
PRAMANA c© Indian Academy of Sciences Vol. 81, No. 4
— journal of October 2013

physics pp. 617–629

Benchmarking and scaling studies of pseudospectral code
Tarang for turbulence simulations

MAHENDRA K VERMA1,∗, ANANDO CHATTERJEE1,
K SANDEEP REDDY2, RAKESH K YADAV1, SUPRIYO PAUL3,
MANI CHANDRA1 and RAVI SAMTANEY4

1Department of Physics; 2Department of Mechanical Engineering, Indian Institute of Technology
Kanpur, Kanpur 208 016, India
3Computational Fluid Dynamics Team, Centre for Development of Advanced Computing,
Pune 411 007, India
4Department of Mechanical Engineering, King Abdullah University of Science and Technology,
Thuwal 23955-6900, Saudi Arabia
∗Corresponding author. E-mail: mkv@iitk.ac.in

MS received 12 April 2013; accepted 13 June 2013
DOI: 10.1007/s12043-013-0594-4; ePublication: 21 September 2013

Abstract. Tarang is a general-purpose pseudospectral parallel code for simulating flows involv-
ing fluids, magnetohydrodynamics, and Rayleigh–Bénard convection in turbulence and instability
regimes. In this paper we present code validation and benchmarking results of Tarang. We per-
formed our simulations on 10243, 20483, and 40963 grids using the HPC system of IIT Kanpur and
Shaheen of KAUST. We observe good ‘weak’ and ‘strong’ scaling for Tarang on these systems.

Keywords. Pseudospectral method; direct numerical simulations; high-performance computing.

PACS Nos 47.27.ek; 47.11.Kb; 47.27.E−

1. Introduction

A typical fluid flow is random or chaotic in the turbulent and instability regimes. There-
fore, we need to employ accurate numerical schemes for simulating such flows. A
pseudospectral algorithm [1,2] is one of the most accurate methods for solving fluid flows,
and it is employed for performing direct numerical simulations of turbulent flows, as well
as for critical applications like weather predictions and climate modelling. Yokokawa
et al [3,4], Donzis et al [5], and Pouquet et al [6] have performed spectral simulations on
some of the largest grids (e.g., 40963).

We have developed a general-purpose flow solver named Tarang (synonym for waves
in Sanskrit) for turbulence and instability studies. Tarang is a parallel and modular code
written in the object-oriented language C++. Using Tarang, we can solve incompress-
ible flows involving pure fluid, Rayleigh–Bénard convection, passive and active scalars,

Pramana – J. Phys., Vol. 81, No. 4, October 2013 617



Mahendra K Verma et al

magnetohydrodynamics, liquid metals, etc. Tarang is an open-source code and it can be
downloaded from http://turbulence.phy.iitk.ac.in. In this paper we shall describe some
details of the code, scaling results, and code validation performed on Tarang.

2. Salient features of Tarang

The basic steps of Tarang follow the standard procedure of pseudospectral method [1,2].
However, we took several design decisions that help us scale the code, as well as solve
large range of problems. Some of the design issues considered by us are:

(a) We chose an object-oriented structure for Tarang with C++ as the programing
language. The modularity of the code helps us introduce new solvers very easily.
Also, the basic functions, e.g., transforms, input–output, could be changed without
affecting the other parts of the code. As a result, we have more than a dozen modules
implemented in Tarang.

(b) Grids as large as 40963 take huge memory space. So, researchers have attempted
to use single-precision calculations rather than double-precision calculations to save
memory. Tarang allows the users to use single/double precision using a simple
switch. In the present paper, we present our results for single precision. Note however
that the results of single-precision and double-precision calculations are very similar
(within a percent), and are consistent with the results of Yokokawa et al [3,4].

The basic numerical structure of Tarang follows standard pseudospectral algorithm.
The Navier–Stokes and related equations are numerically solved given an initial condi-
tion of the fields. The fields are time-stepped using one of the time integrators. The
nonlinear terms, e.g. u · ∇u, transform to convolutions in the spectral space, which are
very expensive to compute. Orszag devised a clever scheme to compute the convolution
in an efficient manner using fast Fourier transforms (FFT) [1,2]. In this scheme, the fields
are transformed from the Fourier space to the real space, multiplied with each other, and
then transformed back to the Fourier space. Note that the spectral transforms can involve
Fourier functions, sines and cosines, Chebyshev polynomials, spherical harmonics, or a
combination of these functions depending on the boundary conditions. For details, the
reader is referred to Boyd [1] and Canuto et al [2]. Some of the specific algorithmic
choices made in Tarang are as follows:

(a) In the turbulent regime, the two relevant time-scales, the large-eddy turnover time and
the small-scale viscous time, are very different (orders of magnitude apart). To handle
this, we use the ‘exponential trick’ that absorbs the viscous term using a change of
variable [2].

