2/5 withK1 = 0, 1, .., N/2 and K2 =
0, 1/5, 2/5, .., N/2. Hence, the minimum wavelength in both the directions is
the same as expected, but the maximum nonzero wavelength (10π) is five times
larger along x2 compared to that along x1, consistent with the ratio of the sizes
along both the directions.

It is also important to note that the size of the system (or the difference
between ks and Ks) does not appear in convolution calculation, but it appears
in the viscous term. Before we get into implementation issues, some of the useful
properties of Fourier transforms are as follows.

For real f(x)

f̂−k =
(
f̂k

)∗
.

Another general and useful property of the Fourier transform is

f̂...,ks+Ns,.. = f̂...,ks,....
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2.2 Energy computation
The energy density of the function f(x), i.e., energy per unit volune, is defined
as

E =
1∏
Li

1
2

∫
dx|f(x)|2.

Using the definition of Fourier transform we can show that

E =
1
2

∑
k

|f̂(k)|2,

with |f̂(0)|2/2 as the energy of the mean field.
We define the isotropic energy spectrum e(K) of the field as the energy

contained in the wavenumber shell K. We compute this function using

e(K) =
1
2

∑
K≤K′<K+1

|f̂(K′)|2.

The function e(K) contains the energy of the Fourier variables on the inner
surface of the shell, but not that of the outer surface of the shell. Note that K
is the wavenumber, not the array index k (recall Ks = ks × kfactors).

In the similar manner we define a function Sn(K) that is defined as

Sn(K) =
1
2

∑
K≤K′<K+1

Kn|f̂(K ′)|2.

The function Sn(K) is useful for computing dissipation spectrum etc.
If we have two functions f and g, then another function that appears similars

to the energy is

Ef,g =
1
2

∑
k

<[f(k)× conj(g(k))].

We use this definition to compute cross helicity in magnetohydrodynamics. One
can define appropriate isotropic energy spectrum for the above function.

2.3 Implementation
We implement Fourier transform and its inverse using FFTW (Fastest Fourier
Transform in the West). Since velocity and magnetic field etc. are real, only
klastindex ≥ 0 are stored. We use FFTW library for the transforms that has
stores variables f in a specific manner.

• For a 1D real array f(N1), FFTW allocates (N1/2 + 1) dimensional com-
plex array. The real variables are stored up to N1, but Fourier space
variables stored up to k = 0 : N1/2. Note that f̂(0) and f̂(N1/2) are real.

12



• For a 2D real array f(N1, N2), FFTW allocates N1 × (N2/2 + 1) dimen-
sional complex array. The real variables are stored up to (0 : N1 − 1, 0 :
N2 − 1), but Fourier space variables are stored up to k = (−N1/2 + 1 :
N1/2, 0 : N2/2). Since f̂kx+Nx,ky = f̂kx,ky , fields with negative wavenum-
ber arguments are stored with a shift of Nx. That is ,f̂−kx,ky is stored
in location (−kx + Nx, ky). As a result, kx are stored in the order of
(kx = 0, 1, .., N1/2,−N1/2 + 1,−N1/2 + 2, ..,−1) along the first index.
See Fig. ??? for illustration.

• For a 3D real array f(N1, N2, N3), FFTW allocates N1×N2× (N3/2 + 1)
dimensional complex array. The real variables are stored up to (0 : N1 −
1, 0 : N2 − 1 : N3−1), but Fourier space variables are stored up to k =
(−N1/2 + 1 : N1/2,−N2/2 + 1 : N2/2, 0 : N2/2). Since f̂kx+Nx,ky+Ny,kz

=
f̂kx,ky,kz

, the field variables with negative wavevector arguments are stored
with a shift of Nx and Ny similar to the scheme for 2D. See Fig. ??? for
an illustration.

In the energy computation, the sum over the wavenumber is for all the wavenum-
bers. Since we store wavenumber modes with klastimdex ≥ 0 in our simulation,
we double the contributions of all those modes for which a corresponding com-
plex conjugate is not stored. The calculation of isotropic energy spectrum is
done by summing the energy over the shells. Some of the shells are present only
partially in our simulation box. For these shells we compute average energy per
mode in the shell from the modes present in the shell, and then multiply the
average energy per mode by the volume of the shell. In 2D, the volume factor
is πK, while in 3D the factor is 2πK2. Note that our wavenumber summation
is over the modes with klastindex ≥ 0.

We also use two two definitions: DP that could take value double or float,
and complx that takes value complex<DP>. The statements are

#define DP double
#define complx complex<DP>

2.4 Functions
We have divided the functions in two groups. The first group of functions deal
with the implementation of Fourier transform, and the second group of functions
deal with the computation of energy, energy spectrum etc. The details are as
follows:

2.4.1 fourier.cc
This file contains functions related to Fourier transform. Here we describe the
functions in some details. n takes values 1,2, or 3.

• void Init_fftw_plan_FOUR(int NN[],Array<complx,n> A): Inializes fftw
plans r2c_plan_FOUR, c2r_plan_FOUR that are global variables.
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• void ArrayFFTW_FOUR(fftw_plan r2c_plan_FOUR, Array<complx,n> A):
FFTW Forward transform of array A.

• void ArrayFFT_FOUR(fftw_plan r2c_plan_FOUR, int N[],Array<complx,n>
A): Zeropad, FFTW forward transform, Normalize by Norm_FOUR.

• void ArrayIFFT_FOUR(fftw_plan c2r_plan_FOUR, int N[], Array<complx,n>
A): FFTW Inverse transform of array A.

• void Norm_FOUR(int N[],Array<complx,n> A):Divides array A by
∏
N [i].

• void Zero_pad_lastrow_FOUR(int N[],Array<complx,n> A): In 1D,A(N/2) =
0; In 2D, the row k2 = N2/2 is set to zero; In 3D, the plane k3 = N3/2 is
set to zero.

• void Xderiv_FFT(int NN[], Array<complx,n> A, Array<complx,n> B,
DP kfactor[]): B(k) = iKxA(k) or F(B(x)) = F(dA(x)/dx) where F
is the Fourier transform operator. Note that Kx = kx ∗ kfactor(1).

• void Yderiv_FFT(int NN[], Array<complx,n> A, Array<complx,n> B,
DP kfactor[]): B(k) = iKyA(k) or F(B(x)) = F(dA(x)/dy).

• void Zderiv_FFT(int NN[],Array<complx,n> A, Array<complx,n> B,
DP kfactor[]): B(k) = iKzA(k) or F(B(x)) = F(dA(x)/dz).

2.4.2 four_inline.h
• inline int min(int a, int b): Returns minimum of a and b.

• inline DP min(DP a, DP b): Returns minimum of a and b.

• inline int Get_kx_FOUR(int i1, int N[]): For 2D and 3D, the func-
tion returns kx given ix using the formula i1: (i1 ≤ N1/2) ? i1 : (i1−N1);
here −N1/2 < k1 ≤ N1/2. In 1D, kx = i1 that lies in the range of
(0 : N1/2).

• inline int Get_ix_FOUR(int kx, int N[]): For 2D and 3D, the func-
tion returns ix given kx : kx ≥ 0 ? kx : (kx + N1); here−N1/2 < kx ≤
N1/2. In 1D, ix = kx that lies in the range of (0 : N1/2).

• inline int Get_ky3D_FOUR(int i2, int N[]): For 3D, the function
returns ky given iy using the formula ky = iy if iy ≤ N2/2, else ky =
iy −N2. In 2D, ky = iy.

• inline int Compute_iy3D_FOUR(int ky, int N[]): Computes iy given
ky in 3D.

• inline DP Kmagnitude_FOUR(int i1, int i2, int N[], DP kfactor[]):
Returns kmagnitude

√∑
(kfactor(i)× ki)2 for 2D.
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• inline int Min_radius_outside_FOUR(int N[], DP kfactor[]): Re-
turns radius of the smallest sphere enclosing the cube (kfactor(1)N1/2, kfactor(2)N2/2)
in 2D and (kfactor(1)N1/2, kfactor(2)N2/2, kfactor(3)N3/2) in 3D. The
returned value is Kmagnitude(N1/2, N2/2, ..)+1.

• inline int Max_radius_inside_FOUR(int N[], DP kfactor[]): Re-
turns radius of the largest sphere that can fit inside the cube (kfactor(1)N1/2, kfactor(2)N2/2)
in 2D and (kfactor(1)N1/2, kfactor(2)N2/2, kfactor(3)N3/2) in 3D.

2.4.3 field_internal_four.cc

This file contains functions that operate on f̂(k) and compute total energy,
energy spectrum etc. To compute these quantities, the sum is done over all the
wavenumbers. However we store only modes with klastindex ≥ 0 in our computer
simulation. Therefore we double the contributions from the modes klastindex 6=
0; the contributions from the modes at the common surface klastindex = 0 are
not doubled.

• DP Total_abs_sqr_FOUR(int N[], Array<complx,n> A): Returns |A(k)|2/2
for all k but without k = 0.

• complx Total_termbyterm_mult_FOUR(int N[], Array<complx,n> A,
Array<complx,n> B): Returns A(k)conj(B(k))/2 without k = 0.

• DP Total_Sn_FOUR(int N[], Array<complx,n> A, DP n, DP kfactor[]):
Returns Kn|A(k)|2/2 without k = 0.

• void Compute_1D_Sk_FOUR(int N[], Array<complx,1> A, DP n, Array<DP,1>
Sk, DP kfactor[]): For D = 1, Sk(k) = Kn|A(k)|2/2. Note that the
array index is k not K. Skn=0(0) is the mean energy.

• void Compute_1D_Sk_FOUR(int N[], Array<complx,1> A, Array<complx,1>
B, DP n, Array<DP,1> Sk, DP kfactor[]): ForD = 1, Sk(k) = Kn<[A(k)×
conj(B(k))]/2.

• void Compute_isotropic_Sk_FOUR(int N[], Array<complx,n> A, DP
n, Array<DP,1> Sk): For D = 2, 3 isotropic energy spectrum Sk(K) =∑
K ′n|A(K′)|2/2 with K ≤ K ′ < K + 1. Skn=0(0) is the mean energy.

• void Compute_isotropic_Sk_FOUR(int N[], Array<complx,n> A, Array<complx,n>
B, DP n, Array<DP,1> Sk, DP kfactor[]): Sk(K) =

∑
K ′n<[A(K ′)×

conj(B(K ′))]/2 with K ≤ K ′ < K + 1.

• DP Shell_termbyterm_mult_FOUR(int N[], Array<complx,n> A, Array<complx,n>
B, DP inner_radius, DP outer_radius, DP kfactor[]): Returns

∑
K <(A(K)∗

conj(B(K))) for inner_radius ≤ K < outer_radius .

15



• void Shell_termbyterm_mult_real_imag_FOUR(int N[], Array<complx,2>
A, Array<complx,2> B, DP inner_radius, DP outer_radius, DP kfactor[],
DP& total_real, DP& total_imag): total_real = <(A(K) ∗ <(B(K),
and total_imag = =(A(K)) ∗ =(B(K)) for inner_radius ≤ K <
outer_radius .

• void Array_divide_ksqr_FOUR(int N[],Array<complx,n> A, DP kfactor[]):
A(k)→ A(k)/K2, A(0) = 0.

• void Array_mult_ksqr_FOUR(int N[],Array<complx,n> A, DP kfactor[]):
A(k)→ K2A(k).

• void Array_exp_ksqr_FOUR(int N[],Array<complx,n> A, DP factor,
DP kfactor[]): A(k)→ exp(factor×K2)A(k).

Exercises
1. Derive a formula for the forward sin transform given the formula for the

invese sin transform, both for continuous and discrete transforms (Eqs.
(2.2, 2.3)

2. We wish to perform spectral simulation for the flow in a box of size 1m×
1m× 10m with a lowest scale of 1mm in each of the tree directions. What
should be our strategy in terms of array allocation? What kfactor would
you chooose along each direction?

3. How would the strategy change of the lowest resolution for the Exercise 2
was 1mm× 1mm× 5mm?
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Chapter 3

Sin Cos transform

A library named libsincosfourier.a contains functions that performs sin/cos
transforms along x direction, and Fourier transform along the other directions.
In this chapter we will discuss sin and cos transform.

3.1 Definitions

3.1.1 Sin transform
Consider a continuous periodic function f(x) with period 2Lx that is odd around
x = 0. Clearly f(0) = f(Lx) = 0. We perform sin transform on this function:

f̂Kx =
1

2Lx

∫
dxf(x)2 sin(Kxx),

where Kx = mπ/Lx (m ≥ 0) is the wavevector along x. The inverse-sin trans-
form is defined as

f(x) =
∑
Kx

f̂Kx2 sin(Kxx).

We discretize the space along x direction intoNx segments, then x = jLx/Nx
with j = (0, Nx − 1). The component of wave vector along x direction is
Kx = mπ/Lx = π × kfactor(1) with m > 0. As a result of descretization,
the above equations become

f̂m =
1

2Nx

∑
j

fj2 sin
(
π
mj

Nx

)
, (3.1)

and
fj =

∑
m

f̂m2 sin
(
π
mj

Nx

)
. (3.2)

These formulas are called Discrete Sin Transforms (DST).
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We can rewrite Eq. (4.1) as

fj =
∑
m

f̂m
i

exp
(

2πi
mj

2Nx

)
+

(
− f̂m

i

)
exp

(
−2πi

mj

2Nx

)
.

Hence, the sin transform is equivalant to the Fourier transform in a box twice
as big with [FT(f)]m = f̂m/i and [FT(f)]−m = −f̂m/i. The sin transform is
useful for odd functions. Here we do not need to store the function over the
complete period; only one half is enough.

After sin transform, we will discuss the cos transform.

3.1.2 Cos transform
Consider a continuous periodic function f(x) with period 2Lx that is even
around x = 0. We perform cos transform on this function:

ĝKx
=

1
2Lx

∫
dxf(x)2 cos(Kxx),

where Kx = mπ/Lx (m ≥ 0) is the wavevector along x. The inverse-cos trans-
form is defined as

g(x) = ĝ0 +
∑
Kx

ĝKx
2 cos(Kxx).

Using the same discretization procedure as described for sin transform, the
above equations become

ĝm =
1

2Nx

∑
j

gj2 cos
(
π
mj

Nx

)
(3.3)

gj = ĝ0 +
∑
m

ĝm2 cos
(
π
mj

Nx

)
. (3.4)

These equations are called Discrete Cosine Transforms (DCT).
We can rewrite Eq. (4.3) as

gj = ĝ0 +
∑
m

ĝm exp
(

2πi
mj

2Nx

)
+ ĝm exp

(
−2πi

mj

2Nx

)
.

Hence, the cos transform is equivalant to the Fourier transform in a box twice
as big with [FT(fg)]m = ĝm and [FT(g)]−m = −ĝm. The cos transform is useful
for even functions. Here we do not need to store the function over the complete
period; only one half is enough.

3.1.3 Energy computations
The total energy (strictly speaking energy density, i.e., energy per unit length)
of a homogenous odd function f(x) (sin transform) is defined as

E =
1
Lx

1
2

∫
dx|f(x)|2,
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which can be shown to be equal to

E =
∑
m>0

∣∣∣f̂m∣∣∣2
Total energy for an homogeneous even function g can be computed similarly:

E =
1
2
|ĝ0|2 +

∑
m>0

|ĝm|2 .

As discussed in the earlier chapter, the total energy in terms of Fourier trans-
forms is

E =
1
2

∑
k

|f̂k|2,

if consider the box of size 2Lx. As discussed in the previous sections, the sin and
cos transforms contain both k = ±m modes with |f̂−m| = |f̂m| and |ĝ−m| = |ĝm|
. When we sum both positive and negative wavenumber modes, the factor 1/2
cancels as seen in the expressions for the energy of the cos and sin transformed
variables.

3.2 Implementation
We implement sin and cos transforms using FFTW functions. We use FFTW’s
RODFT01 (SFT-III) for the invese sin transform IST:

fj = 2
N1−1∑
m=1

f̂m sin [π(j + 1/2)m/N1] . (3.5)

The basis function sin [π(j + 1/2)m/N1] is odd around j = −0.5 and j = N1−0.5
as illustrated in Fig. .. (see notebook- ) for f̂0 and f̂1 modes. In our simulation
we store f0, f1, ......fN1−2, fN1−1 variables in real space. Note that neither f0
nor fN1−1 are zero because of our choice of basis functions.

We use RODFT10 (SFT-II) for the forward sin transform ST:

f̂m = 2
N1−1∑
j=0

fj sin [π(j + 1/2)m/N1] (3.6)

for m = 1, .., N1− 1. In the Fourier (sin) space we store m = 0 : (N1− 1) in the
arrays f(1), ..., f(N1 − 1). The array f(0) is set to zero is unused.

Note that our sin transforms are small modification of FFTW’s sin trans-
form. In FFTW transforms, the Fourier space variables f̂m have range from
m = 1 : N1, and they are stored in f(0), .., f(N1−1). We achieve our transform
by shifting right the FFTW sin transform output by one. To perform inverse
sin transform, we shift left the variables f(i)s (stored in our notation) by one,
and then apply FFTW’s SFT-IIT. The result then is the variables in real space.
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We use FFTW’s REDFT01 (DCT-III) for the inverse cosine transform ICFT

gj = ĝ0 + 2
N1−1∑
m=0

ĝm cos [π(j + 1/2)m/N1] . (3.7)

The basis function cos [π(j + 1/2)m/N1] is even around j = −0.5 and j =
N1 − 0.5 as illustrated in Fig. ..(see notebook) for ĝ1 and ĝ2 modes. We store
g0, g1, ....., gN1−2, gN1−2 variables in real space. For the forward cos transform
we use REDFT10 (DCT-II)

ĝm = 2
N1−1∑
j=0

gj cos [π(j + 1/2)m/N1] . (3.8)

with m = 0, 1, ..., N1 − 1. These variables are stored in g(0), g(1), ..., g(N1 − 1).
For the cos transforms, there is no need to shift the variables because the Fourier
space variables ĝms (m = 0 : (N1 − 1)) are stored in arrays g(0), ..., g(N1 − 1).

3.3 Functions
In Chapter ... we will combine sin and cos transform defined here to Fourier
transform along the perpendicular directions. We refer to these transforms as
sincosFour transforms (SCFT). Most of the functions have been designed for
these types of transforms that are useful for simulation Rayleigh Bénard. Here
we list some of the functions defined in SCFT that performs sin or cos transform
in 1D.

• void Init_fftw_plan_SCFT(int NN[], Array<complx,1> A): Inializes
fftw plans sintr_plan_SCFT, costr_plan_SCFT, isintr_plan_SCFT, icostr_plan_SCFT
for 1D array.

• void Norm_SCFT(int N[], Array<complx,1> A): Normalization of ar-
ray A by 2N [1] during forward SCFT.

• void ArraySFT_SCFT(fftw_plan sintr_plan_SCFT, int N[], Array<DP,1>
A): Performs forward sin transform of a one-dimensional array A in three
steps. First uses FFTW’s sin tranform function, then shifts right the con-
tents of array A, and finally divides the array by 2N [1] (normalization).

• void ArrayCFT_SCFT(fftw_plan costr_plan_SCFT, int N[], Array<DP,1>
A): Performs forward cos transform using FFTW function, and normalize
the array by dividing by 2N [1].

• void ArrayISFT_SCFT(fftw_plan isintr_plan_SCFT, int N[], Array<DP,1>
A): Shift left the array A and apply inverse sin transform on A using
FFTW function.
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• void ArrayICFT_SCFT(fftw_plan icostr_plan_SCFT, int N[], Array<DP,1>
A): Performs inverse cos transform on A using FFTW function.

In the next chapter we will discuss mixed transform in which we combine sin/cos
transform along x axis with Fourier transform along the perpendicular direc-
tions.

Exercise
1. Derive a formula for the forward sin transform given the formula for the

invese sin transform, both for continuous and discrete transforms (Eqs.
(4.2, 4.1, 3.5, 3.6).

2. Derive a formula for the forward cos transform given the formula for the
invese cos transform, both for continuous and discrete transforms (Eqs.
(4.2, 4.1, 3.7, 3.8).

3. Derive an expression for the energy of an odd (even) function in terms of
sin (cos) transforms.
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Chapter 4

SinCosFourier Transform

A library named libsincosfourier.a contains functions that performs sin/cos
transforms along x direction, and Fourier transform along the other directions.
The functions are written for 2D and 3D.

4.1 Definitions

4.1.1 SinFourier Transform
Consider a periodic function f(x,y). We assume that along x, the function
is odd around x = 0 and has period 2Lx. The period along the other direc-
tions is Ls. We perform sin transform along x and Fourier transform along the
perpendicular directions (y space). The mixed sin transform is defined as

f(x,y) =
∑
Kx,K

f̂Kx,K2 sin(Kxx) exp(iK · y)

f̂Kx,K =
1

2
∏
Ls

∫
dxdyf(x,y)2 sin(Kxx) exp(−iK · y)

where Kx = mπ/Lx (m ≥ 0) is the wavevector along x, and K is the wavevector
in the perpendicular space.

We discretize the space with Ns segments along the sth direction. Hence
xs = jsLs/Ns with js = (0, Ns − 1). The component of wave vector along
x direction is Kx = mπ/Lx = m × kfactor(1) with m > 0, and along the
perpendicular direction it is Ks = 2πks/Ls = ks × kfactor(s) with kfactor(1) =
π/Lx and kfactor(s) = 2π/Ls for s 6= 1. As a result of descretization, the above
equations become

fj =
∑
m,k

f̂m,k2 sin
(
π
mjx
Nx

)
exp

(
2πi

∑
s>1

jsks
Ns

)
, (4.1)
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f̂m,k =
1

2
∏
Ns

∑
j

fj2 sin
(
π
mjx
Nx

)
exp

(
−2πi

∑
s

jsks
Ns

)
, (4.2)

where j and k are a vector comprising of js and ks respectively. These formulas
are called Discrete Sin Fourier Transforms (DSFT).

We can rewrite Eq. (4.1) as

fj =
∑
m,k

f̂m,k
i

[
exp

(
2πi

mjx
2Nx

)
− cc

]
exp

(
2πi

∑
s>1

jsks
Ns

)
.

Hence, the sin transform along the x direction is related to the Fourier transform
in a box twice as big, as discussed in Chapter 2. As discussed in that chapter,
we can convert the coefficients of SFT to those of Fourier transform. Also note
that for real functions f(x,y)

f̂m,−k =
(
f̂m,k

)∗
.

Hence, in Fourier space we store only modes with klastindex ≥ 0.
In Rayleigh Benard convection we choose Lx = 1, Ly = 2

√
2, and Lz = 2π/q.

Hence kfactor(1) = π, kfactor (2) = 2π/(2
√

2) = π/
√

2, and kfactor(3) = q.
Consequently Kx = mπ (m > 0), Ky = kyπ/

√
2, and Kz = qkz.

4.1.2 CosFourier Transform
Consider a periodic function f(x,y) that is even around x = 0 along the x axis
with a period of 2Lx. The period along the other directions is Ls. We per-
form cos transform along x axis and Fourier transform along the perpendicular
directions (y space). The mixed cos transform is defined as

g(x,y) =
∑
K

ĝ0,K exp(iK · y) +
∑
Kx,K

ĝKx,K2 cos(Kxx) exp(iK · y)

ĝKx,K =
1

2
∏
Ls

∫
dxdyg(x,y)2 cos(Kxx) exp(−iK · y)

where Kx = mπ/Lx (m ≥ 0) is the wavevector along x, and K is the wavevector
in the perpendicular space. Using the same discretization procedure as described
above, the above equations become

gj =
∑
k

ĝ0,k exp

(
2πi

∑
s>1

jsks
Ns

)

+
∑
m,k

ĝm,k2 cos
(
π
mjx
Nx

)
exp

(
2πi

∑
s>1

jsks
Ns

)
, (4.3)

ĝm,k =
1

2
∏
Ns

∑
j

gj2 cos
(
π
mjx
Nx

)
exp

(
−2πi

∑
s

jsks
Ns

)
, (4.4)
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These formulas are called Discrete Cosine Fourier Transforms (DCFT). We can
rewrite Eq. (4.3) as

gj =
∑
k

ĝ0,k exp

(
2πi

∑
s>1

jsks
Ns

)
+
∑
m,k

ĝm,k

[
exp

(
2πi

mjx
2Nx

)
+ cc

]
exp

(
2πi

∑
s>1

jsks
Ns

)
.

