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Hierarchical Financial Structures
with Money Cascade
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Abstract In this paper we show similarities between turbulence and financial
systems. Motivated by similarities between the two systems, we construct a mul-
tiscale model for hierarchical financial structures that exhibits a constant cascade
of wealth from large financial entities to small financial entities. According to our
model, large and intermediate scale financial institutions have a power law distribu-
tion. However, it exhibits Maxwellian distribution at individual scales.

Introduction

A financial system is quite complex due to its multiscale and time-dependent nature.
Its complexity is accentuated by features such as saving, banking, corruption, stock-
market, natural calamities, etc. Despite such complicated structures, scientists have
attempted to model a financial systems using simple ideas. One of the leading ques-
tions in this field is how to model the wealth and income distributions of individuals
and companies [1]. In this paper we will address this question.

Earlier models of income distribution of individuals are motivated by equilibrium
statistical mechanics. In such models, individuals are mapped to particles in a ther-
modynamic system, and economic activities to scattering among particles. Following
this analogy, it is expected that the income distribution follows Maxwellian or Gibbs
distribution, similar to the distribution of kinetic energy in a gas container.

The above distribution however holds only for low income groups. Pareto [2] and
others showed that the individual income in a large income group exhibits power law
distribution. There have been many attempts to model this power law distribution
using nonequilibrium nature of the system. See Chakrabarti et al. [1] and references
there in.

In a financial system, wealth cascades from large financial entities to smaller
ones. This cascade is somewhat similar to the cascade of kinetic energy in a turbu-
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lent system. In addition, a well-developed financial system contains income groups
with a wide range of distribution. Also, note that these income groups interact with
each other. Motivated by the above similarities between turbulence and finance, we
construct a model for a hierarchical financial system which is quite similar to Kol-
mogorov’s model for α turbulent flow.

The structure of the paper is as follows: In section “Equilibrium Model”, we
describe a generic equilibrium model of a financial system. Section “Multiscale
Model of Turbulence” contains a brief description of Kolmogorov’s model for turbu-
lence. In section “A Model of Hierarchical Financial Entities” we construct a model
for hierarchical financial system; this model is analogous to the Kolmogorov’s model
of turbulence. We conclude in section “Discussions and Conclusion”.

Equilibrium Model

In this section, we describe an equilibrium model of wealth distribution [3]. Before
that we discuss thermodynamics of an isolated gas reservoir in which gas molecules
interact with each other via collisions. Under thermodynamic approximation, all the
molecules in the gas have approximate equal energy. The variation in the energy of
the molecules is given by Maxwell or Gibbs distribution [4]:

P(E) = exp(−E/kBT ) (5.1)

where E = mv2/2 is the kinetic energy of amolecule ofmassm, and kBT =
〈
mv2

〉
/2

is the average kinetic energy of all the molecules. Note that this system has a single
energy scale kBT . Also, the system is in equilibrium, and it obeys principle of detailed
energy balance. As a result, there is no energy transfer from one region to another,
both in real and Fourier space.

Now we are ready to describe an equilibrium model of wealth distribution [1, 3].
In the past, several researchers have shown connections between economic systems
and equilibrium thermodynamics (e.g., a gas reservoir described above) [3]. The
individuals or economic entities are analogous to the gas molecules, and wealth to
the kinetic energy of the molecules. Refer to Table 5.1 for a detailed comparison.
Using this analogy, researchers deduced that the wealth distribution P(W ) in an
economy follows Maxwell or Gibbs distribution:

P(W ) = exp(−W/ ⟨W ⟩), (5.2)

where ⟨W ⟩ is the average individual wealth in the economic system. More refined
models yield log-normal distribution [1].



5 Hierarchical Financial Structures with Money Cascade 63

Table 5.1 Analogies
between an equilibrium
economic model and a
thermodynamic system

Thermodynamics Economics

Thermodynamic system Economy

Gas molecules Economic entities
(individuals)

Individual kinetic energy Individual wealth

Collisions Economic interactions

Average kinetic energy Average wealth

Fig. 5.1 Kolmogorov’s
picture of hydrodynamic
turbulence. The flow is
forced at large scale with an
energy injection rate of FLS.
a The energy flux is constant
in the inertial range, and it
decays in the dissipative
range. Flux is zero in the
thermodynamic range. b The
energy spectrum exhibits
k−5/3 spectrum in the inertial
range. In the thermodynamic
range, the molecules of the
fluid exhibit Maxwellian
distribution (black curve)

(a)

(b)

Multiscale Model of Turbulence

Many nonequilibrium systems have properties very different from that of the gas
reservoir described above [5]. For example, consider a turbulent fluid stirred at large
length scaless. The kinetic energy at large scales cascades to intermediate scale,
and then to small scales. The kinetic energy flux Πu is constant in the inertial
range, and then it decreases in the dissipation range. Due to the energy cascade,
principle of detailed balance is broken in such a system. The energy flux is zero
at microscopic scale where we expect thermodynamic principles to hold. This is
Kolmogorov’s picture of hydrodynamic turbulence [6–9]. See Fig. 5.1 for an illus-
tration of the energy flux and energy spectrum.