(b) We use the fourth-order Runge–Kutta scheme for time stepping. The code however
has an option to use the Euler and the second-order Runge–Kutta schemes as well.

(c) The code provides an option for dealiasing the fields. The 3/2 rule is used for
dealiasing [2].

(d) The wavenumber components ki are

ki = 2π

Li
ni , (1)

618 Pramana – J. Phys., Vol. 81, No. 4, October 2013

http://turbulence.phy.iitk.ac.in


Benchmarking and scaling studies of pseudospectral code Tarang

where Li is the box dimension in the i th direction and ni is an integer. We use
parameters

kfactori = 2π

Li
(2)

to control the box size, especially for Rayleigh–Bénard convection. Note that typical
spectral codes take kfactori = 1 or ki = ni .

The parallel implementation of Tarang involved parallelization of the spectral trans-
forms and the input–output operations, as described below.

3. Parallelization strategy

A pseudospectral code involves forward and inverse transforms between the spectral
and real space. In a typical pseudospectral code, these operations take ∼80% of the
total time. Therefore, we use one of the most efficient parallel FFT routines, FFTW
(fastest Fourier transform in the west) [7], in Tarang. We adopt FFTW’s strategy for
dividing the arrays. If p is the number of available processors, we divide each of the
arrays into p ‘slabs’. For example, a complex array A(N1, N2, N3/2 + 1) is split into
A(N1/p, N2, N3/2 + 1) segments, each of which is handled by a single processor. This
division is called ‘slab decomposition’. The other time-consuming tasks in Tarang are
the input and output (I/O) operations of large datasets and the element-by-element mul-
tiplication of arrays. The datasets in Tarang are massive, for example, the data size of
a 40963 fluid simulation is of the order of 1.5 terabytes. For I/O operations, we use an
efficient and parallel library named hierarchical data format-5 (HDF5). The third opera-
tion, element-by-element multiplication of arrays, is handled by individual processors in
a straightforward manner.

Tarang has been organized in a modular fashion, and so the spectral transforms and
I/O operations were easily parallelized. For a periodic box, we use the parallel FFTW
library itself. However, for the mixed transforms (e.g., sine transform along x and Fourier
transform along yz planes), we parallelize the transforms ourselves using one- and two-
dimensional FFTW transforms.

An important aspect of any parallel simulation code is its scalability. We tested the
scaling of FFTW and Tarang by performing simulations on 10243, 20483, and 40963

grids with variable number of processors. The simulations were performed on the
HPC system of IIT Kanpur and Shaheen supercomputer of King Abdullah University of
Science and Technology (KAUST). The HPC system has 368 compute nodes connected
via a 40 Gbps Qlogic Infiniband switch with each node containing dual Intel Xeon Quad-
core C5570 processor and 48GB of RAM. Its peak performance (Rpeak) is ∼34 teraflops
(tera floating point operations per second). Shaheen on the other hand is a 16-rack
IBM BlueGene/P system with 65536 cores and 65536 GB of RAM. Shaheen’s peak
performance is ∼222 teraflops.

For parallel FFT with slab decomposition, we compute the time taken per step
(forward+backward transform) on Shaheen for several large N 3 grids. The results

Pramana – J. Phys., Vol. 81, No. 4, October 2013 619



Mahendra K Verma et al

102 103

100

101

102

No. of processors

T
im

e/
S

te
p

10243

40963

20483

Figure 1. Scaling of parallel FFT on Shaheen for 10243, 20483, and 40963 grids with
single-precision computation. The straight lines represent the ideal linear scaling.

displayed in figure 1 demonstrate an approximate linear scaling (called ‘strong scal-
ing’). Using the fact that each forward plus inverse FFT involves 5N 3 log N 3 opera-
tions for single-precision computations [7], the average FFT performance per core on
Shaheen is ∼0.3 gigaflops, which is only 8% of its peak performance. Similar effi-
ciency is observed for the HPC system as well, the cores of which have a rating of
∼12 gigaflops. The aforementioned loss of efficiency is consistent with the other FFT
libraries, e.g, p3dfft [8]. Also note that an increase in the data size and the number of pro-
cessors (resources) by the same amount takes approximately the same time (see figure 1).
For example, FFT of a 10243 array using 128 processors, as well as that of a 20483 array
on 1024 processors, takes ∼4 s as shown in table 1. Thus, our implementation of FFT
shows good ‘weak scaling’ as well.