Hence, cos transform along x direction is related to the Fourier transform along
x in a box twice as big. As described above, for real g(x,y), ĝm,−k = conj(ĝm,k).

4.1.3 Energy computations
The energy per unit volume for the function f(x,y) (sin transform) is

E =
1∏
Li

1
2

∫
dxdy|f(x,y)|2,

which can be shown to be equal to

E =
∑
m>0

∣∣∣f̂m,k∣∣∣2
energy per unit volume for the function g(x,y) can be computed similarly:

E =
1
2
|ĝ0,k|2 +

∑
m>0

|ĝm,k|2 .

As discussed in Chapter 2, the cos and sin transforms contain the negative
wavenumber Fourier modes. That is the reason why the factor of 1/2 does not
appear the formulas for the sin and cos transformed variables.

We define isotropic energy spectrum based on the above energy formulas. We
define the isotropic energy spectrum e(K) of the field as the energy contained
in the wavenumber shell K:

e(K) =
1
2

∑
K≤K′<K

|f̂m,K|2,

where the wavenumber of a mode f̂m,K is computed using

K ′ =
[
(m× kfactor(1))2 +

∑
(ks × kfactor(s))2

]1/2
.

The function e(K) contains the energy of the Fourier variables on the inner
surface of the shell, but not that of the outer surface of the shell.

We also compute function

Sn =
∑
m>0

(Kn
x +Kn

s )
∣∣∣f̂m,k∣∣∣2 .

For Prandtl number greater than one, we have Kx = mπ and Ks = ksπ/
√

2 in
two dimensions. Therefore,

Sn =
∑
m>0

[
(mπ)2 + (ksπ/

√
2)2
] ∣∣∣f̂m,k∣∣∣2 .
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4.2 Implementation
For real fields, the SCFT transforms satisfy the property:

f̂m,−k =
(
f̂m,k

)∗
; ĝm,−k = (ĝm,k)∗

Therefore, only half of the SCFT modes need to be stored. Specifically
For a 2D real array f(N1, N2), FFTW allocates N1×(N2/2+1) dimensional

complex array. In real space the variables are stored up to (0 : N1−1, 0 : N2−1),
however in SCFT space the variables with wavenumbers m = 0 : (N1 − 1) and
ky = 0 : N2/2 are stored. Note however that in sinFour transform, f̂0,ky = 0 .
See Fig... for illustration.

For a 3D real array f(N1, N2, N3), FFTW allocates N1 × N2 × (N3/2 + 1)
dimensional complex array. The real space the variables are stored up to (0 :
N1 − 1, 0 : N2 − 1 : N3−1). In SCFT space the wavenumbers of the stored
variables are m = 0 : (N1 − 1), k = (0 : N2 − 1, 0 : N3/2). Here too for
sinFourier transform f̂0,ky,kz

= 0. See Fig. .. for illustration of the storage
mechanism. In Fig.... we illustrate one of the ky − kz planes. The variable
f̂m,−ky−kz is not stored in the array since it is related to f̂m,kykz with relation

f̂m,−ky−kz =
(
f̂m,ky,kz

)∗
.

We implement SCFT functions using FFTW functions. The sin and cos
transforms are implemented using RODFT10 (SFT-II), RODFT01 (SFT-III),
REDFT10 (DCT-II), and REDFT01 (DCT-III) respectively as described in
Chapter..., and the Fourier transform is implemented using the FFTW func-
tions.

In FFTW convention the cosine transformed variables are stored for m =
0 : N1 − 1, but the sin transformed variables are stored for m = 1 : N1. In
our scheme we store only m = 0 : N1 − 1 for both sin and cos variables (of
course m = 0 mode is zero for sin transform). Our scheme is advantangeous for
spectral simulations in many ways, e.g., while taking derivatives. To implement
our scheme we shift right the sin-transformed variables from FFTW function
by one, and set f̂0,k to zero. Before performing the inverse sin transform using
FFTW functions, we need to shift left the variables that are stored according
to our scheme.

We implement the forward SCFT by performing sin or cosine transform of
along all the rows, and then performing FFT along the vertical column (2D) or
along the vertical planes (3D). For the inverse transform, we first perform IFFT
along the vertical direction, and then sin/cos transform along the horizontal
rows.

[CHANGEWORDING] In the energy computation, the sum over the wavenum-
ber is for all the wavenumbers. Since we store wavenumber modes with klastimdex ≥
0 in our simulation, we double the contributions of all those modes for which
a corresponding complex conjugate is not stored. The calculation of isotropic
energy spectrum is done by summing the energy over the shells. Some of the
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shells are present only partially in our simulation box. For these shells we com-
pute average energy per mode in the shell from the modes present in the shell,
and then multiply the average energy per mode by the volume of the shell. In
2D, the volume factor is πK/2, while in 3D the factor is πK2. Note that our
wavenumber summation is over the modes with klastindex ≥ 0.

In the following sections we will describe the functions defined in sincosfour
library.

4.3 Functions
We have divided the functions in to two classes- one related to the definitons of
the transforms and the derivative of the functions (in sincosfour.cc), and the sec-
ond of functions are related to the computations of energy, energy spectrum etc.
(in field_internal_sincosfour.cc) Firstly we describe functions in sincosfour.cc

4.3.1 sincosfour.cc
The file sincosfour.cc contains functions related to sin, cosine, and mixed (sin/cos+Fourier)
transforms. The external fftw_plan variables r2c_SCFT, c2r_SCFT perform
forward and inverse Fourier transforms, while the fft_plan variables sintr_SCFT,
costr_SCFT, isintr_SCFT, icostr_SCFT perform forward and inverse SFT
and CFT. These variables defined appropriately according to the dimensional-
ity D.

• For 1D:

– void Init_fftw_plan_SCFT(int NN[], Array<complx,1> A): Inial-
izes fftw plans sintr_plan_SCFT, costr_plan_SCFT, isintr_plan_SCFT,
icostr_plan_SCFT for 1D array.

– void Norm_SCFT(int N[], Array<complx,1> A):Normalization of
array A by 2N [1] during forward SCFT.

– void ArraySFT_SCFT(fftw_plan sintr_plan_SCFT, int N[], Ar-
ray<DP,1> A): Performs forward sin transform of a one-dimensional
array A in three steps. First uses FFTW’s sin tranform function, then
shifts right the contents of array A, and finally divides the array by
2N [1] (normalization).

– void ArrayCFT_SCFT(fftw_plan costr_plan_SCFT, int N[], Ar-
ray<DP,1> A): Performs forward cos transform using FFTW func-
tion, and normalize the array by dividing by 2N [1].

– void ArrayISFT_SCFT(fftw_plan isintr_plan_SCFT, int N[], Ar-
ray<DP,1> A): Shift left the array A and apply inverse sin transform
on A using FFTW function.

– void ArrayICFT_SCFT(fftw_plan icostr_plan_SCFT, int N[], Ar-
ray<DP,1> A): Performs inverse cos transform on A using FFTW
function.
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– Derivative computation like 2D and 3D functions described below.

• For 2D and 3D

– void Init_fftw_plan_SCFT(int NN[], Array<complx,n> A): Inial-
izes fftw plans sintr_plan_SCFT, costr_plan_SCFT, isintr_plan_SCFT,
icostr_plan_SCFT (sin and cos transforms along x axis), and r2c_plan_SCFT,
c2r_plan_SCFT (Fourier transforms along the perpendicular direc-
tions).

– void Zero_pad_SCFT_lastrow(int N[], Array<complx,n> A): In
2D, the row ky = N2/2 is set to zero; In 3D, the plane k3 = N3/2 is
set to zero.

– void Norm_SCFT(int N[], Array<complx,n> A):Normalization of
array A by 2

∏
Ni during forward SCFT.

– void Sintr_row_SCFT(fftw_plan sintr_plan_SCFT, int N[], Array<DP,1>
Row): Sin transform of data stored in row. Costr_..., Isintr_...,
Icostr_... perform cos, Invere sin, and Inverse cosine transforms
respectively using corresponding FFTW plans.

– void FT_Col_SCFT(fftw_plan r2c_plan_SCFT, int N[], Array<complx,1>
Col): Fourier transform along perpendicular column using data stored
in col. FT_plane_..., IFT_Col_..., IFT_plane_... perform Fourier
transform along the plane, Inverse Fourier transform along columns
and planes respectively.

– void ArrayShiftRight_SCFT(int N[], Array<complx,n> A): Shifts
right the contents of array A along x axis by one. That is, A(i, ..)→
A(i + 1, ..). This operation is performed after FFTW’s forward sin
transform.

– void ArrayShiftLeft_SCFT(int N[], Array<DP,n> A): Shifts left the
contents of array A along x axis by one. That is, A(i, ..)→ A(i−1, ..).
This operation is performed before FFTW’s inverse sin transform.

– void ArraySFT_SCFT(fftw_plan sintr_plan_SCFT, fftw_plan r2c_plan_SCFT,
int N[], Array<complx,2/3> A): Perfoms sin transform along rows;
Zeropad last row; Forward Fourier transform along column/planes;
Normalize by SCFT_norm, i.e., divide by

∏
Ni; Shift array A to the

right by one column/plane; Put zeros in the first colum/plane.

– void ArrayISFT_SCFT(fftw_plan isintr_plan_SCFT, fftw_plan
c2r_plan_SCFT, int N[], Array<complx,2> A): Shift array A to
the left; Perfoms Inverse Fourier transform along perpendicular col-
umn/plane; sin transform along the row.

– void ArrayCFT_SCFT(fftw_plan costr_plan_SCFT, fftw_plan r2c_plan_SCFT,
int N[], Array<complx,2> A): Do the same operations and ArraySFT_SCFT.
However no array shift is applied.
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– void ArrayICFT_SCFT(fftw_plan icostr_plan_SCFT, fftw_plan
c2r_plan_SCFT, int N[], Array<complx,2> A): Same as ArrayISFT_SCFT
withour array_shift.

– void Xderiv_SCFT_SIN(int NN[], Array<complx,n> A,Array<complx,n>
B, DP kfactor[]): ArrayA contains sin transformed function. Hence
B(m,k) = m × kfactor(1) × A(m,k). Array B contains cos trans-
formed function.

– void Xderiv_SCFT_COS(int NN[], Array<complx,n> A,Array<complx,n>
B, DP kfactor[]): ArrayA contains cos transformed variable. Hence
B(m,k) = −m × kfactor(1) × A(m,k). Array B contains sin trans-
formed function.

– void Yderiv_FFT(int NN[], Array<complx,n> A, Array<complx,n>
B, DP kfactor[]): B(k) = iKyA(k) with Ky = kfactor(2)× ky.

– void Zderiv_FFT(int NN[], Array<complx,n> A,Array<complx,n>
B, DP kfactor[]): B(k) = iKzA(k) with Kz = kfactor(3)× kz.

4.4 sincosfour_inline.h
• inline int Compute_ky3D_SCFT(int i2, int N[]): Returns ky given
iy, i. e., ky = iy if iy ≤ N2/2, else ky = iy −N2 . This function is useful
for 3D arrays. In 2D, ky = iy.

• inline int Compute_iy3D_SCFT(int ky, int N[]): Computes iy given
ky in 3D.

• inline DP Kmagnitude_SCFT(int i1, int i2, int N[], DP kfactor[]):
Computes kmagnitude

√∑
(kfactor(i)× ki)2. Similar operation for 3D.

• inline int Min_radius_outside_SCFT(int N[], DP kfactor[]): Returns ra-
dius of the smallest sphere enclosing the cube (kfactor(1)(N1−1), kfactor(2)N2/2)
in 2D and (kfactor(1)(N1 − 1), kfactor(2)N2/2, kfactor(3)N3/2) in 3D.

• inline int Max_radius_inside_SCFT(int N[], DP kfactor[]): Returns ra-
dius of the largest sphere that can fit inside the cube (kfactor(1)(N1 −
1), kfactor(2)N2/2) in 2D and (kfactor(1)(N1−1), kfactor(2)N2/2, kfactor(3)N3/2)
in 3D.

4.5 field_internal_four.cc

This file contains functions that operate on f̂(m,k) and ĝ(m,k). They compute
energy spectrum etc. To compute these quantities, the sum is done over all the
revelant wavenumbers. However we store only modes with klastindex ≥ 0 in
computer simulation. Therefore we double the contributions from most of the
modes; the modes at the common surface klastindex = 0 is not to be doubled.
Here n takes values 2 or 3.
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• DP Total_abs_sqr_SCFT(int N[], Array<complx,n> A): Returns to-
tal fluctuating energy |Â(m,k)|2 (without k = 0).

• complx Total_termbyterm_mult_SCFT(int N[], Array<complx,n> A,
Array<complx,n> B): Returns Â(m,k)× conj(B̂(m,k)) without k = 0.

• DP Total_Sn_SCFT(int N[], Array<complx,n> A, DP n, DP kfactor[]):
Returns total fluctuating quantity kn|Â(m,k)|2 (without k = 0).

• void Compute_1D_Sk_SCFT(int N[], Array<DP,1> A, DP n, Array<DP,1>
Sk, DP kfactor[]): Compute Sk(k) = Kn|Â(m)|2/2.

• void Compute_1D_Sk_SCFT(int N[], Array<DP,1> A, Array<DP,1>
B, DP n, Array<DP,1> Sk, DP kfactor[]): Computes Sk(k) = Kn<(A(k)∗
conj(B(k)))/2.

• void Compute_isotropic_Sk_SCFT(int N[], Array<complx,n> A, DP
n, Array<DP,1> Sk, DP kfactor[]): For D = 2, 3 isotropic spectrum
Sk(K) =

∑
K ′n|Â(m,k′)|2/2 with K ≤ K ′ < K + 1. Skn=0(K) is the

energy spectrum with k = 0 providing the mean energy.

• DP Shell_termbyterm_mult_SCFT(int N[], Array<complx,n> A, Array<complx,n>
B, DP inner_radius, DP outer_radius, DP kfactor[]): Returns

∑
K <(A(K)∗

conj(B(K))) for inner_radius ≤ K < outer_radius .

• void Shell_termbyterm_mult_real_imag_SCFT(int N[], Array<complx,n>
A, Array<complx,n> B, DP inner_radius, DP outer_radius, DP kfactor[],
DP& total_real, DP& total_imag): Computes total_real = <(A(K) ∗
<(B(K), and total_imag = =(A(K)) ∗ =(B(K)) for inner_radius ≤
K < outer_radius .

• void Array_divide_ksqr_SCFT(int N[], Array<complx,n> A, DP kfactor[]):
A(k)→ A(k)/K2, A(0) = 0. Note that K2 = K2

x +
∑
sK

2
s .

• void Array_mult_ksqr_SCFT(int N[],Array<complx,n> A, DP kfactor[]):
A(k)→ K2A(k).

• void Array_exp_ksqr_SCFT(int N[],Array<complx,n> A, DP factor,
DP kfactor[]): A(k)→ exp(factor ×K2)A(k).

29



Chapter 5

Basic array functions

We define some basic array function that are very useful. They are

• void Array_real_mult(int N[], Array<complx,1> A, Array<complx,1>
B, Array<complx,1> C): Multiply term by term, i.e., C(i) = A(i)×B(i).

• void Output_asreal(ofstream& fileout, int N[], Array<complx,n> A): Out-
puts real and imaginary parts element by element, i.e., <[A(1)], =[A(1)],
<[A(2)], =[A(2)], ....

These functions are in basic_array.h
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Chapter 6

Universal functions

For each basis_type we have various functions like ArrayFFT_FOUR(..) in
FOUR basis peforms forward Fourier transform. In SCFT basis, the forward
sin-Fourier transform is performed by ArraySFT_SCFT(..). While simulating
flows we invoke these functions depending on the choice of basis_type. To make
the functions used in flow simulation more general, we have defined universal
functions that invoke particular functions depending on the basis_type. For
example the function ,

void Forward_transform_array(string basis_type, int N[], Array<complx,n>
A, int parity)

perfoms inplace Forward Transform on array A depending on basis_type.
Most of the univesal functions are straight-forward apart from a special vari-

able named parity. For basis_type SCFT we have either cos or sin transform.
We adopt a convection that parity = 0 is even parity and applies to cos trans-
form, and parity = 1 is odd parity and applies to sin transform. Also we take
parity = 0 if there is no choice to make, e.g., for FOUR basis type.

6.1 universal_inline.h
We define a constant const DP INF_RADIUS = 10000 that is supposed to rep-
resent the infinite radius of the wavenumber sphere. This constant is useful in
functions involving energy transfer computations.

In the following discussion we describe the universal functions that use ba-
sis_type to yield the required quantities.

• inline int Get_kx(string basis_type, int i1, int N[]): Returns
kx given i1.

• inline int Get_ky3D(string basis_type, int i2, int N[]): Returns
ky given i2.

• inline DP Kmagnitude(string basis_type, int i1, int N[], DP kfactor[]):
Returns kmagnitude kfactor(1)× k1 in 1D.
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• inline DP Kmagnitude(string basis_type, int i1, int i2, int N[],
DP kfactor[]): Returns kmagnitude

√∑
(kfactor(i)× ki)2 in 2D.

• inline DP Kmagnitude(string basis_type, int i1, int i2, int i3,
int N[], DP kfactor[]): Returns kmagnitude

√∑
(kfactor(i)× ki)2

in 3D.

• inline int Get_ix(string basis_type, int kx, int N[]): Returns
i1 given kx.

• inline int Get_iy3D(string basis_type, int ky, int N[]): Returns
iy given ky.

• inline int Min_radius_outside(string basis_type, int N[], DP kfactor[]):
Returns the radius of the smallest sphere containing wavenumber grid N .

• inline int Max_radius_inside_FOUR(string basis_type, int N[],
DP kfactor[]): Returns the radius of the largest sphere that can fit in-
side the wavenumber grid N .

• inline complx DxVx(string basis_type, DP kfactor[], int kx, complx
Vx): Computes Dx(Vx). The result is iKxVx for FOUR and KxVx for
SCFT. Note that Vx has odd parity in SCFT basis.

• inline complx DxVx_plus_DyVy(string basis_type, DP kfactor[],
int kx, int ky, complx Vx, complx Vy): Computes DxVx +DyVy.

6.2 universal_fn.cc
• void Init_fftw_plan_array(string basis_type, int N[], Array<complx,n>
A): Initializes fftw_plans.

• void Forward_transform_array(string basis_type, int N[], Array<complx,n>
A, int parity): Inplace Forward Transform(A).

• void Inverse_transform_array(string basis_type, int N[], Array<complx,n>
A, int parity): Inplace Inverse Transform(A).

• void Xderiv(string basis_type, int N[], Array<complx,n> A, Array<complx,n>
B, DP kfactor[]): B(k) = F [∂A(x)/∂x], where F is the Forward trans-
form operation.

• void Yderiv(string basis_type, int N[], Array<complx,n> A, Array<complx,n>
B, DP kfactor[]): B(k) = F [∂A(x)/∂y].

• void Zderiv(string basis_type, int N[], Array<complx,n> A, Array<complx,n>
B, DP kfactor[]): B(k) = F [∂A(x)/∂z]

• DP Total_abs_sqr(string basis_type, int N[], Array<complx,n> A):
Returns the fluctuating energy

∑
|A(k)|2/2 except k = 0.
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• DP Total_Sn(string basis_type, int N[], Array<complx,n> A, DP
n, DP kfactor[]): Returns the fluctuating energy

∑
Kn|A(K)|2/2 ex-

cept k = 0.

• DP Total_termbyterm_mult(string basis_type, int N[], Array<complx,n>
A, Array<complx,n> B): Returns the fluctuating energy < [

∑
A(k)×B(k)∗] /2

except k = 0.

• void Compute_1D_Sk(string basis_type, int N[], Array<complx,1>
A, DP n, Array<DP,1> Sk, DP kfactor[]): For 1D array A, the func-
tion computes Sk(A, k) = (1/2)Kn|A(k)|2 where K = k × factor(1).

• void Compute_1D_Sk(string basis_type, int N[], Array<complx,1>
A, Array<complx,1> B, DP n, Array<DP,1> Sk, DP kfactor[]): For
1D array A, the function computes Sk(A, k) = (1/2)Kn< [A(k)×B(k)∗]
where K = k × factor(1).

• void Compute_isotropic_Sk(string basis_type, int N[], Array<complx,n>
A, DP n, Array<DP,1> Sk, DP kfactor[]): For D = 2 and 3 com-
putes Sk(K) =

∑
[K ′n|A(K ′)|2/2] with K ≤ K ′ < (K + 1). Sk(0) for

n = 0 is the mean energy.

• void Compute_isotropic_Sk(string basis_type, int N[], Array<complx,n>
A, Array<complx,n> B, DP n, Array<DP,1> Sk, DP kfactor[]): Com-
putes Sk(A,B, k) = (1/2)

∑
K ′n< [A(K)×B(K)∗] with K ≤ K ′ < (K+

1).

• void Array_mult_ksqr(string basis_type, int N[], Array<complx,n>
A, DP kfactor[]): A(k) = A(k)K2 where K is the waveumber for array
index k computed using K2 =

∑
s (kfactor(s)× ks)2.

• void Array_divide_ksqr(string basis_type, int N[], Array<complx,3>
A, DP kfactor[]): A(k) = A(k)/K2.

• void Array_exp_ksqr(string basis_type, int N[], Array<complx,n>
A, DP factor, DP kfactor[]): A(k) = A(k)× exp(factor×K2).
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Chapter 7

Fields

In library libblitz.a we define functions for vector and scalar fields. In spectral
simulation, the fields could be represented in either real or Fourier space. For
this reason we define four different classes

We do this through four classes

• Complex vector field: CVF

• Complex scalar field: CSF

• Real vector fields: RVF

• Real scalar fields: RSF

Note however that for a given field, the array size in both real and Fourier space
is the same. We implement the arrays using blitz++ library. We define the
above fields in dimensions one, two, and three.

The fields could be defined in Fourier, SinCosFourier, Chebychev-Fourier, or
anyother basis. We define the functions of the above classes in terms of univer-
sal functions with a switch called basis_type. The functions of these classes
remain general under this design. At present we have implemented Fourier
(basis_type=FOUR) and SinCosFourier (basis_type=SCFT) basis.

In the following discussion we describe the classes in some detail.

7.1 Complex vector field CVF
CVF is the backbone of our program. They represent vector flow fields like
velocity or magnetic fields in spectral space. A CVF comprises of complex
dynamic arrays equal to number of dimensions, i.e., ∗V 1 in 1D, ∗V 1, ∗V 2 in
2D, and ∗V 1, ∗V 2, ∗V 3 in 3D as defined below.

class CVF {
public:
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#ifdef D1
Array<complx,1> *V1;

#endif

#ifdef D2
Array<complx,2> *V1;
Array<complx,2> *V2;

#endif

#ifdef D3
Array<complx,3> *V1;
Array<complx,3> *V2;
Array<complx,3> *V3;

#endif

CVF is initialized using constructor CVF(int N[]). Note that the wavenum-
ber range in the ith direction is defined as ki = −Ni/2 + 1 : Ni/2.

The other public variables of CVF are

• D: Dimensionality of the vector field.

• CV_basis_type: Takes values either as FOUR or SCFT (sincosFour).

• *Ncv: Ncv[i] contains size of Arrays *Vi in ith direction.

• *CV_kfactor[i]: The real wavevector Ki is related to the array index ki:
Ki = ki × CV_kfactor(i).

• *CV_ek: In 1D, the energy contained in V1(k), i.e., |V1(k)|2/2 .

• *CV_dissk: In 1D, K2|V1(k)|2/2 .

• CV_iso_ek_size: Size of isotropic E(k), which is the radius of the smalles
wavenumber sphere enclosing the simulation box in the wavenumber space.