The energy spectrum Eu(k) of a turbulent flow has been derived using dimension
analysis. Using
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[Eu(k)] = [Eu/k] = [L3/T 2]; [Πu] = [Eu/T ] = [L2/T 3]; [k] = [L]−1, (5.3)

we derive the following formula for the kinetic energy spectrum:

Eu(k) = KKoϵ
2/3
u k−5/3, (5.4)

where KKo is Kolmogorov’s constant, and ϵu is the kinetic energy dissipation rate.
Pao [10] extended the above formula to the dissipation range, and obtained

Πu(k) = ϵuexp
(

−3
2
KKo(k/kd)4/3

)
, (5.5)

Eu(k) = KKoϵ
2/3
u k−5/3 exp

(
−3
2
KKo(k/kd)4/3

)
, (5.6)

where kd is Kolmogorov’s wavenumber [11]. The fluid kinetic energy vanishes
beyond the dissipation range, i.e., for k > kd . The above function describes the
inertial and dissipative ranges (blue and red curves of Fig. 5.1) quite well. We expect
thermodynamic ideas to work beyond this scale. The energy of the molecules would
follow Maxwell’s or Gibbs’ distribution, as shown by the black curve of Fig. 5.1b.

Shell model is a popular model of hydrodynamic turbulence. In one version of
the shell model, called GOY shell model of turbulence,

d
dt

un + νk2nun = −i(a1knu∗
n+1u

∗
n+2 + a2kn−1u∗

n+1u
∗
n−1 + a3kn−2u∗

n−1u
∗
n−2), (5.7)

whereun is a complex number representing the velocity field at length scale kn = 2n ,
a1, a2, a3 are constants, and ν is the kinematic viscosity [12]. In the shell model, the
kinetic energy follows

E(kn) =
|un|2
2kn

∼ k−5/3
n , (5.8)

in accordance with Kolmogorov’s theory of turbulence. Our finance model has a
similar form as the above shell model, as we will describe in the next section.

AModel of Hierarchical Financial Entities

We construct a model for a hierarchical finance system in a similar lines as
Kolmogorov’s picture for hydrodynamic turbulence. In this model, we assume that
the wealth is generated at the largest scale, and then it flows from larger financial
structures to smaller structures in a steady manner. We also assume that the financial
entities of similar sizes interact with each other. This is similar to the local interac-
tions in turbulence. In addition, in the absence of financial pilferage, we expect the
cascade of money from large structures to smaller structures to be a constant. This
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Fig. 5.2 In a hierarchical
finance model, a the flux of
money Πm(k), and b the
wealth distribution of
financial entities. The large
and medium economic
entities have constant money
flux and power law
distribution of wealth. Small
economic entities exhibit
exponential distribution,
while the thermodynamic
range exhibits Maxwellian
wealth distribution and zero
money flux

(a)

(b)

Table 5.2 Analogies between turbulence and hierarchical financial system
Turbulence Financial system

Fluid structures Financial entities

Multiscale Multiscale

kinetic energy of a structure Wealth of a financial entity

Constant energy flux Constant money supply

Power law Eu(k) at intermediate scales Power law for large income entities

Exponential Eu(k) at small scales Expect similar scaling

Random motion beyond kd Gibbs distribution at individual scale

is same as the assumption of constant energy cascade in hydrodynamic turbulence.
See Fig. 5.2 for an illustration, and Table 5.2 for a listing of similarities between a
turbulent system and a hierarchical financial system.

We place these financial entities in a two-dimensional wavenumber grid.1 Let us
denote the financial asset of a financial entity at the wavenumber k as W (k). The
number of mesh points on a 2D disc of radius k is

1Dimensionality of a hierarchical financial system is an undetermined parameter. Here we choose
d = 2 using an observation that these structures reside on the surface of the Earth.
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n(k) = 2πk. (5.9)

We solve for the wealth distribution as a function of n. To illustrate, there are fewer
financial entities at small k, corresponding to financial giants (e.g. Google and Apple
of today). Large number of modes at large k correspond to small units like small
companies or individuals.