We also test the scaling of Tarang on Shaheen and the HPC system. Figures 2 and 3
exhibit the scaling results of fluid simulations performed on these systems. Figure 4
shows the scaling results for magnetohydrodynamics (MHD) simulation on Shaheen.
These plots demonstrate strong scaling of Tarang, consistent with the aforementioned FFT

Table 1. Weak scaling of FFT using slab decomposition performed on Shaheen.

Grid size No. of processors Time/step (s) % Loss

10243 128 3.99
20483 1024 4.62 15.79

20483 512 7.89
40963 4096 10.28 30.29

620 Pramana – J. Phys., Vol. 81, No. 4, October 2013



Benchmarking and scaling studies of pseudospectral code Tarang

102 103

102

103

No. of processors

T
Im

e/
S

te
p

10243

20483

Figure 2. Scaling of Tarang’s fluid solver on Shaheen for 10243 and 20483 grids with
single-precision computation. The straight lines represent the ideal linear scaling.

scaling. Sometimes we observe a small loss of efficiency when N = p. Approximate
weak scaling for the fluid turbulence solver of Tarang performed on both Shaheen and the
HPC system are shown in table 2 and table 3 respectively. Approximate weak scaling for
MHD solver of Tarang performed on Shaheen is shown in table 4.

A critical limitation of the ‘slab decomposition’ is that the number of processors
cannot be more than N1. This limitation can be overcome in a new scheme called
‘pencil decomposition’ in which the array A(N1, N2, N3/2 + 1) is split into

102 103

101

102

No. of processors

T
im

e/
S

te
p 10243

4096320483

Figure 3. Scaling of Tarang’s fluid solver on the HPC system of IIT Kanpur for 10243,
20483, and 40963 grids with single-precision computation. The straight lines represent
the ideal linear scaling.

Pramana – J. Phys., Vol. 81, No. 4, October 2013 621



Mahendra K Verma et al

102 103

102

No. of processors

T
im

e/
S

te
p

10243

20483

Figure 4. Scaling of Tarang’s magnetohydrodynamic (MHD) solver on Shaheen for
10243 and 20483 grids with single-precision computation. The straight lines represent
the ideal linear scaling.

Table 2. Weak scaling of the fluid solver of Tarang performed on Shaheen.

Grid size No. of processors Time/step (s) % Loss

10243 64 270.00
20483 512 360.17 33.39

Table 3. Weak scaling of the fluid solver of Tarang performed on HPC system.

Grid size No. of processors Time/step (s) % Loss

10243 64 72.70
20483 512 81.56 12.19

20483 256 153.93
40963 2048 184.88 16.74

Table 4. Weak scaling of the MHD solver of Tarang performed on Shaheen.

Grid size No. of processors Time/step (s) % Loss

10243 128 266.08
20483 1024 294.99 10.86

10243 256 153.04
20483 2048 170.16 11.18

622 Pramana – J. Phys., Vol. 81, No. 4, October 2013



Benchmarking and scaling studies of pseudospectral code Tarang

A(N1/p1, N2/p2, N3/2+1) pencils where the total number of processors p = p1×p2 [8].
We are in the process of implementing ‘pencil decomposition’ on Tarang. In this paper
we shall focus only on the ‘slab decomposition’.

After the above discussion on parallelization of the code, we shall discuss code
validation, and time and space complexities for simulations of fluid turbulence, Rayleigh–
Bénard convection, and magnetohydrodynamic turbulence.

4. Fluid turbulence

The governing equations for incompressible fluid turbulence are

∂t u + (u · ∇)u = −∇ p + ν∇2u + Fu, (3)

∇ · u = 0, (4)

where u is the velocity field, p is the pressure field, ν is the kinematic viscosity, and Fu

is the external forcing. For studies on homogeneous and isotropic turbulence, simulations
are performed on high-resolution grids (e.g., 20483, 40963) with a periodic boundary con-
dition. The resolution requirement is stringent due to N ∼ Re3/4 relation; for Re = 105,
the required grid resolution is ∼ 56003, which is quite challenging even for modern
supercomputers.