• *CV_iso_eki: Isotropic energy spectrum of the ith component of the vec-
tor ei(k) =

∑
K≤K′<K+1 |Vi(K ′)|2/2 .

• *CV_iso_dissk: Isotropic spectrum
∑
k≤k′<k+1K

′2|V (K ′)|2/2 ; summed
over all the components.

• CV_totalenergy: Total energy of the vector field,
∑
k′ |V (k′)|2/2 summed

over the whole spectral space.

• CV_totaldiss:
∑
k′ K

′2|V (k′)|2/2 summed over the whole spectral space.

• CV_entropy: Entropy of vector field V .

The public functions defined for CVF are
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• CVF(int *NN, string basis_type, DP *kfactor): Constructor; Ncv[] =
NN []; Allocates memory to arrays Vi of size NN []; Allocates memory
to CV_iso_Eki as a one dimensional array of size CV_iso_ek_size; Ini-
talizes these arrays to zero. Also, CV_basis_type = basis_type, and
*CV_kfactor = *kfactor.

• void CV_Copy_to(CVF& to): Copy Vi’s to CVF to.Vi.

• void CV_Inialize(): Sets *Vi = 0.

• void Init_fftw_plan(): Creates fftw_plan r2c_plan_FOUR, c2r_plan_FOUR
for basis_type FOUR; and r2c_plan_SCFT, c2r_plan_SCFT, sintr_plan_SCFT,
costr_plan_SCFT, isintr_plan_SCFT, icostr_plan_SCFT for basis_type
SCFT.

• void CV_Forward_Transform(): Inplace forward transform of Vi(x); The
trasforms could be either FOUR or SCFT (sin/cos along x and Fourier
along the perpendicular directions).

• void CV_Inverse_Transform(): Inplace Inverse FOUR or SCFT trans-
form of Vi(k).

• void CV_output(): Output all the components of the CVF.

• void CV_Compute_totalenergy_diss(): Computes CV_totalenergy =∑
K |V (K)|2 and CV_totaldiss =

∑
K K

2|V (K)|2.

• void CV_Compute_entropy(): Computes entropy of the vector field.

• void CV_Compute_1D_spectrum(): Computes energy spectrum and dis-
sipation for 1D.

• void CV_Compute_isotropic_spectrum(): Computes isotropic energy
spectrum and and dissipation for 2D and 3D for Fourier and SCFT trans-
formed CVF. ei(K) =

∑
K≤K′<K+1 |Vi(K ′)|2 andD(K) =

∑
K≤K′<K+1K

′2|V (K ′)|2.

7.2 Complex Scalar Field (CSF)
CSF represents a scalar field like temperature, pressure, etc. in spectral space.
A CSF comprises of complex dynamic arrays ∗F . The other public variables
of CSF are

• D: Dimensionality of the vector field.

• CS_basis_type: Takes values either as FOUR or SCFT (sincosFour).

• *Ncs: Ncv[i] contains size of Arrays *F in ith direction.

• *CS_kfactor[i]: Connects real wavevector Ki with FFT index ki using
Ki = ki × CS_kfactor(i).
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• *CS_ek: In 1D, e(k) = |F (k)|2/2.

• *CS_dissk: In 1D, D(k) = K2|F (k)|2/2.

• CS_iso_ek_size: same as CVF size variable.

• *CS_iso_ek: Isotropic energy spectrum of the scalar field e(K) =
∑
K≤K′<K+1 |F (K ′)|2/2

.

• *CV_iso_dissk: Isotropic spectrum D(K) =
∑
k≤k′<k+1K

′2|F (K ′)|2/2
.

• CS_totalenergy: Total energy of the vector field,
∑
k′ |F (k′)|2/2 summed

over the whole spectral space.

• CS_totaldiss:
∑
K′ K

′2|F (K ′)|2/2 summed over the whole spectral space.

The public functions defined for CVF are

• CSF(int *NN, string basis_type, DP *kfactor): Similar to CVF ex-
cept that it creates *F.

• void CS_Forward_Transform(): Inplace forward transform of F (x).

• void CS_Inverse_Transform(): Inplace Inverse transform of F (k).

• void CS_divide_ksqr(): F (k) = F (k)/K2 that is useful while comput-
ing pressure.

• void CS_Compute_totalenergy_diss(): Computes CS_totalenergy =∑
K |F (K)|2 and CS_totaldiss =

∑
K K

2|F (K)|2.

• void CV_Compute_1D_spectrum(): Computes energy spectrum and dis-
sipation for 1D.

• void CV_Compute_isotropic_spectrum(): Computes isotropic energy
spectrum and and dissipation for 2D and 3D: e(K) =

∑
K′ |F (K ′)|2 and

D(K) =
∑
K K

′2|F (k′)|2 where the sum is performed over K ≤ K ′ <
K + 1.

7.3 Real Vector Field (RVF)
This class is for real vector field. We use this class for storing V(x) that is
obtained aftering perforing inverse transform of V(k). The names of these
variables are V ir where i takes on values 1,2, or 3. The functions in these class
are

• RVF(int *NN, string basis_type): Constructor with similar function
as CVF constructor.
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• void RV_Forward_transform(): Forward transform V ir.

• void RV_inverse_transform(): Inverse transform V ir.

• void RV_outout(ofstream& fileout): Outputs Vi(x) to file fileout.

• void RV_Forward_transform_RSprod(): The field components Vis are
mulitplied in real space for computing the nonlinear terms in spectral
simulation. After this multiplication, we have V1 = V1V2 in 2D, and
V1 = V1V2, V2 = V2V3, and V3 = V3V1. Since V1 has odd parity (sin),
and other components have even parity (cos), V1 has odd parity in 2D,
However, in 3D V1 and V3 have odd parity, and V2 has even parity. The
function RV_Forward_transform_RSprod() performs

– in 2D: F(V1, parity = 1) where F is the forward transform operator.

– in 3D: F(V1, parity = 1), F(V2, parity = 0), F(V3,parity = 1)

7.4 Real Scalar Field (RSF)
This class is for real scalar field. It contais real scalar field Fr(x). The functions
of RSF are

• RSF(int *NN, string basis_type): Constructor with similar function
as CSF constructor.

• void RS_Forward_transform(): Forward transform of Fr.

• void RS_Inverse_transform(): Inverse tranform of Fr.

• void RS_Output(ofstream& fileout): Output Fr to file fileout.
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Chapter 8

IncFlow: Library for
Incompressible Flow

An incompressible flow consists of a flow field V, its associated pressure p,
and its diffusive parameters like ν. The evolution of the flow field requires the
computations of its nonlinear terms. We declare a class IncVF that contains
the contains the vector field V in Fourier and real spaces through inherited
classes CVF and RVF. It also inherits class NLIN that contains nonlinear terms
F [∂j(VjVi)] (F :Forward transform) and pressure through an inherited CSF.
See diagram for an illustration.

A flow field could interact with a scalar field like temperature. To handle
scalar fields we define a class IncSF. Note that the nonlinear terms of scalar
field are of the type F [∂j(VjT )] that assumes incompressibility (∂jVj = 0).

The vector field V could also interact with another vector field, e.g., magnetic
field in magnetohydrodynamics. We compute the interactions between these
fields through functions defined here.

In library libIncFlow.a we have the following classes:

• Nonlinear: NLIN.

• Incompressible Vector Field: IncVF

• Incompressible Scalar Field: IncSF

• Energy transfer vars and functions: EnergyTr

As discussed above these classes inherit some basic classes like CVF, RVF etc.
We classes are defined for dimensions two, and three. Note that incompressible
flow in one dimension is trivially a constant. Compiler directives are used to
make a choice of dimensionality. The choice of basis function, FOUR or SCFT,
is stored in variable basic_type.
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8.1 Classes
The library IncFlow contains the following important classes.

8.1.1 Incompressible Vector Field: IncVF
IncVF inherits

• CVF that contains the field variables in Fourier space [Vi(k)].

• RSF that contains the field variables in real space [Vi(r)].

• NLIN that contains nlini that would contain F [∂j(VjVi)], and pressure field
(an inherited CSF).

• EnergyTr that contains the arrays for wavenumber shells and spheres to
store various energy transfers. This class will be discussed in the next
chapter.

and contains public variables

• *Forcei : Force acting on the vector field. The array size of Forcei is
the same as Vi.

• *iso_force_Vk: Contains
∑
K≤K′<K+1 Force(K′) · [V(K′)]∗, i.e., the

sum is over all the modes in the shell.

• *iso_ek_cross: Contains the cross helicity spectrum if V is interacting
with another vector field W. The size size of iso_ek_cross is the same
as CV_ek.

• D: The dimensionality of space.

• *N: The size of the arrays Vi s

• *kfactor: Contains kfactor(s).

• basis_type: Basis type being used.

• VF_temp[N[D]]: used for temporary storage.

• dissipation_coefficient: Dissipation coefficient of the vector field ap-
pearing in front of ∇2V.

There are many functions defined in the class IncVF. We categorize them in the
following divisions:

• Constructor- IncVF(int *NN, string prog_basis_type, DP *prog_kfactor,
DP diss_coefficient, int shell_input_sheme, int nospheres, int
noshells, Array<DP,1> Rshells): The first four arguments would be
passed to the corresponding variables described above. The last four vari-
ables are related to the energy transfer that would be described in the
next chapter.
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• Compute nonlinear terms: Several functions compute the nonlinear term
F [∂j(VjVi)], F [∂j(VjF )], F [∂j(VjWi)] etc.

• Compute pressures

• Compute products of the field variables, e.g., ViVj .

• Useful function described in Sec.

• Functions related to energy transfers.

8.1.2 Class Nonlinear: NLIN
The function NLIN inherits a CSF that contains pressure p(k). It also contains
public variables

• nlini : It contains nlini(k).

• D: The dimensionality of space.

• *Nn: Size of nlini that is the same as Vi.

• NLIN_basis_type

• *NLIN_kfacfor

The functions in this class are

• NLIN(int *NN, string basis_type, DP *kfactor): Constructor

• void NLIN_diag_Forward_transform_derivative(): Before entering this
function, nlini contains either V 2

i or ViWi. This function performs for-
ward transform of nlini and take derivative, i.e., nlins ← DsF [nlini]. In
FOUR basis DsF(f) is simply iKsFT(f). However in SCFT, D1F(f) =
−kfactor(1)× [CFT(f)] and DsF(f) = iKs[CFT(f)] for s ≥ 2.

• void NLIN_Compute_divergence(): Before entering this function, nlini =
F [∂j(VjVi)]. This function computes the divergence of nlin amd puts it
in F , i.e., F = Di(nlini).

8.1.3 Class Incompressible Scalar Field: IncSF
The class IncSF inherits

• CSF that contains the field variables in Fourier space F (k) like temperature

• RSF that contains the field variables in real space F (r).

and contains public variables

• nlin: it contains F [∂j(VjF )].
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• *Force: Force acting on the scalar field.

• SF_temp[Nn[D]]:Used for temporary storage. The sizes of nlin, Force,
and SF_temp are the same as Vi.

• *iso_force_Vk: Contains
∑
K≤K′<K+1 Force(K

′) · [F (K)]∗

• D: The dimensionality of space.

• *ISF_kfactor

• *NIs

• diffusion_coefficient: Diffusion coefficient of the scalar field appearing
in front of ∇2F .

Many functions in the class IncVF also act on the scalar variable of the class
IncSF. Some useful functions of the class IncSF are described in Sec...

8.2 Forcing
The flow equations are typically forced. We have a force array for vector ∗Forcei
for a vector field (defined in class IncVF), and ∗Force for a scalar field (defined
in class IncSF). The following functions are related to the forcing

• void IncVF::Compute_force_spectrum(): Computes Force spectrum∑
K≤K′<K+1 Force(K′) · [V(K′)]∗. Note that there is no factor of 1/2.

The result stored in *iso_force_Fk.

• void IncSF::Compute_force_spectrum(): Computes Force spectrum∑
K≤K′<K+1 Force(K

′) · [F (K)]∗. Note that there is no factor of 1/2.
The result stored in *iso_force_Fk.

8.3 Real Space products
The following functions compute products in real space.

8.3.1 Derivative of product ViVj

• void Xderiv_RSprod(Array<complx,n> A, Array<complx,n> B): Com-
putes B(k) = F [∂xA(x)]. We argue below that the derivative along x axis
has odd parity.

• void Yderiv_RSprod(Array<complx,n> A, Array<complx,n> B):B(k) =
iKyA(k).

• void Zderiv_RSprod(Array<complx,n> A, Array<complx,n> B):B(k) =
iKzA(k).
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8.3.2 Computation of ViVj in fluid simulation
• void Compute_RSprod_diag(): Computes the diagonal product terms
nlini = V 2

i .

• void Compute_RSprod_offdiag(): Computes the off-diagonal product
terms; In 2D: V1 = V1V2 ; In 3D: V1 = V1V2, V2 = V2V3, and V3 = V3V1 .

• void Derivative_RSprod(): We need to compute F [Dj(VjVi)]. Before
entering the function, F [VjVi] has been computed. For y and z compo-
nents, we multiply the above by Dj = iKj . Since VjV1 (j 6= 1) has odd
parity, D1 for the RSprod is alway of odd parity. Note that the terms
D1[VjV1] appearing in the nlinj for Vj (j 6= 1) has even parity, while
Dj [VjV1] appearing in nlin1 has odd parity consistent with the fact that
V1 has odd parity.

8.3.3 Computation of ViWj in MHD simulation
• void Compute_RSprod_diag(IncVF& W): Computes the diagonal product

term nlini = ViWi.

• void Compute_RSprod_offdiag(IncVF& W): Computes the off-diagnoal
product term; In 2D: V1 = V1W2 and W1 = W1V2; In 3D: V1 = V1W2,
V2 = V2W3, V3 = V3W1 , W1 = W1V2, W2 = W2V3, W3 = W3V1.

• void Derivative_RSprod(IncVF& W):We need to compute nlini = Dj [F(ViWj)],
and W.nlini = Dj [F(WiVj)]. Before entering the function, F [WjVi] has
been computed. For y and z components, we multiply the above by
Dj = iKj . As argued above, the derivative along x direction has odd
parity.

The most important function in IncVF is the computation of the nonlinear terms
that is being described below.

8.4 Computation of nlin

8.4.1 IncVF::Compute_nlin()
This function computes F [∂j(VjVi)] and stores it in nlini. We perform this
operation in several steps through various functions.

1. Compute V(r) by Inverse_transform (RVF::RV_Inverse_transform).

2. Diagonal product V 2
s performed and put in nlins, i.e., nlins ← V 2

s (IncVF::Compute_RSprod_diag()).
The diagonal products have even parity.

3. Perform forward transform of V 2
i and take derivative, i.e., nlins ← DsF [V 2

s ].
Choose even parity derivative long x axis. The function is NLIN::NLIN_diag_Forward_transform_derivative().
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4. Compute off-diagonal products VjVi (IncVF::Compute_RSprod_offdiag())

(a) 2D: V1 = V1V2. For SCFT, the product has odd parity.
(b) 3D: V1 = V1V2, V2 = V2V3, V3 = V3V1. For SCFT, the product V1

and V3 has odd parity, while V2 has even parity.

5. void RV_Forward_transform_RSprod(): Forward transform the product
Vis keeping parity in mind.

6. IncVF::Derivative_RSprod(): The products VjV1 have odd parity, hence
D1 for the RSprod is alway of odd parity.

(a) 2D:

nlin1 = nlin1 +D2V1,

nlin2 = nlin2 +D1V1

(b) 3D:

nlin1 = nlin1 +D2V1 +D3V3

nlin2 = nlin2 +D1V1 +D3V2,

nlin3 = nlin3 +D1V3 +D2V2.

The resultant nlins is the desired F [∂j(VjVs)].

8.4.2 IncVF::Compute_nlin(IncSF &T)
In this function we compute F [∂(VjVi)] and F [∂j(VjF )]. The procedure to
compute F [∂j(VjVi)] is the same as above. To compute F [∂j(VjF )] we perform
the following operations:

1. Compute F (r) by inverse transform of F (k).

2. Compute T.nlin = V1(r)F (r) and T.SFtemp = V2(r)F (r). In SCFT, V1F
has even parity, and V2F has odd parity.

3. Perform Forward tranform of T.nlin and T.SFtemp. We take into account
parity in SCFT basis.

4. Take derivatives: D1(T.nlin) (even parity) and D2(T.SFtemp) (odd par-
ity).

5. T.nlin = T.nlin+ T.SFtemp.

Now T.nlin contains F [∂j(VjF )] for 2D flows. For 3D flows we need
to perform several more steps.

6. Compute T.SFtemp = V3(r)F (r), and take take derivate D3(T.SFtemp)
(odd parity).

7. T.nlin = T.nlin+ T.SFtemp.

Now T.nlin has F [∂j(VjF )] for 3D flows.
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8.4.3 IncVF::Compute_nlin(IncSF &T, string Pr_switch)
If Prandtl number is zero, then we do not need to compute nonlinear terms
(u ·∇)T . Hence we just invoke IncVF::Compute_nlin(). When Prantdl number
is nonzero, we use IncVF::Compute_nlin(T) to compute all the nonlinear terms.

8.4.4 IncVF::Compute_nlin(IncVF & W)
For MHD, we need to compute the nonlinear terms

V.nlin = [(V · ∇)V − (B · ∇)B] =
[
(Z− · ∇)Z+ + (Z+ · ∇)Z−

]
/2.

In IncVF::Compute_nlin(W) we compute nlin = (Z− · ∇)Z+ and W.nlin =
(Z+ ·∇)Z−. Using these we can compute the nonlinear term for the NS equation

V.nlin = (nlin + W.nlin)/2. (8.1)

We can also derive the dynamical equation for the magnetic field that yields

B.nlin = [(V · ∇)B− (B · ∇)V] =
[
(Z− · ∇)Z+ − (Z+ · ∇)Z−

]
/2.

The strategy is to compute nonlinear terms T [∂j(Z−j Z
+
i )] and T [∂j(Z+

j Z
−
i )]

first, and then compute V.nlin and B.nlin. We compute these nonlinear terms
in the following steps:

1. The input to the functions are velocity (V) and magnetic fields (B) in
MHD.

2. We compute Elsasser variable V← Z+ = V + B and W← Z− = V−B.
From this point to the step 9, the variables V and W are Elsasser variables.

3. Compute V(r), W(r) using Inverse_transform.

4. We compute the diagonal products VsWs and put them in nlins, i.e.,
nlins ← VsWs. The diagonal products have even parity. (IncVF::Compute_RSprod_diag(W)).

5. Perform forward transform of nlins and take derivative, i.e., nlins ←
DsF [VsWs]. For SCFTD1 has odd parity. The function is (NLIN::NLIN_diag_Forward_transform_derivative()).

6. Since the diagonal terms are the same in both nlins and W.nlins, we take
W.nlins = nlins.

7. Compute off-diagonal products VjVi (IncVF::Compute_RSprod_offdiag())

(a) 2D: V1 = V1W2; W1 = W1V2. (SCFT: both odd parity).
(b) 3D: V1 = V1W2, V2 = V2W3, V3 = V3W1;

W1 = W1V2, W2 = W2V3, W3 = W3V1. (SCFT: The product V2 and
W2 have even parity, and all others have odd parity.

8. void RV_Forward_transform_RSprod(): Foward transform the product
Vi and Wis keeping parity in mind.
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9. IncVF::Derivative_RSprod():

(a) 2D:

nlin1 = nlin1 +D2V1

nlin2 = nlin2 +D1W1

W.nlin1 = W.nlin1 +D2W1

W.nlin2 = W.nlin2 +D1V1.

(b) 3D:

nlin1 = nlin1 +D2V1 +D3W3

nlin2 = nlin2 +D1W1 +D3V2,

nlin3 = nlin3 +D1V3 +D2W2,

W.nlin1 = W.nlin1 +D2W1 +D3V3

W.nlin2 = W.nlin2 +D1V1 +D3W2,

W.nlin3 = W.nlin3 +D1W3 +D2V2.

10. The resultant nlins = T [∂j(Z−j Z
+
s )] and W.nlins = T [∂j(Z+

j Z
−
s )]. From

this variables we compute the nlin for the velocity and magnetic fields as
V.nlin = (nlin+W.nlin)/2 andW.nlin = (nlin−W.nlin)/2 as described
above.

11. We revert back to the velocity and magnetic fields from Elsasser variables:
V = (Z+ + Z−)/2 and W(B) = (Z+ − Z−)/2.

8.4.5 IncVF::Compute_nlin(IncVF& W, IncSF& T)
For magnetoconvection we compute nonlinear terms V.nlin, B.nlin, and T.nlin =
F [∂j(VjT )]. For this

1. We compute V.nlin and B.nlin using IncVF::Compute_nlin(IncVF& W).

2. We compute T.nlin = F [∂j(VjT )] using the procedure outlined in In-
cVF::Compute_nlin(IncSF& T).

8.4.6 IncVF::Compute_nlin(IncVF&W, CVF& nlinWdU,
CVF& nlinUdW)

In this function we compute all the nonlinear terms F [∂j(WjVi)], F [∂j(VjWi)],
F [∂j(VjVi)], and F [∂j(WjWi)]. We compute them using the following steps.

1. Compute V(r) and W(r) by taking Inverse transform of V(k) and W(k).

2. Save nlinWdU = V and nlinUdW = W.
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3. Compute nlins = T [∂j(WjVs)] and W.nlins = T [∂j(VjWs)] using the pro-
cedure given in IncVF::Compute_nlin(W). We cannot use IncVF::Compute_nlin(W)
directly because it yields combinatin of T [∂j(WjVs)] and T [∂j(WjVs)] (see
above).

4. Restore V = nlinWdU and W = nlinWdW.

5. nlinWdU = nlin and nlinUdW = W.nlin .

6. Compute nlins = T [∂j(VjVs)] using IncVF::Compute_nlin();

7. Compute nlins = T [∂j(WjWs)] using W.Compute_nlin(). The result is
stored in W.nlini .

8.5 Computation of Pressure
The operation is done by void IncVF::Compute_pressure() in two steps. Be-
fore entering the function, nlini = F [∂j(VjVi)], where V is the velocity field.
The steps are

1. We compute the divergence of F (k) = DiF [∂j(VjVi)] using IncVF::Compute_divergence_nlin().

2. We compute F (k) = F (k)/k2 using NLIN::CS_divide_ksqr(). The re-
sult is the pressure field. Note that

−∇2p = ∇ · [(u · ∇)u].

8.6 Simple useful functions
Here we list functions in IncCF and IncSF that were not convered above.

8.6.1 Elsasser variables
• void UB_to_Elsasser(IncVF& W): Before entering this function, V and

W are the velocity and magnetic fields respectively. This function yields
V ← Z+ = (V + W) and W(B) ← Z− = (V −W). The fields Z± are
called Elasser variables.

• void Elsasser_to_UB(IncVF& W): Before entering this function, V and
W are the Z+ and Z− respectively. This function yields V = (Z+ + Z−)/2
and W(B) = (Z+ − Z−)/2. Now V,W represent velocity and magnetic
field respectively.

• void UB_to_Elsasser_nlin(IncVF& W): The dynamical equations for the
Elasser variables are

∂Z±

∂t
= −(Z∓ · ∇)Z± −∇p+ ν+∇2Z± + ν−∇2Z∓,
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where ν± = (ν ±W.ν)/2. Adding the equations for Z± and by dividing
by 2, we obtain

∂V
∂t

= −
[
(Z− · ∇)Z+ + (Z+ · ∇)Z−

]
/2−∇p+ ν∇2V.

When we compare with the NS equation we obtain

V.nlin = [(V · ∇)V − (W · ∇)W] =
[
(Z− · ∇)Z+ + (Z+ · ∇)Z−

]
/2.