Motivated by the shell model of turbulence, we construct the following model for
the hierarchical financial entities:

dWk

dt
= akαWk−1Wk+1 − bkβWk + Qk,1, (5.10)

where a, b,α and β are constants, and Wk is analogous to the shell spectrum in
turbulence. Hence,

Wk = 2πkW (k). (5.11)

In Eq. (5.10), the first term in the RHS represents the interactions among financial
entities at scales k, k − 1 and k + 1, while the second term represents financial losses
at scale k (e.g., recurring expenses, electricity bills). The third term Qk,1 represents
the wealth generation at the largest scale, k = 1.

This is a very simple model because it ignores nonlocal interactions, as well as
other complex things like loans, savings, banks, generation of wealth at the interme-
diate and small scales, etc. Further, we assume a steady state in which money flows
from larger structures to smaller structures. The wealth is finally consumed at the
smallest structures of the system.

First, we focus on the large and intermediate scale where we expect a power law
scaling. We also assume that the financial losses at these scales are negligible. Under
a steady state,

Π = dWk

dt
∼ kαW 2

k , (5.12)

where Π is the cascade of money. We invert Eq. (5.12) that yields

Wk ∼ Π1/2k−α/2. (5.13)

Now using Eqs. (5.9, 5.11), we obtain

n(W ) ∼ Π
1

α+2 W− 2
α+2 , (5.14)

wherewewriteW (k) asW . The above formula yields the number of financial entities
n(W ) with wealth W . Clearly, α = −1 gives

n(W ) ∼ ΠW−2, (5.15)
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Fig. 5.3 Plot of wealth
distribution n(W ) versus W
that indicates number of
financial entities with
wealth W

which is similar to the Pareto’s law for the wealth distribution [1, 2] of the large
financial entities. Note however that the exponent depends quite crucially on the
choice of α. In Fig. 5.3, we exhibit the inverted form of Fig. 5.9b, or the plot of
wealth distribution n(W ) versus W .

The wealth cascades down to smaller scales, and it finally gets consumed at the
dissipation scales (individual level). It could be in the form of consumption of food
and basic needs. Following the popular equilibriummodel [3], thewealth distribution
at this scale follows Maxwellian or Gibbs distribution. We also expect an income
group between the power law regime and the Gibbs distribution. This regime may
follow a law similar to that Pao’s model for turbulence, which was discussed in
section “Multiscale Model of Turbulence”.

Several cautionary remarks are in order. Our model describes the wealth of finan-
cial entities. Pareto’s law however is stated for individual incomes. In free market, a
financial entity is essentially owned or controlled by several individuals or a group
of individuals. Therefore, it is reasonable to assume that the wealth distribution of
financial entities also reflects the wealth or income distribution of individuals. Also,
a large financial entity contains smaller entities, thus forming hierarchical structures.

A corollary to the abovemodel is as follows. Let us consider finance distribution in
a country. The central government transfers resources to various stateswhodistributes
it to lower levels in a hierarchical manner, e.g.,

states → districts → villages. (5.16)

Following the same line of arguments as before,wededuce that thefinancial resources
at hierarchical level must be a power law. If there is no corruption, then the money
supply at different levels is constant.

The above model is very simple. It ignores many important ingredients such as
savings, stocks, banking, pilferage of wealth, nonlocal interactions, etc. This model
however has certain novelty. It emphasises on multiscale nature of financial systems,
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cascade of money at different scales, and nonequilibrium nature of the financial
system.

Discussions and Conclusion

Our finance model, though simple, captures multiscale economic transaction among
financial entities and explains coexistence of power law andMaxwellian distribution
for the wealth [1]. The model has other predictions as well. Note that the model has
a free parameter α. The present multiscale model has many assumptions that need to
be studied in detail for applicability in real financial system. For example, we need
to include savings, banking, variable energy flux, etc. in a more refined model. In
addition, we need to contrast the present model with the existing financial models,
some of which are described in [1, 13–15].

A small financial system without hierarchy may exhibit detailed balance and
Maxwellian distribution for the wealth distribution. As soon as a financial system
becomes sufficiently large and it follows a free-market economy, we expect wealth
inequalities to develop based on individual abilities and ambitions. Such a system
will exhibit power law distribution. Strong economic regulations may suppress the
inequality and make the power law shallower.

We believe that the finance model presented here shed important insights into
financial systems. Yet, it is a preliminary model and it needs more work and refine-
ments.
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