In the following function IncVF::Compute_nlin(W) we compute nlin =
(Z− · ∇)Z+ and W.nlin = (Z+ · ∇)Z− using which we can compute the
nonlinear term for the NS equation

V.nlin = (nlin + W.nlin)/2. (8.2)

We can also derive the dynamical equation for the magnetic field by the
operation ∂(Z+ − Z−)/∂t:

∂B
∂t

= −
[
(Z− · ∇)Z+ − (Z+ · ∇)Z−

]
/2 +B.ν∇2B,

where B is the magnetic field. Therefore

B.nlin =
[
(V · ∇)B− (B · ∇)V−

]
=
[
(Z− · ∇)Z+ − (Z+ · ∇)Z−

]
/2.

Hence
B.nlin = (nlin−W.nlin)/2. (8.3)

The computations of V.nlin and B.nlin using Eqs. (8.2,n8.3) are done in
the function UB_to_Elsasser_nlin(IncVF& W).

• void Elsasser_to_UB_nlin(IncVF& W): This function is opposite of the
above. We can compute nonlinear terms (Z∓ · ∇)Z± using V.nlin and
B.nlin.

• void IncVF::UB_to_Elsasser_force(IncVF& W): Computes forces for
Z± given the forces for U and B.

• void IncVF::Elsasser_to_UB_force(IncVF& W): Computes forces for
U and B given the force for Z±.

8.6.2 Compute divergence
• void IncVF::Compute_divergence_nlin(): This function computes the

divergence of the field nlin(k) and puts the result in the CSF F (k),
F (k) = T [Dj(nlinj)] . Pressure is computed after the divergence com-
putation (see Sec. 8.5).

• void IncVF::Compute_divergence_field: Compute divergence of the
field V(k) and puts the result in the CSF F (k), i.e., F (k) = T [Dj(Vj)]
. Since F (k) is supposed to contain pressure, divergence of a field should
be computed when F (k) is free.
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8.6.3 Multiply exp(−νK2dt) and exp(−κK2dt)

• void IncVF::Mult_field_exp_ksqr_dt(DP dt): V(k, t) = V(k,t) exp(−νK2dt),
where ν is the dissipation_coefficient of the IncVF.

• void IncVF::Mult_nlin_exp_ksqr_dt(DP dt): nlin(k,t) = nlin(k,t) exp(−νK2dt).

• void IncSF::Mult_field_exp_ksqr_dt(DP dt): F (k, t) = F (k, t) exp(−κK2dt),
where κ is the difussuion_coefficient of the IncSF.

• void IncSF::Mult_nlin_exp_ksqr_dt(DP dt): nlin(k, t) = nlin(k, t) exp(−κK2dt).

8.6.4 Add nlin×dt to the field
• void IncVF::Add_nlin_dt(DP dt): V = V + nlin× dt.

• void IncSF::Add_nlin_dt(DP dt): F = F + nlin× dt.

8.6.5 Add nlin to field
• void IncVF::Add_nlin_to_field(CVF& W, DP factor): W.V = W.V +

factor× nlin.

• void IncSF::Add_nlin_to_field(CSF& T, DP factor): T.F = T.F+factor×
nlin.

8.6.6 Copy fields
• void IncVF::Copy_field_to(CVF& W): W.V = V.

• void IncVF::Copy_field_from(CVF& W): V = W.V.

• void IncSF::Copy_field_to(CSF& T): T.F = F .

• void IncSF::Copy_field_from(CVF& T): F = T.F

8.6.7 Compute cross helicity
• IncVF::Get_cross_helicity(IncVF& W): returns Hc = 1

2V ·W.

8.6.8 Compute Nusselt Number
• IncVF::Get_Nusselt_no(IncSF& T): returns Nu = 1 + <(V1(k)F ∗(k)).

50



8.6.9 Fourier space point functions
These functions are useful for manipulating a vector at a given point in Fourier
space.

• void Last_component(int kx, int ky, complx &Vx, complx &Vy): In
2D, if ky 6= 0, Vy(k) = −DxVx(k)/iky . If ky = 0, Vx = 0 and Vy = Vx.

• void Last_component(int kx, int ky, int kz, complx &Vx, complx
&Vy, complx &Vz): In 3D, if kz 6= 0, Vz(k) = −(DxVx + DyVy)/ikz. If
kz = 0, then the read components are taken to be Vx and Vz. We compute
Vy using void Last_component(kx, ky, Vx, Vy).

• void Compute_VyVz(int kx, int ky, int kz, complx Vx, complx Omega,
complx &Vy, complx &Vz): The incompressibilty equation and vorticity
(along x) yield

DyVy +DzVz = −DxVx (8.4)
−DzVy +DyVz = Ωx. (8.5)

The solution of the above equations yield

Vy =
DyDxVx +Dzωx

K2
⊥

,

Vz =
DzDxVx −Dyωx

K2
⊥

,

where K2
⊥ = (kykfactor(2) + kzkfactor(3))2. Note that Ds = iks ×

kfactor(s) for s ≥ 2, and D1 = k1kfactor(1) in SCFT basis and D1 =
ik1kfactor(1) in FOUR basis.

If ky = 0 and kz = 0 (consequently K⊥ = 0), then the solution Vy and Vz
are indeterminate because the determinant of the matrix formed from the
linear equations (8.4, 8.5) is zero. For this case we set V(k) = 0.

• void IncVF::Add_complex_conj(int kx, int ky, complx Vx, complx
Vy): If V(kx, ky) = (Vx, Vy) is added to the vector field, then this func-
tion adds complex conjugate in the vector field if required. The function in
IncSF void IncSF::Add_complex_conj(int kx, int ky, complx G) has
similar function.

– FOUR: −N1/2 < kx ≤ N1/2 and ky ≤ N2/2. If ky > 0, program
assumes that V(−kx,−ky) = conj(V(kx, ky)), hence reality condi-
tion is satisfied. When ky = 0, then we need to assign V(−kx, 0) =
conj(V(kx, 0)).

– SCFT: Since kx ≥ 0, no need for any mode to be added to satisfy
reality condition.
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• void IncVF::Add_complex_conj(int kx, int ky, int kz, complx Vx,
complx Vy, complx Vz): If V(kx, ky, kz) = (Vx, Vy, Vz) is added to the
vector field, then this function adds complex conjugate in the vector field
if required. The function in IncSF void IncSF::Add_complex_conj(int
kx, int ky, int kz, complx G) has similar function.

– FOUR:When kz = 0, we need to assign V(−kx,−ky, 0) = conj(V(kx, ky, 0))
to satisfy the reality condition.

– SCFT:When kz = 0, we need to assign V(kx,−ky, 0) = conj(V(kx, ky, 0))
to satisfy the reality condition.

• void IncVF::Assign_field_comp_conj(int kx, int ky, complx Vx,
complx Vy): Assigns (∗V)(kx, ky) = (Vx, Vy). If ky = 0 and basis_type
is FOUR, then (∗V)(−kx, 0) = (Vx, Vy)∗.

• void IncVF::Assign_field_comp_conj(int kx, int ky, int kz, complx
Vx, complx Vy, complx Vz): Assigns (∗V)(kx, ky, kz) = (Vx, Vy, Vz). If
kz = 0, then add complex conjugate according to the function Add_complex_conj(..).

• void IncSF::Assign_field_comp_conj(int kx, int ky, complx G):
Assigns (∗F )(kx, ky) = G. If ky = 0 and basis_type is FOUR, then
(∗F )(−kx, 0) = G∗.

• void IncSF::Assign_field_comp_conj(int kx, int ky, int kz, complx
G): Assigns (∗F )(kx, ky, kz) = G. If kz = 0, then add complex conjugate
according to the function Add_complex_conj(...).

• DP IncVF::Get_Tk(int kx, int ky): For 2D flows returns−<[nlin(kx, ky)·
(V(kx, ky))∗]. Note that T (kx, ky) is the energy input to the Fourier mode
V(kx, ky) due to the nonlinear interactions. Similar definition works for
3D.

• DP IncSF::Get_Tk(int kx, int ky): For 2D flows returns−<[nlin(kx, ky)×
(F (kx, ky))∗]. Note that T (kx, ky) is the energy input to the Fourier mode
F (kx, ky) due to the nonlinear interactions. Similar definition works for
3D.

Here we end our discussion on the library IncVF.

52



Chapter 9

Computation of energy
transfers in turbulence

In turbulent flow energy is transferred from one region of wavenumber space
to another. The study of energy transfer is one of they area of research in
turbulence. In the following discussion we will discuss some of the functions
that compute the energy transfers in turbulence.

9.1 Introduction

9.1.1 Energy transfers in turbulence
Let us consider fluid turbulence first. The energy transfer from a region A1 to
another region A2 is

Tu,A1
u,A2

=
∫
k∈A2

dk
∫
p∈A1

dp<[(−ik · u(k− p))(u(p) · u∗(k)]

=
∫
k∈A2

dk<
[
−u∗i (k)

∫
p∈A1

dp[ikjuj(k− p)ui(p)]
]

=
∫
k∈A2

dk< [−u∗i (k)× nlinuui (k)] .

We compute Nlini(u,u) using the same procedure as outlined in IncFlow chap-
ter. The only difference is that u(p) is nonzero only in the region A1.

For scalar θ, the energy transfer among the scalar mode is

T θ,A1
θ,A2

=
∫
k∈A2

dk
∫
p∈A1

dp<[(−ik · u(k− p))(θ(p)θ∗(k)]

=
∫
k∈A2

dk<
[
−θ∗(k)

∫
p∈A1

dp[ikjuj(k− p)θ(p)]
]

=
∫
k∈A2

dk<
[
−θ∗(k)× nlinθθ(k)

]
.
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For MHD, the velocity-to-velocity transfer is the same as Tu,A1
u,A2

. The other
transfers are

T b,A1
b,A2

=
∫
k∈A2

dk
∫
p∈A1

dp<[(−ik · u(k− p))(b(p) · b∗(k)]

=
∫
k∈A2

dk<
[
−b∗i (k)

∫
p∈A1

dp[ikjuj(k− p)bi(p)]
]

=
∫
k∈A2

dk<
[
−b∗i (k)× nlinubi (k)

]
.

Tu,A1
b,A2

=
∫
k∈A2

dk
∫
p∈A1

dp<[(ik · b(k− p))(u(p) · b∗(k)]

=
∫
k∈A2

dk<
[
b∗i (k)

∫
p∈A1

dp[ikjbj(k− p)ui(p)]
]

=
∫
k∈A2

dk<
[
b∗i (k)× nlinbui (k)

]
.

T b,A1
u,A2

=
∫
k∈A2

dk
∫
p∈A1

dp<[(ik · b(k− p))(b(p) · u∗(k)]

=
∫
k∈A2

dk<
[
u∗i (k)

∫
p∈A1

dp[ikjbj(k− p)bi(p)]
]

=
∫
k∈A2

dk<
[
u∗i (k)× nlinbbi (k)

]
.

The nonlinear terms of T ’s arise from the following nonlinear terms of the equa-
tions

nlinuui (k) → ∂j(ujui),
nlinbbi (k) → ∂j(bjbi),
nlinubi (k) → ∂j(ujbi),
nlinbui (k) → ∂j(bjui).

The first superscript of nlini is the helper and the second superscript is the
giver. Note that nlinuui (k) and nlinbbi (k) are the nonlinear terms of the Navier-
Stokes equation (u̇), and nlinubi (k) and nlinbui (k) are the nonlinear terms of the
induction equation (ḃ).

9.1.2 Energy fluxes
For fluid turbulence we define energy leaving a wavenumber sphere of radius
K0 as the energy flux. This energy transfer takes place from the modes inside
the above wavenumber sphere to the modes outside the sphere. We denote this
quantity by Πu<

u>(K0) that is computed by
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Πu<
u>(K0) =

∑
k≥K0

−<
[
u∗i (k)× nlinu,u<i (k)

]
,

where the u< is the giver field that naturally resides inside the sphere.
We can define energy flux Πζ<

ζ>(K0) = for scalar field ζ in the similar manner
as the energy of the scalar field leaving the wavenumber sphere of radius of K0.
This

COMPLETE..

9.1.3 Shell-to-shell energy transfers
The shell-to-shell energy transfer from the shell m to the shell n is defined as

Tuunm =
∑
k∈n

−<
[
u∗i (k)× nlinu,u(m)

i (k)
]
,

where u(m) is the giver field that contains that is nonzero only for k ∈ m.

9.2 Wavenumber spheres and shells for energy
transfer studies

In this chaper we will discuss the energy flux from a wavenumber sphere, and the
shell-to-shell energy transfers between two wavenumber shells. In the following
discussion we will describe how we setup the wavenumber spheres and shells in
our simulation.

We consider Nspheres spheres of increasing radius. The last sphere con-
tains all the modes, and the last but one sphere just fits inside the wavenum-
ber box. We define sphere(n) as a sphere containing waveumbers 0 ≤ k′ <
sphereradius(n). Unless specified, we take spherereadius(0) = 0, spherereadius(1) =
2, spherereadius(2) = 4, spherereadius(3) = 8, spherereadius(4) = 8s, ....,
spherereadius(Nspheres-2) = Maxpossible_inner_radius/2, spherereadius(Nspheres-1) =
Maxpossible_inner_radius, spherereadius(Nspheres) =∞.

In simulation we take a const variable INF_RADIUS whose value is 10000.0
is takne to be ∞. The Maxpossible_inner_radius is the radius of the largest
wavenumber sphere that fits inside the box. The radii of the spheres are dis-
tributed logarithmically for 4 < K < Maxpossible_inner_radius/2 . Hence the
radius of the 4th sphere to the (Nsphere− 3)th sphere is given by

sphereradius(n) = 8× 2s(n−3)

where
8× 2s(Nsphers−5) = Maxpossible_inner_radius/2.

The minimum number Nspheres required for this scheme is 5, and Maxpossible_inner_radius ≥
16. For Maxpossible_inner_radius = 16, the radii are 2,4,8,16, ∞ respec-
tively, and the parameter s is 0. If Nspheres = 6, then the radii are 2,4,8,
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Maxpossible_inner_radius/2, Maxpossible_inner_radius, ∞. A nontrivial s
appears only for Nspheres > 6. [Exercise: Workout radii for Nsphere = 7 and
Maxpossible_inner_radius = 32.

The shells are prescribed in a similar manner. We define the shell(n) as
the shell that contains wavenumbers shellradius(n − 1) ≤ K ′ < shellradius(n).
Clearly the wavenumber range of the shells 1, 2, 3, 4, ...,Nshells − 1,Nshells are
[0, 2), [2, 4), [4, 8), [8, 8×2s), ..., [Maxpossible_inner_radius/2,Maxpossible_inner_radius), [Maxpossible_inner_radius,∞)
respectively.

The wavenumber spheres, shells, energy fluxes, and shell-to-shell transfers
are defined in the class EnergyTr that will be described below.

9.3 Variables of class EnergyTr
The class EnergyTr has the following public variables:

• *Vfromi : Contains the giver vector field. The size of the array assigned
for Vfromi is the same as Vi .

• *tempET: Temporary array that has the same size as Vi .

• D, *NET, ET_basis_type, *ET_kfactor: Space dimension, array size
of Vi , basis type, and kfactor[] respectively.

• no_spheres: Number of wavenumber spheres for energy flux calculations.

• no_shells: Number of wavenumber shells used in shell-to-shell transfers.
In our simulation we take no_spheres = no_shells.

• *sphereradius: An array containing the radii of the wavenumber spheres.
See details in the constructor function.

The energy fluxes are stored in the following arrays. We consider a wavenumber
sphere with index sphere_index.

• * iso_flux_self(sphere_index): The energy flux from the modes of
field V strictly inside the sphere to the modes of the same field outside
the sphere. The surface of the sphere is not included in the “inside sphere”,
but included in the “outside sphere”.

• * iso_flux_SF(sphere_index): The energy flux from the modes of scalar
field ζ strictly inside the sphere to the modes of the same field (ζ) outside
the sphere.

• * iso_flux_VF_in_in(sphere_index): The energy flux from the modes
of the field V strictly inside the sphere to the modes of field W strictly
inside the sphere.

• * iso_flux_VF_in_out(sphere_index): The energy flux from the modes
of the field V strictly inside the sphere to the modes of field W outside
the sphere.
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• * iso_flux_VF_out_out(sphere_index): The energy flux from the modes
of the field V outside the sphere to the modes of field W outside the sphere.

• * iso_flux_Elsasser(sphere_index): The energy flux from the modes
of field Z+ strictly inside the sphere to the modes of Z+ outside the sphere.

• * W.iso_flux_Elsasser(sphere_index): The energy flux from the modes
of field Z− strictly inside the sphere to the modes of Z− outside the sphere.

• * iso_flux_self_real(sphere_index): Contributions to the above flux
from <(nlin) and <(Vto).

• * iso_flux_self_imag(sphere_index): Contributions to the above flux
from =(nlin) and =(Vto). Note that *iso_flux_self = *iso_flux_self_real
+ *iso_flux_self_imag.

The shell-to-shell energy transfers are stored in the following arrays. The giver
shell is m and the receive shell is n.

• *shell_to_shell_self(m, n): The shell-to-shell energy transfer from
the modes of field V in the shell m to the modes of field V in the shell
n. Note that modes on the inner surface of the shell are included in the
shell, but not the modes on the outer shell.

• *shell_to_shell_VF(m, n): The shell-to-shell energy transfer from the
modes of field V in the shell m to the modes of field W in the shell n.

• *shell_to_shell_SF(m, n): The shell-to-shell energy transfer from the
modes of scalar field ζ in the shell m to the modes of field ζ in the shell n.

• *shell_to_shell_self(m, n): The shell-to-shell energy transfer from
the modes of field V in the shell m to the modes of field V in the shell n.

• *shell_to_shell_Elsasser(m, n): The shell-to-shell energy transfer
from the modes of field Z+ in the shell m to the modes of field Z+ in
the shell n.

• *W.shell_to_shell_Elsasser(m, n): The shell-to-shell energy transfer
from the modes of field Z− in the shell m to the modes of field Z− in the
shell n.

• *shell_to_shell_self_real(m, n): Contribution from the interactions
of <(V) with the <(nlin). Similar interpretations for the other shell-to-
shell transfers.

• *shell_to_shell_self_imag(m, n): Contribution from the interactions
of <=(V) with the <=(nlin). Similar interpretations for the other shell-
to-shell transfers.

Note that
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• *iso_flux_self(0) = 0; All other fluxes are zero for sphere = 0. This is
because the the sphere(0) has zero radius.

• *iso_flux_self(nosphere) = *iso_flux_SF(nosphere) = 0, and *iso_flux_Elsasser(nosphere)
= 0and because no energy flows out of the last sphere whose radius is in-
finite.

• *iso_flux_VF_in_in(nosphere) is the total energy transfer from field V
to field W.

• *iso_flux_VF_out_out(nosphere) = 0.

• *shell_to_shell_self(0,n) = *shell_to_shell_self(m,0) = 0 because
the 0th shell contains no modes.

9.4 Functions of class EnergyTr

9.4.1 Constructor
EnergyTr(int *NN, string prog_basis_type, DP *prog_kfactor, int shell_input_sheme,
int nospheres, int noshells, Array<DP,1> Rshells):

The constructor allocates array Vfrom and tempET. Also initializes the
*sphereradius. If the variable shell_input_scheme in the main program is
0, then the radii are generated by the program as discussed above: [0, 2, 8, 8s, ..,
Maxpossible_inner_radius/2,Maxpossible_inner_radius,∞]. If shell_input_scheme
is 1, then the radii are prescribed in the input. The inputs are *sphereradius(1),..,*sphereradius(nospheres-1).
*sphereradius(0)=0, and *sphereradius(nospheres)=∞. The radius of nth
sphere is *sphereradius(n).

9.4.2 Fill sphere and shells
• void IncVF::Fill_in_sphere(int m): Fills the sphere m with V by

setting Vfrom(k) = V(k) for k ∈ m, and Vfrom(k) = 0 otherwise.
Modes on the surface of the sphere are not included in Vfrom, to ascertain
that the included modes are strictly inside the sphere.

• void IncVF::Fill_in_sphere(int m, IncSF& T): Fills the sphere m
with T.ζ by setting V from1(k) = T.ζ(k) for k ∈ m, and Vfrom(k) = 0
otherwise.

• void IncVF::Fill_in_sphere(int m, IncVF& W): Fills the sphere m
with W.V by setting Vfrom(k) = W.V(k) for k ∈ m, and Vfrom(k) = 0
otherwise.

• void IncVF::Fill_out_sphere(int m): Fills the sphere m with V by
setting Vfrom(k) = V(k) for k /∈ m, and Vfrom(k) = 0 for k ∈ m,.
Modes on the surface of the sphere are included in Vfrom. Similar oper-
ations are done for functions with IncSF& and IncVF&.
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• void IncVF::Fill_shell(int n): Fills the shell n with V by setting
Vfrom(k) = V(k) for k ∈ n, and Vfrom(k) = 0 otherwise. Modes
on the inner-surface of the shell are not included in Vfrom, but not the
modes on the outer-surface of the shell. Similar operations for functions
with IncSF& and IncVF&.

9.4.3 Product of field with nlin
• DP IncVF::Prod_out_sphere_nlinV(int m): Returns

∑
k/∈m <[V(k) ·

(nlin(k))∗], i.e., the sum is done over all the modes outside the sphere m.
The modes on the surface of the sphere is included in the sum.

• DP IncVF::Prod_out_sphere_nlinV(int m, IncSF& T): Returns
∑
k/∈m <[T.ζ(k)×

(nlin1(k))∗], where nlin1(k) contains F [u · ∇ζ].

• DP IncVF::Prod_out_sphere_nlinV(int m, IncVF& W): Returns
∑
k/∈m <[W.V(k)·

(nlin(k))∗].

• DP IncVF::Prod_in_sphere_nlinV(int m): Returns
∑
k∈m <[V(k)·(nlin(k))∗],

i.e., the sum is done over all the modes inside the sphere m. The modes on
the surface of the sphere is mot included in the sum. Similar operations
are done for functions with IncST and IncVF arguments.

• DP IncVF::Prod_shell_nlinV(int n): Returns
∑
k∈n<[V(k)·(nlin(k))∗],

i.e., the sum is done over all the modes inside the shell n. The modes on
the inner-surface of the shell is included in the sum, but not the modes on
the outer surface of shell. Similar operations are done for functions with
IncST and IncVF arguments.

• void IncVF::Prod_out_sphere_nlinV_real_imag(int sphere_index,
DP& tot_real, DP& tot_imag): Computes tot_real =

∑
k∈n<[V(k)] ·

<[nlin(k)]] and tot_imag =
∑
k∈n=[V(k)]·=[nlin(k)]]. Note that Prod_out_sphere_nlinV

= tot_real + tot_imag. Similar operations for other real_imag func-
tions.

• DP IncVP::Prod_shell_forceV(int n): Returns
∑
k∈n<[V(k)·(FV(k))∗].

• DP IncVP::Prod_shell_forceV(int n, IncSF& W): Returns
∑
k∈n<[T.ζ(k)×

(F ζ(k))∗].

• DP IncVP::Prod_shell_forceV(int n, IncVF& W): Returns
∑
k∈n<[W.V(k)·

(FW(k))∗].

9.4.4 Computation of real space products
Computes products HjVfi where Hi could be either Vi or Wi.

• void IncVF::Compute_RSprod_diagET(): Computes nlini(r) = Vi(r)Vfi(r).
In the present and the next function Vf is the giver, and V is the helper.
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• void IncVF::Compute_RSprod_offdiagET(): Computes Computes the
off-diagnoal product term; In 2D: V1 = V1Vf2 and Vf1 = Vf1V2; In 3D:
V1 = V1Vf2 , Vf1 = Vf1V2, V2 = V2Vf3, Vf2 = Vf2V3, V3 = V3Vf1 ,
Vf3 = Vf3V1.

• void IncVF::Compute_RSprod_diagET(IncVF& W): Computes nlini(r) =
Wi(r)Vfi(r). In the present and the next function Vf is the giver, and W
is the helper.

• void IncVF::Compute_RSprod_offdiagET(IncVF& W): Computes Com-
putes the off-diagnoal product term; In 2D: V1 = W1Vf2 and Vf1 = Vf1W2;
In 3D: V1 = W1Vf2 , Vf1 = Vf1W2, V2 = W2Vf3, Vf2 = Vf2W3, V3 =
W3Vf1 , Vf3 = Vf3W1.

Computes transforms

• void IncVF::ET_Forward_RSprod_Vfrom(): We forward transform of
Vf after the above product computations. Note that in SCFT basis in
2D, Vf1 has odd parity; and in 3D, Vf1 and Vf3 have odd parity, but Vf2

has even parity.

• void RV_Forward_transform_RSprod(): We forward transform vector
V(r) using the RVF procedure exactly in the same way as above.

Take derivative after the transform and construct nlin

• void IncVF::Derivative_RSprod_VV_ET(): We compute nlini = nlini+
DjF(HjVfi). As discussed in Chapter IncFlow, D1 for real space products
has odd parity.

9.4.5 Inverse transform of Vfrom
void IncVF::ET_Inverse_transform_Vfrom(): Performs the inverse trans-
form of Vf . Note that in SCFT basis Vf1 has odd parity, and the other com-
ponents have even parity.

9.5 Computation of nlin for energy transfer
The nonlinear terms for the energy transfer are of the type nlini = DjF [Hj(Vf )i]
where Vf is the giver field, and H is the helper field. A important point
to note that the helper field H could be either be V or another field W.
EnergyTr_Compute_nlin() has V as the helper field, while EnergyTr_Compute_nlin(W)
has W as the helper field.

A detailed description of the functions are as follows.
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9.5.1 IncVF::EnergyTr _Compute_nlin()

The function yields nlini = DjF [Vj(Vf )i] . Here the field V is the helper field,
and the giver Vf could be either V or W.

1. Compute V(r) by Inverse_transform (RVF::RV_Inverse_transform()).

2. Compute Vf (r) by Inverse_transform (IncVF::ET_Inverse_transform_Vfrom()).

3. Compute the diagonal product Vi(Vf )i; put the products in nlini, i.e.,
nlini ← Vi(Vf )i (Compute_RSprod_diag()). The diagonal products have
even parity.

4. Perform forward transform of nlins and take derivative, i.e., nlini ←
DiF [Vi(Vf )i]. Choose even parity derivative long x axis. The function is
NLIN_diag_Forward_transform_derivative().

5. Compute off-diagonal products (Vf )iVj (IncVF::Compute_RSprod_offdiagET()).
Both V(r) and Vf (r) contain the products.

6. void RV_Forward_transform_RSprod(): Forward transform the prod-
uct Vis keeping parity in mind.

7. void ET_Forward_RSprod_Vfrom():Forward transform the product (Vf )is
keeping parity in mind.

8. void Derivative_RSprod_ET(): Compute derivative and add to nlin in
the same way as in IncVF::Derivative_RSprod().

The result of the operation is the desired nlini = DjF [Vj(Vf )i].

9.5.2 IncVF::EnergyTr _Compute_nlin(IncVF& W)

The function yields nlini = DjF [Wj(Vf )i] . Here the field W is the helper field,
and the giver Vf could be either V or W. The procedure for this computation is
very similar to the above computation, yet we describe it here for completeness.

1. Compute V(r) by Inverse_transform (RVF::RV_Inverse_transform()).

2. Compute Vf (r) by Inverse_transform (IncVF::ET_Inverse_transform_Vfrom()).

3. Compute the diagonal product Wi(Vf )i; put the products in nlini, i.e.,
nlini ←Wi(Vf )i (Compute_RSprod_diag()). The diagonal products have
even parity.

4. Perform forward transform of nlini and take derivative, i.e., nlini ←
DiF [Wi(Vf )i]. Choose even parity derivative long x axis. The function is
NLIN_diag_Forward_transform_derivative().

5. Compute off-diagonal products (Vf )iWj (IncVF::Compute_RSprod_offdiagET()).
Both V(r) (not W(r)) and Vf (r) contain the products.
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6. void RV_Forward_transform_RSprod(): Forward transform the prod-
uct Vis keeping parity in mind.

7. void ET_Forward_RSprod_Vfrom():Forward transform the product (Vf )is
keeping parity in mind.

8. void Derivative_RSprod_ET(): Compute derivative and add to nlin in
the same way as in IncVF::Derivative_RSprod().

The result is nlini = DjF [Wj(Vf )i].

9.5.3 IncVF::EnergyTr_Compute_nlin(IncSF &T)

For scalars, the nonlinear terms for the energy transfer is nlin = DiF [Viζ] where
ζ is the giver field, and V is the helper field. The steps to compute the nonlinear
term are as follows:

1. Compute V(r) by Inverse_transform (RVF::RV_Inverse_transform()).

2. Place ζ into Vfrom1 and compute ζ(r) by Inverse_transform (Inverse_transform_array(F)).

3. Compute the products nlini = Viζ. Here, nlin1 has even parity, and
nlin2,3 have odd parity.

4. Perform forward transform of nlini and take derivative, i.e., nlini ←
DiF [Viζ]. Choose even parity derivative long x axis, and odd parity along
other two directions.

5. Compute derivatives and add them. nlin1 contains DiF [Viζ].

9.5.4 IncVF::EnergyTr_Compute_nlin(IncSF &T, string Pr_switch)

If Prandtl number is zero, then we do not need to compute nonlinear terms (u ·
∇)ζ. When Prantdl number is nonzero, we use IncVF::EnergyTr_Compute_nlin(T)
to compute the nonlinear terms.

9.6 Computation of isotropic flux
Now we can use all our auxiliary functions to compute the energy flux from a
wavenumber sphere of radius K0. We discuss the functions for fluid, MHD, and
scalar turbulence.

9.6.1 Fluid turbulence
The energy flux Πu<

u>(K0) for fluid turbulence was defined in Sec.... We compute
the energy flux Πu<

u>(K0) in the following steps.
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• We fill the field Vf within the sphere excluding the surface of the sphere
at the radius K0. The field Vf is zero outside the sphere. This function is
performed by Fill_in_sphere(sphere_index). This operation implies
that the giver field is strictly inside the sphere K0.

• We compute the nonlinear term nlini = DjT [Vj(Vf )i] using the function
EnergyTr_Compute_nlin(). Here Vj is acting as a helper.

• The flux is
Πu<
u>(K0) =

∑
k>K0

−<[u∗i (k)× nlinuui (k)].

This operation is performed using Prod_out_sphere_nlinV(sphere).

The above quantity is the energy transfer from all the modes strictly within
the wavenumber sphere to the modes outside the sphere including the sphere’s
surface.

We compute the energy flux for all the spheres. The fluxes obey some inter-
esting properties. The energy flux for the last sphere is zero because no energy
is flowing outside the last sphere. Note however that the energy flux from the
penultimate sphere is nonzero.

9.6.2 Scalar
For scalar field ζ we compute the energy flux Πζ<

ζ>(K0) in the following steps:

• we fill the field (Vf )1 within the sphere with the scalar field. The field ζ is
zero outside the sphere. This function is performed by Fill_in_sphere(sphere_index,
zeta).

• We compute the nonlinear term nlin = DiF [Viζ] using the function
EnergyTr_Compute_nlin(T). Here Vj is acting as a helper.

• The flux is
Πζ<
ζ>(K0) =

∑
k>K0

−<[ζ∗(k)× nlinζζ(k)].

This operation is performed using Prod_out_sphere_nlinV(sphere, zeta).

We compute the energy flux for all the spheres.

9.6.3 MHD
For MHD turbulence we compute

• Πu<
u> using the method described above.

• Πu<
b> : Here nlinu,u< is multiplied by b>.

• Πb<
b> : Here nlinu,b< is multiplied by b>.
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• Πb<
u> : Here nlinu,b< is multiplied by u>.

• Πb<
u< : Here nlinu,b< is multiplied by u<.

• Πu>
b> : Here nlinb,u> is multiplied by b>.

• Πz+<
z+> : Here nlinz

−,z+ is multiplied by z+>.

• Πz+−<
z−> : Here nlinz

+,z− is multiplied by z−>.

9.6.4 RB Convection
For nonzero Pr we compute both Πu<

u> and Πζ<
ζ>. However for zero Pr, we

compute only Πu<
u>. We use the Pr_switch for the above selection.

9.7 Compute Shell-to-shell transfer
Intro...

9.7.1 Fluid
We compute the shell-to-shell energy transfer Tuunm in the following way:

• We fill the field Vf in wavenumber shellm. The modes on the inner surface
of the shell is included, but not the ones on the outer surface. All other
modes are set to zero. This function is performed by Fill_shell(m).

• We compute the nonlinear term nlini = DjF [Vj(Vf )i] using the function
EnergyTr_Compute_nlin(). Here Vj is acting as a helper.

• The shell-to-shell transfer m→ n is

Tuunm =
∑
k∈n

−<[u∗i (k)× nlinuui (k)].

This operation is performed using Prod_shell_nlinV(sphere). While
computing the product_shell_nlinV, we include the inner surface of the
shell n and exclude the outer surface of the shell n.

• For a given m, we perform Tuunm for all ns. This is the efficient way of
computing the shell-to-shell transfers because we need to compute nlins
only once for each m.

• We repeat the above process for all m shells.
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9.7.2 MHD
There are more types of shell-to-shell energy transfers in MHD turbulence. They
are Tuunm, T bbnm, T bunm (b← u). The u-to-u transfer is computed as above. While
b-to-b transfer is computed using

T bbnm =
∑
k∈n

−<[b∗i (k)× nlinubi (k)],

and u-to-b transfer is computed using

T bunm =
∑
k∈n

−<[b∗i (k)× nlinbui (k)].

The nonlinear terms are computed using appropriate functions.

9.7.3 Scalar turbulence
For scalar turbulence, we compute shell-to-shell energy transfers Tuunm and T ζζnm.
The u-to-u transfer is computed as described above. The ζ-to-ζ transfer is
computed using

T bbnm =
∑
k∈n

−<[ζ∗(k)× nlinζζ(k)].

We compute nonlinear term term nlinζζ(k) as described in Sec.

9.7.4 Rayleigh Benard convection
For nonzero Prandtl number we compute both Tuunm and T ζζnm. However for zero
Pr we only compute Tuunm.

9.8 Energy input from the forcing
Vector field V and scalar field ζ receive energy from their respective forcing
Fv and F ζ . We compute these energy transfers for each shell mentioned
above. The energy input to the fields V and ζ in wavenumber shell n are∑
k∈n<[Fv(k).V∗(k)] and

∑
k∈n<[F ζ(k)ζ∗(k)] respectively. These quanti-

ties are computed by functions Compute_force_feed(). These functions use
Prod_shell_forceV() to compute the above sum.
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Chapter 10

IncFluid: Library for
Incompressible Fluid

This is the main library that interfaces with the main program. It contains
a class IncFluid that inherits class IncVF described earlier, class Time, and
functions for time-advance, and input output operations. As described earlier,
the class IncVF contains important functions like computations of nonlinear
terms nlin, pressure, energy fluxes, and shell-to-shell transfers. The class Time
contains variables for initial, current, and file time, as well as the iterations at
which we save output fields. In addition to

In the following discussion we will describe the class IncFluid and the class
Time in some detail.

10.1 Class Time
The public variables in this class are

• DP Tinit, Tfinal: Intial and final time of the simulation.

• DP Tdt: Time-step variable

• DP Tnow: Current time

• DP Tdiagnostics_init: Diagnostic computation of the spectrum, the
energy flux, and the shell-to-shell energy transfer starts after Tdiag_init.
At present this feature is not being used.

• int Tglobal_save: Saves global variables like energy every Tglobal_save
iterations.

• int Tfield_save: Saves fields at every Tfield_save iterations.

• int Trealfield_save: Saves fields at every Trealfield_save iterations.
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• int Tfield_reduced_save: Saves reduced_field (smaller size) every Tfield_reduced_save
iterations.

• int Tfield_k_save: Saves the fileld variables at specified wavenumbers
(*output_k_array) every Tfield_k_save iterations.

• int Tspectrum_save: Saves the spectrum of fields at every Ttriad_save
iterations.

• int Tflux_save: Saves the energy fluxes at every Tflux_save iterations.

• int Tshell_to_shell_save: Saves the shell-to-shell transfers at every
Tshell_to_shell_save iterations.

• int Tcout_save: Prints some global variables every Tcout_save iters to
indicate the status of the program.

The constructor of the class Time uses array time_para and time_save.
Time(Array<DP,1> time_para, Array<int,1> time_save): The variables

Tinit, Tfinal, Tdt, and Tdiagnostics_init are taken from time_para(1..4),
while the variables Tglobal_save, Tfield_save, Trealfield_save, Tfield_reduced_save,
Tfield_k_save, Tspectrum_save, Tflux_save, Tshell_to_shell_save, and
Tcout_save are taken from time_save(1..9).

10.2 IncFluid Class
This class contains the following public variables:

• string data_dir_name: The name of the directory where the input field
and the output fields are saved.

• string no_output_mode: The mode of the output numbers (either ASCII
or BINARY).

• ifstream field_in_file: Contains the field configurations to be read
as initial conditions in init_cond().

• ofstream global_file: Global variables outputted here.

• ofstream field_out_file: The fields like V(k) outputted here.

• ofstream realfield_out_file: The fields in real space like V(r) out-
putted here.

• ofstream field_out_reduced_file: The field in reduced dimension is
outputted here.

• ofstream field_k_out_file: The field variables for a given set of vari-
ables (*output_k_array) is outputted here.
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• ofstream spectrum_file: The spectra of the fields are outputted here.

• ofstream flux_file: The energy fluxes of the fields are outputted here.

• ofstream shell_to_shell_file: The shell-to-shell transfers are out-
putted here.

• ofstream pressure_file: The pressure spectrum is outputted here.

• int nos_output_triads: Number of wavenumbers at which the field
variables are outputted.

• Array<int,2> *triad_array_output: The wavenumbers at which the
field variables are outputted. The constructor allocates *triad_array_output(nos_output_triad+1,
4) where (kx, ky, kz) = triad_array_output(i,1..3). Naturally kz ex-
ists only for 3D simulations.

• string integ_scheme: Integrating scheme for time stepping. It could
take values EULER, RK2, or RK4.

The functions in IncFluid class are

10.2.1 Compute and add force
Force function is present in many spectral simulation. We denote the forcing for
the velocity V, scalar ζ, and vector W by fv, fζ , and fw respectively. Since the
force function appears in the rhs of the evolution equations, and nlin is present
in the left hand side of the equation, we add the force to nlin using

nlinv = nlinv − fv,

nlinζ = nlinζ − fζ ,
nlinW = nlinW − fW.

The relevant functions are Compute_force(), and Add_force().
The following form of forcing has been implemented in the spectral code.

10.2.2 RB convection
In RB convection, the buoyancy term acts as a forcing in the equation for
velocity, and V1 acts as forcing for temperature field. However these terms
depend on the nondimensionalization procedure adopted. We have the following
scenarios (see Appendix ):

• Pr_switch = PRLARGE, and RB_Uscaling = USMALL: fv = R×Pr×
ζẑ, fζ = V1.

• Pr_switch = PRLARGE, and RB_Uscaling = ULARGE: fv = ζẑ, fζ =
V1.

68



• Pr_switch = PRSMALL, and RB_Uscaling = USMALL: fv = Rζẑ, fζ =
1
PrV1.

• Pr_switch = PRSMALL, and RB_Uscaling = ULARGE: fv = Pr × ζẑ,
fζ = 1

PrV1.

10.3 Add_pressure_gradient()
The pressure in the NS equation is computed using the equation

div(nlin− f) = −∇2p.

This task is done using the function Compute_pressure(). For computing the
rhs of the evolution equation for the velocity, we add pressure gradient Dp to
nlin, i.e.,

nlin = nlin + Dp.

Note that rhs = −nlin−Dp.
Since p has even parity, Xderiv is provided with 0 option for the parity.

10.4 Compute_rhs()
We compute the rhs of all the equations using these functions. Clearly

rhsV,ζ,W = −nlinV,ζ,W.

Note that nlinV,ζ,W contains−fv,ζ,w along with the nonlinear terms likeDjF [VjVi]
and the pressure gradient Dp.

For RB convection, rhsζ is not computed when Pr = 0.

10.5 Single_time_step
We have implemented three kinds of Single_time_step functions.

• void IncFluid::Single_time_step_EULER(DP dt): Here the field is
advanced to time t+ dt using the slope computed at t.

V(k, t+ dt) = [V(k, t) + dt× rhs(k, t)] exp(−νK2dt).

For the scalar field ζ

ζ(k, t+ dt) = [ζ(k, t) + dt× rhs(k, t)] exp(−κK2dt).

• void IncFluid::Single_time_step_RK2(DP dt): Here the field is ad-
vanced to time t+ dt using the slope at the midpoint t = t+ dt/2.

V(k, t+dt) = [V(k, t) exp(−νK2dt/2)+dt×rhs(k, t+dt/2)] exp(−νK2dt/2).

For the scalar field ζ, replace V by ζ and ν by κ.
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• void IncFluid::Single_time_step_Semi_implicit(DP dt): In this scheme,
the field is advanced to time t+ dt using the slope at the time t = t+ dt:

V(k, t+ dt) = V(k, t) exp(−νK2dt) + dt× rhs(k, t+ dt).

For RB-convection, the procedure is same as scalar if Pr 6= 0. For Pr = 0, the
scalar function ζ is computed from V1 using

ζ(k) =
V1(k)
K2

. (10.1)

10.6 Time advancing of fields
We have implemented three time-advancing schemes: Euler, second-order Runge-
Kutta, and fourth-order Runge Kutta.

10.6.1 Time advance for fluid
We use the function void Time_advance() for advancing the velocity field to
time t = t+dt. Before entering this function, nlini = DjF [VjVi] and F contains
the pressure. The time advance could be in one of the above schemes depending
on the variable integ_scheme.

For time-advancing using EULER scheme (integ_scheme=EULER) the steps
are

1. Compute_rhs().

2. Single_time_step_EULER(dt).

For RK2 scheme (integ_scheme=RK2), the steps are

1. Save V in Vcopy, i.e., Vcopy = V.

2. Go to the midpoint

• Compute_rhs().

• Go to the mid point using Single_time_step_EULER(dt/2).

3. Compute RHS at the midpoint and time advance to time t+ dt.

• Compute_force().

• Compute_nlin() using the fields at the mid point.

• Add_force().

• Compute_pressure().

• Compute_rhs().

• Restore V from Vcopy, i.e., V = Vcopy.
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• Single_time_step_RK2(dt) using the rhs computed using the fields
at the midpoint.

For RK4 scheme (integ_scheme=RK4) the steps are

1. Save V in Vcopy, i.e., Vcopy = V.

2. RK4-Step 1: Compute Vmid1(t+dt/2) using Euler’s scheme. Also com-
pute C1 defined below.

• Compute_rhs().

• Compute Vmid1(t+dt/2) at the midpoint using Single_time_step_EULER(Tdt/2).

• Compute C1 = rhs(t) exp(−νK2dt)× dt.

3. RK4-Step 2: Compute RHS using Vmid1 and time advance to time
t + dt/2 using this rhs. This is a semi_implicit step. Also compute C2

defined below.

• Compute_force().

• Compute_nlin() using the fields at the mid point.

• Add_force().

• Compute_pressure().

• Compute_rhs().

• Restore V from Vcopy, i.e., V = Vcopy.

• Compute Vmid2(t+dt/2) at the midpoint using Single_time_step_Semi_implicit(Tdt/2).

• Compute C2 = rhs(t) exp(−νK2dt/2)× dt.

4. RK4-Step 3: Compute RHS using Vmid2 and time advance to time t+dt
using Single_time_step_RK2(Tdt). Also compute C3 defined below.

• Compute_force().

• Compute_nlin() using the fields at the mid point.

• Add_force().

• Compute_pressure().

• Compute_rhs().

• Restore V from Vcopy, i.e., V = Vcopy.

• Compute V3(t+dt) at time t+dt using Single_time_step_RK2(Tdt).

• Compute C3 = rhs(t) exp(−νK2dt/2)× dt.

5. RK4-Step 4: Compute RHS using Vmid2 and time advance to time t+dt
using Single_time_step_RK2(Tdt). Also compute C4 defined below.

• Compute_force().
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• Compute_nlin() using the fields at the mid point.

• Add_force().

• Compute_pressure().

• Compute_rhs().

• Compute C4 = rhs(t)× dt.
• Restore V from Vcopy, i.e., V = Vcopy.

• Compute the final velocity field V(t+ dt) using

V(k, t+ dt) = V(k, t) exp(−νK2dt) +
1
6

(C1 + 2C2 + 2C3 + C4).

10.6.2 Time Advance for velocity and scalar field
The procedure for time advancing a scalar field is the same as the velocity field.
We perform the similar functions on the scalar field as well. The nonlinear terms
are computed using Compute_nlin(T).

10.6.3 Time advance for velocity and magnetic field (MHD)
For MHD, the procedure is the same as that given for the velocity field. We
advance both velocity and magnetic field. Typically, the magnetic field is not
forced. The nonlinear terms are computed using Compute_nlin(W).

10.6.4 Time Advance for RB Convection
For RB convection, the procedure is identical to that for scalar if Pr 6= 0.
However, when Pr = 0, the temperature field is computed from in the last
step (Single_time_step) from V1 field using Eq. (10.1). The forcing for the
velocity and the temperature field is computed using Compute_force(T, Ra,
Pr, Pr_switch, RB_Uscaling).

Follow the similar procedure for magnetoconvection.

10.7 Input Output operations
We describe the input output operations in the next chapter.
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Chapter 11

Input and output in IncFluid

In this chapter we will describe how the initial conditions are read, and various
quantities are written in output files.

11.1 Files and file operations
As described in the chapter on IncFluid, the input and output files are resident
in the directory data_dir_name. The initial condition is read from the file
field_in_file that is in the directory data_dir_name/in. Various quantities
are sent as outputs to various output files. The following output files are resident
in the director data_dir_name/out.

• global_file: Global variables

• field_out_file: Field configurations in Fourier space or SCF space

• realfield_out_file: Field configuration in real space.

• field_out_reduced_file: Smaller field configuration in Fourier space or
SCF space.

• field_k_out_file: Field variables for a given set of wavenumbers (*output_k_array)

• spectrum_file: Energy spectrum

• flux_file: Energy flux

• shell_to_shell_file: Shell-to-shell energy trasfers

• pressure_file: Pressure spectrum.

We have the following functions for the file operations.

• void Open_input_files(): Opens the file field_in_file at data_dir_name/in/field_in.d.
This file contains the initial field configurations.
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• void Close_input_files(): Closes the input file field_in_file.

• void Output_prefix(ofstream& X, string prefix_str): The string
prefix_str is sent to the file X along with the grid size, initial, final, and
timestep.

• void Open_output_files(): Opens the output files global_file, field_out_file
etc. in the directory data_dir_name/out. We invoke Output_prefix(..)
for all these files.

• void Close_output_files(): Close all the output files.

We first discuss how we read the initial configuration of the fields.

11.2 Init_cond()
These functions initialize the fields. They are

• void Init_cond(), void Init_cond(IncSF& T), void Init_cond(IncVF&
W), void Init_cond(IncVF& W, IncSF& T): Reads values of the fields
from file field_in_file. The size of the read-fields is same as N of
IncFluid.

• void Init_cond(int Nreduced[]): The input file contains V̄(Nreduced)
that is fed in the lower part of V(N). Similar operations for additional
fields like T and W .

• void Init_cond(string field_in_k_type):

– For field_in_k_type==SIMPLE: Read (k, Vx) in 2D and (k, Vx, Vy)
in 3D. The last component is computed using the function Last_component(...).
Complex conjuage of the above is added in the field if ky = 0 in 2D
(in FOUR basis) and kz = 0 in 3D.

– For field_in_k_type==VORTICITY: Read (k, Vx, Ωx) in 3D. The
components Vy and Vz are computed using function Compute_VyVz(...).
Complex conjuage of the above is added in the field if ky = 0 in 2D
(in FOUR basis) and kz = 0 in 3D.

– Similar procedure is adopted in the presence of scalar and another
vector field.

• void Init_cond(IncSF& T, DP W101, DP T101, DP T200): In 2D, Vx(11) =
W101, T (11) = T101, and T (20) = T200. In 3D, add Vx(101) = W101,
Vy(101) = 0, T (101) = T101, and T (200) = T200. The last component
Vy(11) in 2D or Vz(101) in 3D are found using the function Last_component(...).

• void Init_cond(IncSF& T, string Pr_switch): This function is used
for reading initial condition for RB convection. If Pr is equal to zero, then
we call Init_cond() to read the velocity field V, and compute T (k) =
V1(k)/K2. When Pr is not equal to zero, call Init_cont(T). Other
functions for RB convection have similar structure.
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11.3 Output Results
We output the results of our simulations in various files. These files are declared
in class IncFluid. The functions that write on these files are

• void Output_prefix(ofstream& X, string prefix_str): prefix_str con-
taining parameter values are added at the beginning of the output files.
This is invoked inside the function Open_output_files(prefix_str).

1. Global variables

• void Output_global(): t, 1
2

∑
|V (k)|2 , ν 1

2

∑
K2|V (k)|2. Note

however that (k = 0) is note included.
• void Output_global(IncSF& T): t, 1

2

∑
|V (k)|2 , 1

2

∑
|F (k)|2, ν

∑
K2|V (k)|2,

κ
∑
K2|F (k)|2.

• void Output_global(IncVF& W): t, 1
2

∑
|V (k)|2 , 1

2

∑
|B(k)|2 , ν

∑
K2|V (k)|2,

1
2η
∑
K2|B(k)|2, < 1

2

∑
V(k) ·B∗(k).

• void Output_global(IncSF& T, string Pr_switch): t, 1
2

∑
|V (k)|2

, 1
2

∑
|F (k)|2 , ν

∑
K2|V (k)|2, κ

∑
K2|F (k)|2, Nusselt number (1 +

<(V1(k)F ∗(k))).
• void Output_global(IncVF& W, IncSF& T, string Pr_switch): t,

1
2

∑
|V (k)|2, 1

2

∑
|B(k)|2, 1

2

∑
|F (k)|2, ν

∑
K2|V (k)|2, η

∑
K2|B(k)|2,

κ
∑
K2|F (k)|2, < 1

2

∑
V(k) ·B∗(k), Nusselt number.

2. Fields

• void Output_field():

– 2D: V1(k), V2(k);
– 3D: V1(k), V2(k), V3(k).

• void Output_field(IncSF& T):

– 2D: V1(k), V2(k), F (k);
– 3D: V1(k), V2(k), V3(k), F (k).

• void Output_field(IncVF& W):

– 2D: V1(k), V2(k), W1(k), W2(k);
– 3D: V1(k), V2(k), V3(k), W1(k), W2(k), W3(k)

• void Output_field(IncVF& W, IncSF& T):

– 2D: V1(k), V2(k), W1(k), W2(k),F (k)
– 3D: V1(k), V2(k), V3(k), W1(k), W2(k), W3(k),F (k).

• void Output_field(IncSF& T, string Pr_switch): If Pr 6= 0,
Output_field(T), else Output_field().

• void Output_field(IncVF& W, IncSF& T, string Pr_switch): If
Pr 6= 0, Output_field(W, T), else Output_field(W).
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3. Fields in a reduced box

• void Output_field_reduced(int Nreduced[]): Same as above but
for V(Nreduced).

4. Real field

• void Output_realfield(): Same as above but fields in real space.

5. Isotropic spectrum

• void Output_isotropic_spectrum(): Isotropic energy spectrum–
– 2D: K, e1(K), e2(K), eforcev (K), Dv(K) for 0 ≤ K < Kmax in

steps of one where eforceu(K) = <(F(k) · [v(k)]∗), and Du(K) =
ν|v(K)|2 .

– 3D: K, e1(K), e2(K), e3(K), eforcev (K), Dv(K) for 0 ≤ K <
Kmax.

• void Output_isotropic_spectrum(IncSF& T): 2D:K, e1(K), e2(K),
eF (k), eforcev (K), eforceF (K), Dv(K), DF (K). 3D: add e3(K).

• void Output_isotropic_spectrum(IncVF& W): 2D:K, e1(K), e2(K),eW1 (K),
eW2 (K), Hc(K), eforcev (K), eforceW (K), Dv(K), DW (K). 3D: add
e3(K).

• void Output_isotropic_spectrum(IncVF& W, IncSF &T): 2D: K,
e1(K), e2(K),eW1 (K), eW2 (K), eF (K),Hc(K), eforcev (K), eforceW (K),
eforceF (K), Dv(K), DW (K), DF (K).

• void Output_isotropic_spectrum(IncSF& T, string Pr_switch):
If Pr 6= 0, Output_isotropic_spectrum(T), else Output_isotropic_spectrum().

• void Output_isotropic_spectrum(IncVF& W, IncSF& T, string
Pr_switch): If Pr 6= 0, Output_isotropic_spectrum(W,T), else
Output_isotropic_spectrum(W).

• void Output_pressure_spectrum(string prefix_str): Outputs
pressure spectrum |p(K)|2/2 in pressure_file.

6. Energy flux

• void Output_flux(int real_imag_switch): sphereindex, iso_flux_self,
iso_forceV, iso_flux_self_real, iso_flux_self_imag. (real and imag
depending on a switch: 1 if yes)

• void Output_flux(IncSF& T, int real_imag_switch): spherein-
dex, iso_flux_self, iso_flux_SF, iso_forceV, iso_forceSF, and real
and imag if the switch is 1.

• void Output_flux(IncVF& W, int real_imag_switch): spherein-
dex, iso_flux_self, iso_flux_VF_in_out, iso_flux_VF_in_in, W.iso_flux_self,
W.iso_flux_VF_in_out, W.iso_flux_VF_in_in, W.iso_flux_VF_out_out,
iso_flux_Elsasser, W.iso_flux_Elsasser, iso_forceV, W.iso_forceV,
and real and imag if the switch is 1.
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• void Output_flux(IncVF& W, IncSF &T, int real_imag_switch):
sphereindex, iso_flux_self, iso_flux_VF_in_out, iso_flux_VF_in_in,
W.iso_flux_self, W.iso_flux_VF_in_out, W.iso_flux_VF_in_in,
W.iso_flux_VF_out_out, iso_flux_SF, iso_flux_Elsasser, W.iso_flux_Elsasser,
iso_forceV, W.iso_forceV, iso_forceSF, and real and imag if the
switch is 1.

• void Output_flux(IncSF& T, string Pr_switch, int real_imag_switch):
If Pr 6= 0, Output_flx(T, real_imag_switch), else Output_flx(real_imag_switch).

• void Output_flux(IncVF& W, IncSF& T, string Pr_switch, int
real_imag_switch): If Pr 6= 0, Output_flx(W, T, real_imag_switch),
else Output_flx(W, real_imag_switch).

7. Shell to shell energy transfers

• void Output_shell_to_shell(real_imag_switch): shell_to_shell_self,
and real, imag if the switch is 1. The range is 1-Nshell. The last shell
is the Maxrad to ∞.

• void Output_shell_to_shell(IncSF& T, real_imag_switch): shell_to_shell_self,
shell_to_shell_SF, and real and imag if the switch is 1.

• void Output_shell_to_shell(IncVF& W, real_imag_switch): shell_to_shell_self,
W.shell_to_shell_self, shell_to_shell_VF, shell_to_shell_Elsasser,
W.shell_to_shell_Elsasser, and real and imag if the swithc is 1.

• void Output_shell_to_shell(IncVF& W, IncSF& T, real_imag_switch):
shell_to_shell_self, W.shell_to_shell_self, shell_to_shell_VF, shell_to_shell_Elsasser,
W.shell_to_shell_Elsasser, shell_to_shell_SF, and real and imag
if the switch is 1.

• void Output_shell_to_shell(IncSF& T, string Pr_switch, real_imag_switch):
If Pr 6= 0, Output_shell_to_shell(T, real_imag_switch), else
Output_shell_to_shell(real_imag_switch).

• void Output_shell_to_shell(IncVF& W, string Pr_switch, IncSF&
T, real_imag_switch, string Pr_switch): If Pr 6= 0, Output_shell_to_shell(W,
T, real_imag_switch), else Output_shell_to_shell(W,real_imag_switch).

8. Field at a given wavenumbers

• void Output_field_k(string prefix_str): Each lines contains a
single wavenumber.

– 2D: t, kx, ky, Vx(k), Vy(k), Tu(k) = <(nlin(k) · conj(V(k)))
– 3D: t, kx, ky, kz, Vx(k), Vy(k), Vz(k), Tu(k) = <(nlin(k) ·
conj(V(k)))

• void Output_field_k(IncSF& T): 2D: t, kx, ky, Vx(k), Vy(k), F (k)
Tu(k), TF (k) = <(T.nlin(k) · conj(F (k))). 3D: add third compo-
nents

77



• void Output_field_k(IncVF& W): t, kx, ky, Vx(k), Vy(k), Wx(k),
Wy(k), Tu(k), TW (k).

• void Output_triad(IncVF& W, IncSF& T): t, kx, ky, Vx(k), Vy(k),
Wx(k), Wy(k), F (k), Tu(k), TW (k), TF (k).

• void Output_field_k(IncSF& T, string Pr_switch): If Pr 6= 0,
Output_field_k(T), else Output_field_k().

• void Output_field_k(IncVF& W, IncSF& T, string Pr_switch):
If Pr 6= 0, Output_field_k(W, T), else Output_field_k(W).

9. Output on stdio

• void Output_cout(): t, 1
2

∑
|V (k)|2

• void Output_cout(IncSF& T): t, 1
2

∑
|V (k)|2, 1

2

∑
|F (k)|2

• void Output_cout(IncVF& W): t, 1
2

∑
|V (k)|2, 1

2

∑
|W (k)|2

• void Output_cout(IncVF& W, IncSF& T): t, 1
2

∑
|V (k)|2, 1

2

∑
|W (k)|2,

1
2

∑
|F (k)|2.

10. Output all functions in the loop

• void Output_all_inloop(int iter, int Nreduced[], int shell_real_imag_switch):
Outputs global, cout, fields, field_reduced, real field, isotropic spec-
trum, energy flux, shell-to-shell energy tranfsers at appropriate iter-
ations. This operation is done at the beginning of the main loop. We
do not output field_k, Tk, and pressure here. See below. Similar
actions with additional IncVF, IncSF, etc.

11. Output field variables at specific k in the loop

• void Output_field_k_inloop(int iter): This operation requires
the values of nlin. Therefore this function is invoked after Compute_nlin().
Similar actions with additional IncVF, IncSF etc.

12. Output pressure spectrum in the loop

• void Output_pressure_spectrum_inloop(int iter): We invoke
this function after Compute_pressure(). The same function is used
in all situations, i.e., in MHD, passive scalar etc.
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79



Chapter 12

Turbulence Simulation

After our discussion on the library functions and classes, we now come to the
main program where we integrate them and use them to simulate turbulence in
fluid, scalars, MHD, Rayleigh Benard convection etc. We have a solver for each
of the problems, and they are invoked from the main program. The details are
given below.

12.1 The main program
The main program does the following

• It reads program parameters from file prog_para_file (file prog_para.d
resident in the src directory). The parameters are

– string prog_kind: It could take values INC_FLUID, INC_PASSIVE_SCALAR,
INC_MHD, RB_SLIP, and INC_SLIP_MHD.

– string data_dir_name: The place where input and output files are
stored.

– int D: The dimensionality of the simulation.

• Depending on the prog_kind, the main program invokes a solver. For ex-
ample, main program call RB_slip_main(data_dir_name,D) if the prog_kind=RB_SLIP.

• The main program also computes the time elapsed for the simulation using
time library.

We declare some variables as global variables as described below.

12.2 Global variables
The global variables of the simulation are
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• fftw_plan r2c_plan_FOUR, c2r_plan_FOUR: fftw_plan variables for FOUR
basis

• fftw_plan r2c_plan_SCFT, c2r_plan_SCFT, sintr_plan_SCFT, costr_plan_SCFT,
isintr_plan_SCFT, icostr_plan_SCFT: fftw_plan variables for SinCos-
Four (SCFT) basis. Here i stands for the inverse.

• Uniform<DP> SPECrand: A class instance of Uniform<DP>.

We also declare several constants in main.h

• const int MAXSIZE_R_SHELL = 41 (maximum no of radius vars in *spher-
eradius=40)

• const int MAXSIZE_out_k_array = 51 (maximum no of wavenumbers
at with the fields are outputted).

We have structured our simulation in such a way that each solver reads a stan-
dard set of parameters, e.g., size of the grid, basis type etc. All these parameters
are read by a function read_field_para(..) that is described below

12.3 Reading field parameters
The function void read_file_para(...) reads the parameters from a file
field_para_file. The parameters supplied to the function are

• field_para_file: The parameters are read from this file that resides in
data_dir_name/in.

• int D: The dimensionality of space.

• int number_of_fields: The number of fields in the simulation, e.g., in
MHD the number of fields is 2.

The parameters read by the function are

• Connected to the field and integration of the field

– int N[]: The size of the array of the field variables. Read into
N[1],..N[D].

– double diss_coefficient[]: The function reads the dissipatipa-
tion or diffusion coefficients for each of the fields.

– string& basis_type

– string& integ_scheme: The integrating scheme used in the solver.

– Array<DP,1> time_para: The array is fed with the values of Tinit,
Tfinal, Tdt, Tdiagnostics_init in index 1..4. These values are
assigned to the class variables in the IncFluid constructor.

81



• Connected to input of the initial condition

– int& field_input_proc: The field input procedure for reading the
initial conditions.

∗ 1: Read the read the complete field.
∗ 2: Read the field contained in N_in_reduced[].
∗ 3: Read the field for a set of wavenumbers in field_in.d in
SIMPLE format. As an example, for fluid simulation the inputs
in this format are (kx, ky, Vx) in 2D and (kx, ky, kz, Vx, Vy) in 3D.
The last component is computed by a function IncVF::Last_component(...).
Read Sec... for details.

∗ 4: Read the field for a set of wavenumbers in field_in.d in
VORTICITY format. As an example, for fluid simulation the in-
puts in this format are (kx, ky, kz, Vx,Ωx) in 3D. This format is
not applicable in 2D. Read Sec. .. for details.

– int N_in_reduced[]: The size of the reduced array of the initial
field configurations.

• Connected to the output

– Array<int,1> time_save: The array is fed with the values of Tglobal_save,
Tfield_save, Trealfield_save, Tfield_reduced_save, Tfield_k_save,
Tspectrum_save, Tflux_save, Tshell_to_shell_save, Tcout_save
in index 1..9. These values are assigned to the class variables in the
constructor.

– int N_out_reduced[]: We output fields in smaller grid N_out_reducedp[].

– string& nos_output_mode: ASCII or BINARY mode for the out-
puts of the fields.

– Array<int,2> out_k_array: Reads the wavenumbers at which the
field variables are outputted.

– int& N_output_waveno: The total number of wavenumbers at which
the field variables are outputted.

• Connected to the energy transfer calculations

– int& nospheres: The number of wavenumber spheres for flux ca-
clulations.

– int& noshells: The number of wavenumber shells for shell-to-shell
energy transfer calculations. In out calculations we take nospheres
= noshells.

– int& real_imag_switch: 1 if contributions from the real and imag
parts of the fields and nlin are to computed separately. 0 otherwise.
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– int& shell_input_scheme: The scheme for the assignment of the
shell radii. If 0, the radii are computed according to the scheme
described in Sec... If 1, then the function reads the radii from the
file.

– Array<DP,1> Rshell: If shell_input_scheme = 1, then function
reads radii from the file for spheres 1..(n0shells-1). The first radius
is zero, and hte last one is INF_RADIUS.
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Chapter 13

Incompressible fluid
simulation

This solver invokes the library functions and solves the equations for free slip
boundary condition. The solver is a function Ifluid_main(..) that simulates
the equations from time Tinit to Tfinal. It uses the FOUR basis. We will
describe this function is some detail here.

13.1 Variables of the main program for fluid sim-
ulation

• Connected to the field variables and integration

– int* N[D+1]: Array size of the field variables, N[1],..,N[D].

– int no_of_fields = 1: (the velocity field V).

– DP diss_coefficients[1]: The dissipation coefficient for V (ν).

– string basis_type: FOUR.

– string integ_scheme: The integrating scheme for time-stepping:
EULER, RK2, RK4.

– Array<DP, 1> time_para(5): Tinit, Tfinal, Tdt, Tdiagnostics_init
in index 1..4 while reading from the file field_para_file.

– ifstream field_para_file: File from where field parameters are
read. It is in data_dir_name/in.

• Connected to the energy transfer

– int ETnospheres: No of wavenumber spheres for the energy flux
calculations.
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– int ETnoshells: No of shells for the shell-to-shell energy transfer
calculations. We take ETnoshells = ETnospheres.

– int ET_shell_input_scheme: 0 if shell radii are computed accord-
ing to the scheme of Sec...; 1 if it is read from the field_para_file.

– Array<DP, 1> ET_Rshell(MAXSIZE_R_shell): Contains the shell
radii that are read from the file field_para_file if ET_shell_input_scheme
= 1.

– int real_imag_switch: Switch for computing the contributions
from real and imaginary parts to the energy flux and shell-to-shell
transfers.

• Connected to the input of initial conditions

– int field_input_proc: The field input procedure for reading ini-
tial condition.

– int* N_in_reduced[D+1]: Reduced array size for reading the fields
in a smaller grid. Index:1..D.

• Connected to the output functions

– int* N_out_reduced[D+1]: Reduced array size for outputting the
fields in a smaller grid.

– Array<int, 2> out_k_array(MAXSIZE_out_k_array,4): Contains
the set wavenumbers that are read from the file field_para_file.

– int N_output_waveno: Number of wavenumbers that are read from
the file field_para_file.

– string nos_output_mode: The output mode of the field variables:
ASCII, BINARY.

– Array<int,1> time_save(10): Tglobal_save, Tfield_save, Trealfield_save,
Tfield_reduced_save, Tfield_k_save, Tspectrum_save, Tflux_save,
Tshell_to_shell_save, Tcout_save in index 1..9 while reading from
the file field_para_file.

13.2 Main program for fluid simulation
The steps in the solver are

• Read_field_para(): Reads parameters of the field from the file field_para_file
which resides in data_dir_name/in directory. It reads N[], diss_coefficients[],
etc. See Sec. src_main for details.

• Constructor IncFluid U for the velocity field.

• Create fftw_plans.
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• Open input files

• Initialize the field configurations using U.Init_cond(...). The choice of
the function depends on field_input_proc.

• Close input files.

• Open output files.

• Start the Computation:

• For ( U.Tnow = U.Tinit, U.Tnow <= U.Tfinal+0.0000001; U.Tnow +=
U.Tdt) {

– U.Compute_force();

– U.Compute_nlin();

– U.Add_force();

– U.Compute_pressure();

– U.Time_advance();

• Close output files.

• Output results inside the loop.

13.3 Basic tests of the solver

13.3.1 Test the conservation of energy when dissipation
and forcing are turned off

• Initial conditions

– 2D: V(2, 1) = (2 + 3i,−4− 6i), V(1, 1) = (5 + 5i,−5− 5i), V(3, 2) =
(6 + 6i,−9− 9i).

– 3D: V(2, 2, 1) = (2 + 3i, 2 + 3i,−8 − 12i), V(1, 1, 1) = (5 + 5i, 5 +
5i,−10− 10i), V(3, 3, 2) = (6 + 6i, 6 + 6i,−18− 18i)

• Parameter values

– 2D: N = 32× 32, ν = 0.0, dt = 10−3, basis_type = FOUR

– 3D: N = 32× 32× 32, ν = 0.0, dt = 10−3, basis_type = FOUR

• Results:

• Note: If we keep only one mode with ν = 0, the field configuration does
not change, and the energy is conserved.
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Table 13.1: Simulation results for 2D when ν = 0
Euler RK2 RK4

Eu(t = 0) 399 399 399
Eu(t = 0.1) 399.508 399 399

Vx(1, 1)(t = 0.1) 2.90075 + 7.62898i 2.89982 + 7.62239i 2.89982 + 7.62238i
Vx(3, 2)(t = 0.1) 4.16542 + 3.80809i 4.166 + 3.8077i 4.166 + 3.8077i
Eu(t = 0.2) 405.365 402.855 402.854

Vx(1, 1)(t = 0.2) −2.48577 + 0.631538i −2.49237 + 0.608368i −2.49237 + 0.608345i
Vx(3, 2)(t = 0.2) 1.54597 + 1.63347i 1.54203 + 1.63646i 1.54202 + 1.63646i

Time reqd (t = 0.2) 0.994 sec 2.02 sec 4.25 sec
nan at t = 0.238 t = 0.237 t = 0.237

Table 13.2: Simulation results for 3D when ν = 0.
Euler RK2 RK4

Eu(t = 0) 1326 1326 1326
Eu(t = 0.05) 1329.69 1326.06 1326.06

Vx(1, 1, 1)(t = 0.05) 3.01192 + 7.88901i 3.01111 + 7.8743i 3.01113 + 7.8743i
Vx(2, 2, 1)(t = 0.05) 0.627639− 3.46226i 0.627463− 3.45859i 0.627462− 3.45859
Eu(t = 0.065) 1405.19 2053.14 1718.55

Vx(1, 1, 1)(t = 0.065) 1.55511 + 6.67214i 1.43555 + 6.52277i 1.50197 + 6.59544i
Vx(2, 2, 1)(t = 0.065) 0.0371095− 4.42679i 0.131824− 4.445i 0.0786792− 4.43102i
Time reqd (t = 0.2) 22.57 sec 45.26 sec 94.73 sec

nan at t = 0.0715 t = 0.0685 t = 0.0685
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Table 13.3: Simulation results for dissipative fluid simulation in 2D
Euler RK2 RK4

Eu(t = 0) 65 65 65
Eu(t = 1) 0.002951 same same

Vx(2, 1)(t = 1) 0.0134759 + 0.0202138i same same

Table 13.4: Simulation results for dissipative fluid simulation in 3D
Euler RK2 RK4

Eu(t = 0) 234 234 234
Eu(t = 0.05) 95.1373 same same
Du(t = 0.05) 1727.47 same same

Vx(2, 2, 1)(t = 0.05) 1.27526 1.91288 same same

13.3.2 Test pure dissipation by taking a single mode thus
turning off nonlinearity

• Initial conditions

– 2D: V(2, 1) = (2 + 3i,−4− 6i).

– 3D: V(2, 2, 1) = (2 + 3i, 2 + 3i,−8− 12i)

• Parameter values

– 2D: N = 32× 32, ν = 1.0, dt = 10−3, basis_type = FOUR

– 3D: N = 32× 32× 32, ν = 0.0, dt = 10−3, basis_type = FOUR

• Results:

V(k, t) = exp(−νK2t)V(k, 0),
Eu(t) = exp(−2νK2t)Eu(0),
Du(t) = 2K2 exp(−2νK2t)Eu(0).
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Chapter 14

Simulation of passive scalar

This solver invokes the library functions and solves the equations for free slip
boundary condition. The solver is a function RB_slip_main(..) that simulates
the equations from time Tinit to Tfinal. It uses the SinCosFour (SCFT) basis.
We will describe this function is some detail here.

14.1 Variables of the main program for passive
scalar

• Connected to the field variables and integration

– int* N[D+1]: Array size of the field variables, N[1],..,N[D].
– int no_of_fields = 2: (the velocity field V and the temperature

field ζ).
– DP diss_coefficients[2]: The dissipation coefficient for V (ν),

and the diffusion coefficient for the scalar ζ (κ).
– string basis_type: FOUR

– string integ_scheme: The integrating scheme for time-stepping:
EULER, RK2, RK4.

– Array<DP, 1> time_para(5): Tinit, Tfinal, Tdt, Tdiagnostics_init
in index 1..4 while reading from the file field_para_file.

– ifstream field_para_file: File from where field parameters are
read. It is in data_dir_name/in.

• Connected to the energy transfer

– int ETnospheres: No of wavenumber spheres for the energy flux
calculations

– int ETnoshells: No of shells for the shell-to-shell energy transfer
calculations
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– int ET_shell_input_scheme: 0 if shell radii are computed accord-
ing to the scheme of Sec...; 1 if it is read from the field_para_file.

– Array<DP, 1> ET_Rshell(MAXSIZE_R_shell): Contains the shell
radii that are read from the file field_para_file if ET_shell_input_scheme
= 1.

– int real_imag_switch: Switch for computing the contributions
from real and imaginary parts to the energy flux and shell-to-shell
transfers.

• Connected to the input of initial conditions

– int field_input_proc: The field input procedure for reading ini-
tial condition.

– int* N_in_reduced[D+1]: Reduced array size for reading the fields
in a smaller grid. Index:1..D.

• Connected to the output functions

– int* N_out_reduced[D+1]: Reduced array size for outputting the
fields in a smaller grid.

– Array<int, 2> out_k_array(MAXSIZE_out_k_array,4): Contains
the set wavenumbers that are read from the file field_para_file.

– int N_output_waveno: Number of wavenumbers that are read from
the file field_para_file.

– string nos_output_mode: The output mode of the field variables:
ASCII, BINARY.

– Array<int,1> time_save(10): Tglobal_save, Tfield_save, Trealfield_save,
Tfield_reduced_save, Tfield_k_save, Tspectrum_save, Tflux_save,
Tshell_to_shell_save, Tcout_save in index 1..9 while reading from
the file field_para_file.

14.2 Main program for passive scalar simulation
The steps in the solver are

• Read_field_para(): Reads parameters of the field from the file field_para_file
which resides in data_dir_name/in directory. It reads N[], diss_coefficients[],
etc. See Sec. src_main for details.

• Constructor IncFluid U for the velocity field.

• Constructor IncSF T for the temperature field ζ.

• Create fftw_plans.

• Open input files
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• Initialize the field configurations using U.Init_cond(...). The choice of
the function depends on field_input_proc.

• Close input files.

• Open output files.

• Start the Computation:

• For ( U.Tnow = U.Tinit, U.Tnow <= U.Tfinal+0.0000001; U.Tnow +=
U.Tdt) {

– U.Compute_force(T);

– U.Compute_nlin(T);

– U.Add_force(T);

– U.Compute_pressure();

– U.Time_advance(T);

• Close output files.

• Output results inside the loop.

14.3 Basic tests of the solver

14.3.1 Test the conservation of energy when dissipation
and forcing are turned off

• Initial conditions

– 2D: V(2, 1) = (2 + 3i,−4− 6i), V(1, 1) = (5 + 5i,−5− 5i), V(3, 2) =
(6 + 6i,−9− 9i); ζ(2, 1) = 2 + 3i, ζ(1, 1) = 5 + 5i, ζ(3, 2) = 6 + 6i.

– 3D: V(2, 2, 1) = (2 + 3i, 2 + 3i,−8 − 12i), V(1, 1, 1) = (5 + 5i, 5 +
5i,−10−10i), V(3, 3, 2) = (6+6i, 6+6i,−18−18i), ζ(2, 2, 1) = 2+3i,
ζ(1, 1, 1) = 5 + 5i, ζ(3, 3, 2) = 6 + 6i.

• Parameter values

– 2D: N = 32× 32, ν = 0.0, dt = 10−3, basis_type = FOUR

– 3D: N = 32× 32× 32, ν = 0.0, dt = 10−3, basis_type = FOUR

• Results:

• Note:

– If we keep only one mode with ν = 0, the field configuration does not
change, and the energy is conserved.

– The evolution of the velocity field is the same as that in fluid flow
because the scalar does not react back on the velocity field.

91



Table 14.1: Simulation results for 2D when ν = 0
Euler RK2 RK4

Eu(t = 0) 399 399 399
Eu(t = 0) 135 135 135
Eu(t = 0.1) 399.508 399 399
Eu(t = 0.1) 135.272 135.096 135.096

Vx(1, 1)(t = 0.1) 2.90075 + 7.62898i 2.89982 + 7.62239i 2.89982 + 7.62238i
Vx(3, 2)(t = 0.1) 4.16542 + 3.80809i 4.166 + 3.8077i 4.166 + 3.8077i
ζ(1, 1)(t = 0.1) 2.93991 + 6.52197i 2.93944 + 6.51603i 2.93944 + 6.51603i
ζ(3, 2)(t = 0.1) 3.57215 + 3.29405i 3.57379 + 3.29496i 3.5738 + 3.29497i
Eu(t = 0.2) 405.365 402.855 402.854
Eu(t = 0.2) 116125 119722 119694

Vx(1, 1)(t = 0.2) −2.48577 + 0.631538i −2.49237 + 0.608368i −2.49237 + 0.608345i
Vx(3, 2)(t = 0.2) 1.54597 + 1.63347i 1.54203 + 1.63646i 1.54202 + 1.63646i
ζ(1, 1)(t = 0.2) −0.402805 + 1.14681i −0.424682 + 1.18352i −0.424737 + 1.18339i
ζ(3, 2)(t = 0.2) 0.264168− 3.12637i 0.456391− 3.13251i 0.456678− 3.13175i

Time reqd (t = 0.2) 1.60 sec 3.12 sec 6.45 sec
nan at t = 0.238 t = 0.237 t = 0.237

Table 14.2: Simulation results for 3D when ν = 0.
Euler RK2 RK4

Eu(t = 0) 1326 1326 1326
Eζ(t = 0) 135 135 135

Eu(t = 0.05) 1329.69 1326.06 1326.06
Eζ(t = 0.05) 135.723 135.399 135.399

Vx(1, 1, 1)(t = 0.05) 3.01192 + 7.88901i 3.01111 + 7.8743i 3.01113 + 7.8743i
Vx(2, 2, 1)(t = 0.05) 0.627639− 3.46226i 0.627463− 3.45859i 0.627462− 3.45859i
ζ(1, 1, 1)(t = 0.05) 3.09279 + 6.52184i 3.09234 + 6.50955i 3.09235 + 6.50954i
ζ(2, 2, 1)(t = 0.05) 0.710119− 5.27703i 0.710582− 5.27223i 0.710583− 5.27224i
Eu(t = 0.065) 1405.19 2053.14 1718.55
Eζ(t = 0.065) 599.639 1138.5 880.435

Vx(1, 1, 1)(t = 0.065) 1.55511 + 6.67214i 1.43555 + 6.52277i 1.50197 + 6.59544i
Vx(2, 2, 1)(t = 0.065) 0.0371095− 4.42679i 0.131824− 4.445i 0.0786792− 4.43102i
ζ(1, 1, 1)(t = 0.065) 1.78776 + 4.97492i 1.6421 + 4.80179i 1.72364 + 4.88901i
ζ(2, 2, 1)(t = 0.065) 0.133171− 6.21204i 0.402219− 6.32723i 0.250709− 6.2584i

Time reqd (t = 0.065) 30.74 sec 85.26 sec 125.1 sec
nan at t = 0.0715 t = 0.0685 t = 0.0685
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Table 14.3: Simulation results for dissipative fluid simulation in 2D
Euler RK2 RK4

Eu(t = 0) 65 65 65
Eζ(t = 0) 13 13 13
Eu(t = 1) 0.002951 same same
Eζ(t = 1) 5.90199× 10−4 same same
Du(t = 1) 0.02951 same same
Dζ(t = 1) 0.00590199 same same

Vx(2, 1)(t = 1) 0.0134759 + 0.0202138i same same
ζ(2, 1)(t = 1) 0.0134759 + 0.0202138i same same

14.3.2 Test pure dissipation by taking a single mode thus
turning off nonlinearity

• Initial conditions

– 2D: V(2, 1) = (2 + 3i,−4− 6i), ζ(2, 1) = 2 + 3i.

– 3D: V(2, 2, 1) = (2 + 3i, 2 + 3i,−8− 12i), ζ(2, 2, 1) = 2 + 3i.

• Parameter values

– 2D: N = 32× 32, ν = κ = 1.0, dt = 10−3, basis_type = FOUR

– 3D: N = 32× 32× 32, ν = κ = 0.0, dt = 10−3, basis_type = FOUR

• Results:

V(k, t) = exp(−νK2t)V(k, 0),
ζ(k, t) = exp(−κK2t)ζ(k, 0),
Eu(t) = exp(−2νK2t)Eu(0),
Eζ(t) = exp(−2κK2t)Eζ(0),
Du(t) = 2K2 exp(−2νK2t)Eu(0)
Dζ(t) = 2K2 exp(−2κK2t)Eζ(0)

93



Table 14.4: Simulation results for dissipative fluid simulation in 3D
Euler RK2 RK4

Eu(t = 0) 234 234 234
Eζ(t = 0) 13 13 13

Eu(t = 0.05) 95.1373 same same
Eζ(t = 0.05) 5.28541 same same
Du(t = 0.05) 1727.47 same same
Dζ(t = 0.05) 95.1373 same same

Vx(2, 2, 1)(t = 0.05) 1.27526 + 1.91288i same same
ζ(2, 2, 1)(t = 0.05) 1.27526 + 1.91288i same same
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Chapter 15

Magnetohydrodynamic flows

This solver invokes the library functions and solves the equations for magneto-
hydrodynamic flows. The solver is a function IMHD_main(..) that simulates
the equations from time Tinit to Tfinal. It uses the FOUR basis. We will
describe this function is some detail here.

15.1 Variables of the main program for MHD
flow

• Connected to the field variables and integration

– int* N[D+1]: Array size of the field variables, N[1],..,N[D].
– int no_of_fields = 2: (the velocity field V and the magnetic field

W).
– DP diss_coefficients[2]: The dissipation coefficient for V (ν),

and the dissipation coefficient for W (η).
– string basis_type: FOUR

– string integ_scheme: The integrating scheme for time-stepping:
EULER, RK2, RK4.

– Array<DP, 1> time_para(5): Tinit, Tfinal, Tdt, Tdiagnostics_init
in index 1..4 while reading from the file field_para_file.

– ifstream field_para_file: File from where field parameters are
read. It is in data_dir_name/in.

• Connected to the energy transfer

– int ETnospheres: No of wavenumber spheres for the energy flux
calculations

– int ETnoshells: No of shells for the shell-to-shell energy transfer
calculations
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– int ET_shell_input_scheme: 0 if shell radii are computed accord-
ing to the scheme of Sec...; 1 if it is read from the field_para_file.

– Array<DP, 1> ET_Rshell(MAXSIZE_R_shell): Contains the shell
radii that are read from the file field_para_file if ET_shell_input_scheme
= 1.

– int real_imag_switch: Switch for computing the contributions
from real and imaginary parts to the energy flux and shell-to-shell
transfers.

• Connected to the input of initial conditions

– int field_input_proc: The field input procedure for reading ini-
tial condition.

– int* N_in_reduced[D+1]: Reduced array size for reading the fields
in a smaller grid. Index:1..D.

• Connected to the output functions

– int* N_out_reduced[D+1]: Reduced array size for outputting the
fields in a smaller grid.

– Array<int, 2> out_k_array(MAXSIZE_out_k_array,4): Contains
the set wavenumbers that are read from the file field_para_file.

– int N_output_waveno: Number of wavenumbers that are read from
the file field_para_file.

– string nos_output_mode: The output mode of the field variables:
ASCII, BINARY.

– Array<int,1> time_save(10): Tglobal_save, Tfield_save, Trealfield_save,
Tfield_reduced_save, Tfield_k_save, Tspectrum_save, Tflux_save,
Tshell_to_shell_save, Tcout_save in index 1..9 while reading from
the file field_para_file.

15.2 Main program for RB convection
The steps in the solver are

• Read_field_para(): Reads parameters of the field from the file field_para_file
which resides in data_dir_name/in directory. It reads N[], diss_coefficients[],
etc. See Sec. src_main for details.

• Constructor IncFluid U for the velocity field.

• Constructor IncVF W for the magnetic field W.

• Create fftw_plans.

• Open input files
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• Initialize the field configurations using U.Init_cond(...). The choice of
the function depends on field_input_proc.

• Close input files.

• Open output files.

• Start the Computation:

• For ( U.Tnow = U.Tinit, U.Tnow <= U.Tfinal+0.0000001; U.Tnow +=
U.Tdt) {

– U.Compute_force(W);

– U.Compute_nlin(W);

– U.Add_force(W);

– U.Compute_pressure();

– U.Time_advance(W);

• Close output files.

• Output results inside the loop.

15.3 Basic tests of the solver

15.3.1 Test the conservation of energy when dissipation
and forcing are turned off

15.3.1.1 B = 0

We recover the fluid limit. We find the exact solution described in fluid simula-
tion chapter.

15.3.1.2 U = B

In this case the nonlinear terms and the pressure gradient is zero. Hence it is a
linear equation. The energy is identically conserved.

15.3.1.3 General situation

• Initial conditions

– 2D: V(2, 1) = (2 + 3i,−4− 6i), V(1, 1) = (5 + 5i,−5− 5i), V(3, 2) =
(6+6i,−9−9i); B(2, 1) = (1+2i,−2−4i), V(1, 1) = (2+3i,−2−3i),
V(3, 2) = (2 + 3i,−3− 4.5i).

– 3D: V(2, 2, 1) = (2 + 3i, 2 + 3i,−8 − 12i), V(1, 1, 1) = (5 + 5i, 5 +
5i,−10 − 10i), V(3, 3, 2) = (6 + 6i, 6 + 6i,−18 − 18i), B(2, 2, 1) =
(1+2i, 1+2i,−4−8i), B(1, 1, 1) = (1+3i, 1+2i,−2−5i), B(3, 3, 2) =
(3 + 6i, 6 + 3i,−13.5− 13.5i).
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Table 15.1: Simulation results for 2D when ν = 0
Euler RK2 RK4

Eu(t = 0) 399 399 399
Eb(t = 0) 93.25 93.25 93.25
Hc(t = 0) 187.5 187.5 187.5

Eu(t = 0.05) 372.911 372.774 372.774
Eb(t = 0.05) 119.476 119.476 119.476
Eu(t = 0.05) 187.501 187.5 187.5

Vx(1, 1)(t = 0.05) 4.85234 + 6.33906i 4.8514 + 6.33695i 4.8514 + 6.33695i
Vx(3, 2)(t = 0.05) 5.89601 + 5.58382i 5.8953 + 5.58323i 5.8953 + 5.58323i
Bx(1, 1)(t = 0.05) 1.74497 + 2.64333i 1.74509 + 2.64315i 1.74509 + 2.64315i
Bx(3, 2)(t = 0.05) 2.89188 + 3.54185i 2.89228 + 3.54222i 2.89228 + 3.54221i

Eu(t = 0.1) 317.695 317.643 317.643
Eb(t = 0.1) 181.166 181.248 181.248
Hc(t = 0.1) 189.055 189.075 189.075

Vx(1, 1)(t = 0.1) 3.65843 + 5.99974i 3.65806 + 5.9959i 3.65806 + 5.99596i
Vx(3, 2)(t = 0.1) 4.86681 + 4.4334i 4.86699 + 4.43393i 4.86699 + 4.43393i
Bx(1, 1)(t = 0.1) 1.43317 + 2.01415i 1.43391 + 2.01482i 1.43391 + 2.01482i
Bx(3, 2)(t = 0.1) 3.94149 + 4.26307i 3.93984 + 4.26178i 3.93984 + 4.26178i

Time reqd (t = 0.1) 1.07 sec 1.97 sec 4.00 sec
nan at t = 0.118 t = 0.1165 t = 0.237

• Parameter values

– 2D: N = 32× 32, ν = η = 0.0, dt = 10−3, basis_type = FOUR

– 3D: N = 32× 32× 32, ν = η = 0.0, dt = 10−3, basis_type = FOUR

• Results:

• Note:

– If we keep only one mode with ν = 0, the field configuration does not
change, and the energy is conserved.

15.3.2 Test pure dissipation by taking a single mode thus
turning off nonlinearity

• Initial conditions

– 2D: V(2, 1) = (2 + 3i,−4− 6i), B(2, 1) = (2 + 3i,−4− 6i).

– 3D: V(2, 2, 1) = (2 + 3i, 2 + 3i,−8 − 12i), B(2, 2, 1) = (2 + 3i, 2 +
3i,−8− 12i).

• Parameter values
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Table 15.2: Simulation results for 3D when ν = 0.
Euler RK2 RK4

Eu(t = 0) 1326 1326 1326
Eb(t = 0) 588.5 588.5 588.5
Hc(t = 0) 843 843 843

Eu(t = 0.02) 1271.65 1270.95 1270.95
Eb(t = 0.02) 643.656 643.549 643.549
Hc(t = 0.02) 843.241 843 843

Vx(1, 1, 1)(t = 0.02) 4.75337 + 5.88545i 4.75166 + 5.88285i 4.75166 + 5.88285i
Vx(2, 2, 1)(t = 0.02) 2.05655 + 1.14229i 2.05632 + 1.14265i 2.05632 + 1.14265i
Bx(1, 1, 1)(t = 0.02) 0.583614 + 3.00627i 0.583836 + 3.00562i 0.583838 + 3.00562i
Bx(2, 2, 1)(t = 0.02) 1.58379 + 1.47647i 1.58298 + 1.47639i 1.58298 + 1.47639i

Eu(t = 0.04) 1366.53 1439.99 1440.67
Eb(t = 0.04) 945.442 1019.05 1019.73
Hc(t = 0.04) 653.833 580.087 579.41

Vx(1, 1, 1)(t = 0.04) 3.76422 + 5.92274i 3.76385 + 5.91896i 3.76384 + 5.91897i
Vx(2, 2, 1)(t = 0.04) 2.02816− 0.57983i 2.02985− 0.578084i 2.02986− 0.578094i
Bx(1, 1, 1)(t = 0.04) 0.162143 + 2.78284i 0.164271 + 2.7815i 0.16428 + 2.78149i
Bx(2, 2, 1)(t = 0.04) 1.82165 + 0.918483i 1.81889 + 0.918598i 1.81888 + 0.918609i
Time reqd (t = 0.04) 31 sec 57.8 sec 116.3 sec

nan at t = 0.049 t = 0.0475 t = 0.047

– 2D: N = 32× 32, ν = η = 1.0, dt = 10−3, basis_type = FOUR

– 3D: N = 32× 32× 32, ν = η = 0.0, dt = 10−3, basis_type = FOUR

• Results:

V(k, t) = exp(−νK2t)V(k, 0),
B(k, t) = exp(−ηK2t)B(k, 0),
Eu(t) = exp(−2νK2t)Eu(0),
Eb(t) = exp(−2ηK2t)Eb(0),
Du(t) = 2K2 exp(−2νK2t)Eu(0)
Db(t) = 2K2 exp(−2ηK2t)Eb(0)
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Table 15.3: Simulation results for dissipative fluid simulation in 2D
Euler RK2 RK4

Eu(t = 0) 65 65 65
Eb(t = 0) 65 65 65
Eu(t = 1) 0.002951 same same
Eb(t = 1) 0.002951 same same
Du(t = 1) 0.02951 same same
Db(t = 1) 0.02951 same same

Vx(2, 1)(t = 1) 0.0134759 + 0.0202138i same same
Bx(2, 1)(t = 1) 0.0134759 + 0.0202138i same same

Table 15.4: Simulation results for dissipative fluid simulation in 3D
Euler RK2 RK4

Eu(t = 0) 234 234 234
Eb(t = 0) 234 234 234

Eu(t = 0.05) 95.1373 same same
Eb(t = 0.05) 95.1373 same same
Du(t = 0.05) 1727.47 same same
Db(t = 0.05) 1727.47 same same

Vx(2, 2, 1)(t = 0.05) 1.27526 + 1.91288i same same
Bx(2, 2, 1)(t = 0.05) 1.27526 + 1.91288i same same
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Chapter 16

Raylegh Benard convection
for free slip boundary
condition

This solver invokes the library functions and solves the equations for free slip
boundary condition. The solver is a function RB_slip_main(..) that simulates
the equations from time Tinit to Tfinal. It uses the SinCosFour (SCFT) basis.
We will describe this function is some detail here.

16.1 Variables of the main program for RB con-
vection

• Connected to the field variables and integration

– int* N[D+1]: Array size of the field variables, N[1],..,N[D].
– int no_of_fields = 2: (the velocity field V and the temperature

field ζ).
– DP diss_coefficients[2]: The dissipation coefficient for V (ν),

and the diffusion coefficient for the scalar ζ (κ).
– string basis_type: basis type either FOUR or SCFT
– string integ_scheme: The integrating scheme for time-stepping:

EULER, RK2, RK4.
– Array<DP, 1> time_para(5): Tinit, Tfinal, Tdt, Tdiagnostics_init

in index 1..4 while reading from the file field_para_file.
– ifstream field_para_file: File from where field parameters are

read. It is in data_dir_name/in.

• Connected to the energy transfer
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– int ETnospheres: No of wavenumber spheres for the energy flux
calculations

– int ETnoshells: No of shells for the shell-to-shell energy transfer
calculations

– int ET_shell_input_scheme: 0 if shell radii are computed accord-
ing to the scheme of Sec...; 1 if it is read from the field_para_file.

– Array<DP, 1> ET_Rshell(MAXSIZE_R_shell): Contains the shell
radii that are read from the file field_para_file if ET_shell_input_scheme
= 1.

– int real_imag_switch: Switch for computing the contributions
from real and imaginary parts to the energy flux and shell-to-shell
transfers.

• Connected to the input of initial conditions

– int field_input_proc: The field input procedure for reading ini-
tial condition.

– int* N_in_reduced[D+1]: Reduced array size for reading the fields
in a smaller grid. Index:1..D.

• Connected to the output functions

– int* N_out_reduced[D+1]: Reduced array size for outputting the
fields in a smaller grid.

– Array<int, 2> out_k_array(MAXSIZE_out_k_array,4): Contains
the set wavenumbers that are read from the file field_para_file.

– int N_output_waveno: Number of wavenumbers that are read from
the file field_para_file.

– string nos_output_mode: The output mode of the field variables:
ASCII, BINARY.

– Array<int,1> time_save(10): Tglobal_save, Tfield_save, Trealfield_save,
Tfield_reduced_save, Tfield_k_save, Tspectrum_save, Tflux_save,
Tshell_to_shell_save, Tcout_save in index 1..9 while reading from
the file field_para_file.

• Parameters connected to the RB convection

– ifstream RB_slip_para_file: The file from which the parameters
of RB convection are read. It resides in data_dir_name/in.

– DP Pr: Thermal Prandtl number

– DP Ra: Rayleigh number

– DP r: r = Ra/Rac

– DP k0: kfactor[2]; k0 = π/
√

2
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– DP q: kfactor[3].

– DP qbyk0: q/k0.

– string Pr_switch: Takes on the values PRLARGE, PRSMALL, PRZERO.

– RB_Uscaling: Takes one of the values USMALL, ULARGE.

– DP w101, th101, th200: Lorenz variables.

16.2 Main program for RB convection
The steps in the solver are

• Read_field_para(): Reads parameters of the field from the file field_para_file
which resides in data_dir_name/in directory. It reads N[], diss_coefficients[],
etc. See Sec. src_main for details.

• Read_RB_para(): Reads parameters for RB from RB_para_file that
is resident in data_dir_name/in. The variables read are Pr, r, qbyk0,
Pr_scaling, RB_Uscaling. If field_input_proc = 0, then Lorenz vari-
ables w101, th101, th200 are also read..

• Set up Ra = r ×Rac and kfactor[i].

• Set up the coefficients of ∇2u and ∇2θ (see Appendix and Sec.).

• Constructor IncFluid U for the velocity field.

• Constructor IncSF T for the temperature field ζ.

• Create fftw_plans.

• Open input files

• Initialize the field configurations using U.Init_cond(...). The choice of
the function depends on field_input_proc.

• Close input files.

• Open output files.

• Start the Computation:

• For ( U.Tnow = U.Tinit, U.Tnow <= U.Tfinal+0.0000001; U.Tnow +=
U.Tdt) {

– U.Compute_force(T, Ra, Pr, Pr_switch, RB_Uscaling);

– U.Compute_nlin(T, Pr_switch);

– U.Add_force(T, Pr_switch);

– U.Compute_pressure();
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Table 16.1: Simulation results for 2D at t = 1.
RK4-Init-1 RK4-Init2

Eu(t = 0) 0.06 1634
Eζ(t = 0) 0.135 326

Eu 673.011 296.424
Eζ 0.0371593 0.0291604
Nu 4.24353 3.71141

Vx(1, 1) −10.4612 0.669826− 0.665225i
Vy(2, 0) 0 3.66145e-06
Vx(2, 1) 0 −0.041591 + 0.0473371i
Vx(3, 2) 0 −0.012952− 0.214353i
ζ(1, 1) −0.0706091 0.00424838− 0.00422111i
ζ(2, 0) −0.147603 -0.13185
ζ(2, 1) 0 −0.00185042 + 0.00210602i
ζ(3, 2) 0 −0.00140017− 0.0231737i

time reqd 68.22 sec 744 sec

– U.Time_advance(T, Ra, Pr, Pr_switch, RB_Uscaling);

• Close output files.

• Output results inside the loop.

16.3 Basic tests of the solver

16.3.1 Two dimensional simulation (Pr = 6.8)

We perform test for r = Ra/Rac = 10 and Pr = 6.8.

• Initial conditions

– Init-1: Lorenz condition: w11 = 0.1, θ11 = 0.15, θ20 = 0.3.

– Init-2: V(2, 1) = (2+3i,−4−6i), V(1, 1) = (5+5i,−5−5i), V(3, 2) =
(6 + 8i,−9− 12i), ζ(2, 1) = 2 + 3i, ζ(1, 1) = 5 + 5i, ζ(3, 2) = 6 + 8i.

• Parameter values

– N = 32× 32, r = 10, Pr = 6.8, dt = 10−4, basis_type = SCFT

• Results:
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Table 16.2: Simulation results for 3D. We obtain a steady state.
We report the final state for Init-1 at t = 0.65, and for Init-2
at t = 0.5. In the final state the energy is fluctuating a bit, but
the values of the Fourier modes are constant.

RK4-Init-1 RK4-Init2
Eu(t = 0) 0.06 1634
Eζ(t = 0) 0.135 326

Eu 673.01 673.215
Eζ 0.0371589 0.0370734
Nu 4.24358 4.24347

Vx(1, 0, 1) −10.4612 0.660366− 0.758998i
Vy(2, 0, 0) 0 −4.25617× 10−16

Vx(2, 1, 1) 0 0.0877739 + 0.0944594i
Vx(1, 1, 2) - -0.0537467 + 0.0017584i
Vx(3, 2, 3) - (−1.18153− 1.19117i)× 10−5

ζ(1, 0, 1) −0.0706107 0.00459038− 0.00527599i
ζ(2, 0, 0) −0.147603 -0.147206
ζ(2, 1, 1) 0 0.000181435 + 0.00019527i
ζ(1, 1, 2) 0 −0.000437023 + 1.42974× 10−5i
ζ(3, 2, 3) - (−3.13714− 3.16216i)× 10−6

time reqd 364 min 276 min

16.3.2 Three dimensional simulation (Pr = 6.8)

• Initial conditions

– Init-1: Lorenz like condition: V(1, 0, 1) = (0.42, 0.1,−0.42
√

2i), ζ(1, 0, 1) =
0.07, ζ(2, 0, 0) = 0.7.

– Init-2: V(2, 1, 1) = (2 + 3i, 2 + 3i,−8− 12i), V(1, 1, 2) = (5 + 5i, 5 +
5i,−10−10i), V(3, 2, 3) = (6+6i, 6+6i,−18−18i), ζ(2, 1, 1) = 2+3i,
ζ(1, 1, 2) = 5 + 5i, ζ(3, 2, 3) = 6 + 6i.

• Parameter values

– 3D: N = 32× 32× 32, Pr = 6.8, r = 10, dt = 10−5, basis_type =
SCFT

• Results:
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Chapter 17

Magnetoconvection for free
slip boundary condition

This solver invokes the library functions and solves the equations for free slip
boundary condition. The solver is a function RB_slip_main(..) that simulates
the equations from time Tinit to Tfinal. It uses the SinCosFour (SCFT) basis.
We will describe this function is some detail here.

17.1 Variables of the main program for RB con-
vection

• Connected to the field variables and integration

– int* N[D+1]: Array size of the field variables, N[1],..,N[D].
– int no_of_fields = 3: (the velocity field V, the magnetic field

W, and the temperature field ζ).
– DP diss_coefficients[2]: The dissipation coefficient for V (ν),

for W (η), and the diffusion coefficient for the scalar ζ (κ).
– string basis_type: SCFT

– string integ_scheme: The integrating scheme for time-stepping:
EULER, RK2, RK4.

– Array<DP, 1> time_para(5): Tinit, Tfinal, Tdt, Tdiagnostics_init
in index 1..4 while reading from the file field_para_file.

– ifstream field_para_file: File from where field parameters are
read. It is in data_dir_name/in.

• Connected to the energy transfer

– int ETnospheres: No of wavenumber spheres for the energy flux
calculations
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– int ETnoshells: No of shells for the shell-to-shell energy transfer
calculations

– int ET_shell_input_scheme: 0 if shell radii are computed accord-
ing to the scheme of Sec...; 1 if it is read from the field_para_file.

– Array<DP, 1> ET_Rshell(MAXSIZE_R_shell): Contains the shell
radii that are read from the file field_para_file if ET_shell_input_scheme
= 1.

– int real_imag_switch: Switch for computing the contributions
from real and imaginary parts to the energy flux and shell-to-shell
transfers.

• Connected to the input of initial conditions

– int field_input_proc: The field input procedure for reading ini-
tial condition.

– int* N_in_reduced[D+1]: Reduced array size for reading the fields
in a smaller grid. Index:1..D.

• Connected to the output functions

– int* N_out_reduced[D+1]: Reduced array size for outputting the
fields in a smaller grid.

– Array<int, 2> out_k_array(MAXSIZE_out_k_array,4): Contains
the set wavenumbers that are read from the file field_para_file.

– int N_output_waveno: Number of wavenumbers that are read from
the file field_para_file.

– string nos_output_mode: The output mode of the field variables:
ASCII, BINARY.

– Array<int,1> time_save(10): Tglobal_save, Tfield_save, Trealfield_save,
Tfield_reduced_save, Tfield_k_save, Tspectrum_save, Tflux_save,
Tshell_to_shell_save, Tcout_save in index 1..9 while reading from
the file field_para_file.

• Parameters connected to the RB convection

– ifstream RB_slip_para_file: The file from which the parameters
of RB convection are read. It resides in data_dir_name/in.

– DP Pr: Thermal Prandtl number

– DP Ra: Rayleigh number

– DP r: r = Ra/Rac

– DP k0: kfactor[2]; k0 = π/
√

2

– DP q: kfactor[3].
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– DP qbyk0: q/k0.

– DP eta: Magnetic diffusivity.

– string Pr_switch: Takes on the values PRLARGE, PRSMALL, PRZERO.

– RB_Uscaling: Takes one of the values USMALL, ULARGE.

– DP w101, th101, th200: Lorenz variables read as initial condition
if field_input_proc = 0.

17.2 Main program for magnetoconvection
The steps in the solver are

• Read_field_para(): Reads parameters of the field from the file field_para_file
which resides in data_dir_name/in directory. It reads N[], diss_coefficients[],
etc. See Sec. src_main for details.

• Read_RB_para(): Reads parameters for RB from RB_para_file that
is resident in data_dir_name/in. The variables read are Pr, r, qbyk0,
Pr_scaling, RB_Uscaling. If field_input_proc = 0, then Lorenz vari-
ables w101, th101, th200 are also read.

• Set up Ra = r ×Rac and kfactor[i].

• Set up the coefficients of ∇2U, ∇2B, and ∇2θ (see Appendix and Sec.).

• Constructor IncFluid U for the velocity field.

• Constructor IncVF W for the magnetic field W.

• Constructor IncSF T for the temperature field ζ.

• Create fftw_plans.

• Open input files

• Initialize the field configurations using U.Init_cond(...). The choice of
the function depends on field_input_proc.

• Close input files.

• Open output files.

• Start the Computation:

• For ( U.Tnow = U.Tinit, U.Tnow <= U.Tfinal+0.0000001; U.Tnow +=
U.Tdt) {

– U.Compute_force(W, T, Ra, Pr, Pr_switch, RB_Uscaling);

– U.Compute_nlin(W, T, Pr_switch);
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Table 17.1: ff
Euler RK2 RK4

Eu(t = 0)
Eζ(t = 0)

– U.Add_force(W, T, Pr_switch);

– U.Compute_pressure();

– U.Time_advance(W, T, Ra, Pr, Pr_switch, RB_Uscaling);

• Close output files.

• Output results inside the loop.

17.3 Basic tests of the solver

17.3.1 Test the conservation of energy when dissipation
and forcing are turned off.

• Initial conditions

• Parameter values

• Results:

17.3.2 Test pure dissipation by taking a single mode thus
turning off nonlinearity
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Appendix A

Integration schemes

In spectral method, the equations to be integrated are of the form:

∂ζ

∂t
+ κk2ζ = R(ζ(t), t). (A.1)

We make a change of variable from ζ to ζ̄ defined as

ζ̄(t) = exp(κk2t)ζ(t).

If we rewrite Eq. (A.1) in terms of ζ̄, it changes to the following equation:

∂ζ̄(t)
∂t

= exp(κk2t)R(ζ̄(t), t). (A.2)

We solve the above equation using different integrating schemes.

A.1 Euler’s scheme
In Euler’s scheme

ζ̄(t+ ∆t) = ζ̄(t) + ∆t× exp(κk2t)R(ζ̄(t), t)

or
ζ(t+ ∆t) = [ζ(t) + ∆t×R(ζ(t), t)] exp(−κk2∆t).

A.2 Runge-Kutta second order (RK2)
The RK2 scheme time advances in two steps:

1. We step to the mid-point using Euler’s scheme:

ζ̄mid(t+ ∆t/2) = ζ̄(t) +
∆t
2
× exp(κk2t)R(ζ̄(t), t)

or
ζmid(t+ ∆t/2) = [ζ(t) +

∆t
2
×R(ζ(t), t)] exp(−κk2∆t/2).
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2. We compute the function R(ζ(tmid), tmid) at the mid-point. The function
ζ is computed at time t+∆t using the slope at the mid-point. The formulas
are as follows:

ζ̄(t+ ∆t) = ζ̄(t) + ∆t× exp(κk2tmid)R(ζ̄(tmid), tmid)

or

ζ(t+ ∆t) = ζ(t) exp(−κk2∆t) + ∆t×R(ζ(tmid), tmid) exp(−κk2∆t/2).

This is the final ζ(t+ ∆t) in the RK2 scheme.

A.3 Runge-Kutta fourth order (RK4)
In this scheme the time advance is done in four steps outlined below:

1. we step to the mid-point using Euler’s scheme:

ζ̄mid1(t+ ∆t/2) = ζ(t) +
∆t
2
× exp(κk2t)R(ζ̄(t), t)

or
ζmid1(t+ ∆t/2) = [ζ(t) +

∆t
2
×R(ζ(t), t)] exp(−κk2∆t/2).

We also compute C1 that would added finally in the computation of the
final ζ(t+ ∆t).

C1 = ∆t×R(ζ(t), t) exp(−κk2t).

2. We compute the rhs at the midpoint with ζmid1(t+ ∆t/2) as the value for
the funcion. Using the new value of rhs, we compute ζmid2(tmid):

ζ̄mid2(t+∆t/2) = ζ(t)+
∆t
2
×exp[κk2(t+∆t/2)]R(ζ̄mid1(t+∆t/2), t+∆t/2)

or

ζmid2(t+∆t/2) = ζ(t) exp(−κk2∆t/2)+
∆t
2
×R(ζmid1(t+∆t/2), t+∆t/2).

We also compute C2

C2 = ∆t×R(ζmid1(t+ ∆t/2), t+ ∆t/2) exp[κk2(t+ ∆t/2)].

3. We compute the rhs at the midpoint with ζmid2(t+ ∆t/2) as the value for
the funcion. Using the new value of rhs, we compute ζ3(t+ ∆t):

ζ̄3(t+ ∆t) = ζ(t) + ∆t× exp[κk2(t+ ∆t/2)]R(ζ̄mid2(t+ ∆t/2), t+ ∆t/2)

or

ζ3(t+∆t) = ζ(t) exp(−κk2∆t)+∆t×R(ζmid2(t+∆t/2), t+∆t/2) exp(−κk2∆t/2).

We also compute C4

C3 = ∆t×R(ζmid2(t+ ∆t/2), t+ ∆t/2) exp[κk2(t+ ∆t/2)].
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4. In the final step we compute the rhs at t = t+ ∆t with ζ3(t+ ∆t) as the
function. After this we compute C4 as

C4 = ∆t×R(ζ3(t+ ∆t), t+ ∆t) exp[κk2(t+ ∆t)].

The final value of the function at t+ ∆t is

ζ̄4(t+ ∆t) = ζ(t) +
1
6

(C1 + 2C2 + 2C3 + C4)

or

ζ4(t+ ∆t) = ζ(t) exp(−κk2∆t) +
∆t
6
×R(ζ(t), t) exp(−κk2∆t).

∆t
3
×R(ζmid1(t+ ∆t/2), t+ ∆t/2) exp(−κk2∆t/2)

∆t
3
×R(ζmid2(t+ ∆t/2), t+ ∆t/2) exp[−κk2∆t/2]

∆t
6
×R(ζ3(t+ ∆t), t+ ∆t).

ζ4(t+∆t) is the desired value of the function at time t+∆t in RK4 scheme.

Exercise: Solve the equation

∂ζ

∂t
+ κk2ζ = ζ

using Euler and RK2 scheme. Compare the result with the exact solution.
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Appendix B

Rayleigh Benard Convection
With Free Slip Boundary
Condition

B.1 Equations

B.1.1 Finite Prandtl number
We choose length scale as d, time scale as d2/κ, velocity scale as κ/d, and
temperature scale as (∆T )0, then the equations are

∂u
∂t

+ (u · ∇)u = −∇σ +RPθ + P∇2u (B.1)

∂θ

∂t
+ (u · ∇)θ = u1 +∇2θ. (B.2)

We can argue using dimensional analysis that the large-scale velocity uL ∼
√
RP

and θL ∼ 1. This equation is not similar to nondimensionaled NS equation
where we normalize the large-scale velocity to be 1. Note that dimensionful
uL ∼ (κ/d)

√
RP and δT ∼ (∆T )0.

If we use the convective velocity scale
√
α(∆T )0gd as the velocity scale, and

d as the length scale, we obtain an equation similar to nondimensionalized NS
equation used in turbulence. The equations are

∂u
∂t

+ (u · ∇)u = −∇σ + θ +

√
P

R
∇2u (B.3)

∂θ

∂t
+ (u · ∇)θ = u1 +

1√
PR
∇2θ. (B.4)

For large R and finite P , both the viscous terms could be ignored. Hence
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uL ∼ θL ∼ 1 as expected. With this again, dimensionful large-scale velocity is
uL ∼

√
α(∆T )0gd ∼ (κ/d)

√
RP .

Eqs. (B.1, B.13) are equivalant to Eqs. (B.3, B.4). However the latter set
is more useful for larger R (turbulence) because dt required for the latter set
is
√
RP times larger compared to the former set (CFL condition). Hence the

latter set is more accurate. For smaller R, the earlier equations are as good,
probably better (??). We implement both the schemes in our code.

B.1.2 Small Prandtl number
The above two sets of equations are valid for finite P . For small P , the diffusive
term of Eq. (B.4) becomes comparable to u1 and cannot be ignored. In fact,
for very small P

uL ∼
θL

L2
√
PR

. (B.5)

The thermal energy supplied at the large-scale drives the velocity field through
energy cascade. Note that thermal energy is supplied only at the large-scale
because the spectrum of temperature fluctuations is very steep [preprint]. The
equation for energy cascade yields

εu ∼
u3
L

L
∼ θLuL ∼

√
PRu2

LL
2.

Therefore,
uL ∼

√
PRL3,

which yields the dimensionful uL ∼ R(ν/d). Substitution of this expression in
Eq. (B.5) yields θL ∼ PRL5. This expression is consistent with the earlier
statement that the thermal energy spectrum is very steep.

Note that Peclet number Pe = uLd/κ ∼
√
RP for large P , and Pe ∼ RP for

small P . Also, temperature fluctuations is very small because of high thermal
diffusivity.

For small P , it is convenient to use θ′ = θ/P that is finite. In terms of θ′
the RB equations (B.3, B.4) become

∂u
∂t

+ (u · ∇)u = −∇σ + Pθ′ +

√
P

R
∇2u (B.6)

P

[
∂θ′

∂t
+ (u · ∇)θ′

]
= u1 +

√
P

R
∇2θ′. (B.7)

These equations use large-scale velocity
√
α(∆T )0gd as velocity scale. However

if we use small-scale velocity ν/d as velocity scale, then we obtain

∂u
∂t

+ (u · ∇)u = −∇σ +Rθ′ +∇2u (B.8)

∂θ′

∂t
+ (u · ∇)θ′ = P−1

[
u1 +∇2θ′

]
. (B.9)
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If we set P = 0, the Eq. (B.8,B.9) becomes

∂u
∂t

+ (u · ∇)u = −∇σ +Rθ′ +∇2u (B.10)

0 = u1 +∇2θ′. (B.11)

B.2 Implementation (2D)
The expansion of velocity and temperature fields due to free slip boundary
condition:

u
(1)
j =

∑
m,ky

û
(1)
m,ky

2 sin
(
π
mjx
Nx

)
exp

(
2πi

jyky
Ny

)
,

u
(2)
j =

∑
ky

û
(2)
0,ky

exp
(

2πi
jyky
Ny

)
+
∑
m,ky

û
(2)
m,ky

2 cos
(
π
mjx
Nx

)
exp

(
2πi

jyky
Ny

)
,

θj =
∑
m,ky

θ̂m,ky
2 sin

(
π
mjx
Nx

)
exp

(
2πi

jyky
Ny

)
,

Arrays(N [1], N [2]) of size N [1]× (N [2]/2 + 1).
The equations in Fourier space are

∂u(1)

∂t
+ SFT [∂j(u(j)u(1))] = −σ +RPθ(m, ky) + PK2u(1) (B.12)

∂θ

∂t
+ (u · ∇)θ = u1 +∇2θ. (B.13)

Note that the derivative operators in SCFT are

SFT (∂xf) = −KxCFT (f)
CFT (∂xf) = KxSFT (f)
SFT (∂y,zf) = iKy,zSFT (f)
CFT (∂y,zf) = iKy,zCFT (f).

Note that Kx = mπ, Ky = kyk0, Kz = kzq.
The nonlinear terms are written as

SFT [∂j(u(j)u(1))] = −mπCFT [u(1)u(1)] + ikyk0SFT [u(2)u(1)]

CFT [∂j(u(j)u(2))] = mπSFT [u(1)u(2)] + ikyk0CFT [u(2)u(2)]

SFT [∂j(u(j)θ)] = −mπCFT [u(1)θ] + ikyk0SFT [u(2)θ]
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B.3 Implementation (3D)

u
(1)
j =

∑
m,k

û
(1)
m,k2 sin

(
π
mjx
Nx

)
exp

(
2πi

∑
s>1

jsks
Ns

)
,

u
(2)
j =

∑
k

û
(2)
0,k exp

(
2πi

∑
s>1

jsks
Ns

)
+
∑
m,k

û
(2)
m,k2 cos

(
π
mjx
Nx

)
exp

(
2πi

∑
s>1

jsks
Ns

)
,

u
(3)
j =

∑
k

û
(3)
0,k exp

(
2πi

∑
s>1

jsks
Ns

)
+
∑
m,k

û
(3)
m,k2 cos

(
π
mjx
Nx

)
exp

(
2πi

∑
s>1

jsks
Ns

)
,

θj =
∑
m,k

θ̂m,k2 sin
(
π
mjx
Nx

)
exp

(
2πi

∑
s>1

jsks
Ns

)
,

SFT [∂j(u(j)u(1))] = −mπCFT [u(1)u(1)] + ikyk0SFT [u(2)u(1)] + ikzqSFT [u(3)u(1)]

CFT [∂j(u(j)u(2))] = mπSFT [u(1)u(2)] + ikyk0CFT [u(2)u(2)] + ikzk0CFT [u(3)u(2)]

CFT [∂j(u(j)u(3))] = mπSFT [u(1)u(3)] + ikyk0CFT [u(2)u(3)] + ikzk0CFT [u(3)u(3)]

SFT [∂j(u(j)θ)] = −mπCFT [u(1)θ] + ikyk0SFT [u(2)θ] + ikzk0SFT [u(3)θ]

B.4 Magnetoconvection
For magnetic field we use the same boundary condition as the velocity field. So
the computation of nonlinear term for magnetic field will be on the same lines
as the velocity field.

SFT [∂j(Zm(j)Zp(1))] = −mπCFT [Zm(1)Zp(1)] + ikyk0SFT [Zm(2)Zp(1)] + ikzqSFT [Zm(3)Zp(1)]

CFT [∂j(Zm(j)Zp(2))] = mπSFT [Zm(1)Zp(2)] + ikyk0CFT [Zm(2)Zp(2)] + ikzk0CFT [Zm(3)Zp(2)]

CFT [∂j(Zm(j)Zp(3))] = mπSFT [Zm(1)Zp(3)] + ikyk0CFT [Zm(2)Zp(3)] + ikzk0CFT [Zm(3)Zp(3)]

SFT [∂j(u(j)θ)] = −mπCFT [u(1)θ] + ikyk0SFT [u(2)θ] + ikzk0SFT [u(3)θ]
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Appendix C

Design Issues

• Why do we choose dimensions using compiler directive?

• Why the first direction was chosen for Sin/Cos transform?
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Appendix D

Memory and Time
requirements

D.1 Fluid
• V(k), V(r) (D components each): The velocity field

• nlin(k) (D components): The nonlinear terms (U · ∇)U

• p(k) (1 component): The pressure field

• V F_temp(k) (1 component): Temporary field for velocity field operations

• Force(k) (D components): Force field for Temporary field for velocity
field operations.

• Vfrom(k) (D components): Energy Giver (useful for energy transfer func-
tion)

• temoET(k) (1 component): Temporary field for energy transfer functions.

• Miscelleneous

Therefore total memory requirement is

mem = (4D + 3)Π(N(i)).

For 5123 simulation, the requirement in 3D is 15 GB for double precision. In
2D for 10242 runs, the requriment is 11× 8 = 88 MB, rather small.

D.2 Passive Scalar and RB Convection
• V(k), V(r) (D components each): The velocity field
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• nlin(k) (D components): The nonlinear terms (U · ∇)U

• p(k) (1 component): The pressure field

• V F_temp(k) (1 component): Temporary field for velocity field operations

• Force(k) (D components): Force field for the velocity field

• Vfrom(k) (D components): Energy Giver (useful for energy transfer func-
tion)

• temoET(k) (1 component): Temporary field for energy transfer functions.

• F (k) (1 component): Scalar field

• SF_temp(k) (1 component): Temporary field for the scalar field opera-
tions

• Force(k) (1 component): Force field for the scalar field.

• Miscelleneous

Therefore total memory requirement is

mem = (4D + 6)Π(N(i)).

For 5123 simulation, the requirement in 3D is 18 GB for double precision. In
2D for 10242 runs, the requriment is 11× 8 = 88 MB, rather small.

D.3 MHD
The memorey requirement for MHD is twice of fluid because we create two
IncVF in this simulation. For 5123, the requirement will be 30 GB.

D.4 Magnetoconvection
Here we have 2 IncVF and 1 IncSF. For 5123, the requirement will be 33 GB.
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Appendix E

Caution

1. Compute ∇.V in the beginning of the loop. It uses F field that is reserved
for the pressure field. So the divergence computation must be done before
the pressure computation starts.

2. The output functions calls should not be moved. They require the state of
the variables at that point. Specifically, output_global needs the current
state of nlin.
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