Regarding the space complexity of a forced fluid turbulence simulation, Tarang requires
15 arrays (for u(k), u(r), Fu(k), nlin(k), and three temporary arrays), which translates to
∼120 gigabytes (8 terabytes) of memory for 10243 (40963) double-precision computa-
tions. Here k and r represent the wavenumbers and the real space coordinates respectively.
The requirement is halved for a simulation with single precision. Regarding the time
requirement, each numerical step of the fourth-order Runge–Kutta (RK4) scheme requires
9 × 4 FFT operations. The factor 9 is due to the three inverse and six forward transforms
performed for each of the four RK4 iterates. Therefore, for every time-step, all the FFT
operations require 36 × 2.5 × N 3 log2(N 3) multiplications for a single-precision simula-
tion [7], which translates to ∼2.9 (185) terafloating-point operations for 10243 (40963)
grids. The number of operations for double-precision computation is twice that of the
above estimate. On 128 processors on HPC system, a fluid simulation with single preci-
sion takes ∼36 s (see figure 3), which corresponds to a per core performance of ∼0.68
gigaflops. This is only 6% of the peak performance of the cores, which is consistent with
the efficiency of FFT operations discussed in §3. Also note that the solver also involves
other operations, e.g., element-by-element array multiplication, but these operations take
only a small fraction of the total time.

We can also estimate the total time required to perform a 40963 fluid simulation. A
typical fluid turbulence would require five eddy turnover time with dt ≈ 5 × 10−4, which
corresponds to 104 time-steps for the simulations. So the total floating point operations
required for this single-precision simulation is 185 × 104 terafloating-point operations
for the FFT itself. Assuming 5% efficiency for FFT, and FFTs share being 80% of
the total time, the aforementioned fluid simulation will take ∼128 h on a 100 teraflop
cluster.

Pramana – J. Phys., Vol. 81, No. 4, October 2013 623



Mahendra K Verma et al

101 102 103
10-2

10-1

100

101

102

103

104

105

n=3
n=5
n=7
n=9

4/5

Figure 5. Plots of the normalized odd-order structure functions −S‖
n (r)/(εr)n/3 vs.

r/η for a fluid simulation using Tarang. Here ε is the energy flux and η is the
Kolmogorov scale.

We perform code validation of the fluid solver using Kolmogorov’s theory for the third-
order structure function [9], according to which

S‖
3(r) = 〈{u‖(x + r) − u‖(x)}3〉 = −4

5
εr, (5)

where ε is the energy flux in the inertial range and 〈· · ·〉 represents ensemble averaging
(here spatial averaging). We compute the structure function S‖

3(r), as well as S‖
5(r), S‖

7(r),
and S‖

9(r) for the steady-state dataset of a fluid simulation on a 10243 grid. The computed
values of S‖

q (r) are illustrated in figure 5 that shows a good agreement with Kolmogorov’s
theory.

After the discussion on fluid solver, we move on to the module for solving Rayleigh–
Bénard convection.

5. Rayleigh–Bénard convection

Rayleigh–Bénard convection (RBC) is an idealized model of convection in which fluid
is confined between two plates that are separated by a distance d, and are maintained at
temperatures T0 and T0 −�. The equations for the fluid under Boussinesq approximations
are

∂t u + (u · ∇)u = −∇σ

ρ0
+ αgθ ẑ + ν∇2u, (6)

∂tθ + (u · ∇)θ = �

d
uz + κ∇2θ, (7)

∇ · u = 0, (8)

where θ is the temperature fluctuation (T = Tc + θ with Tc as the conduction temperature
profile), σ is the pressure fluctuations from the steady conduction state, ẑ is the buoyancy
direction, � is the temperature difference between the two plates, ν is the kinematic

624 Pramana – J. Phys., Vol. 81, No. 4, October 2013



Benchmarking and scaling studies of pseudospectral code Tarang

viscosity, and κ is the thermal diffusivity. We solve the nondimensionalized equations,
which are obtained using d as the length scale, κ/d as the velocity scale, and � as the
temperature scale:

∂u
∂t

+ (u · ∇)u = −∇σ + Ra Pr θ ẑ + Pr ∇2u, (9)

∂θ

∂t
+ (u · ∇)θ = u3 + ∇2θ. (10)

Here the two important nondimensional parameters are the Rayleigh number Ra =
αg�d3/νκ and the Prandtl number Pr = ν/κ . At present, we can apply the free-slip
boundary condition for the velocity fields at the horizontal plates, i.e.,

u3 = ∂zu1 = ∂zu2 = 0, for z = 0, 1, (11)

and isothermal boundary condition on the horizontal plates

θ = 0, for z = 0, 1. (12)

Periodic boundary conditions are applied to the vertical boundaries. Note that the free-slip
boundary condition is not as common as no-slip boundary condition, still it is quite useful
in many situations, e.g., the upper layer of the atmosphere, flow involving two immiscible
liquid, etc.

The number of arrays required for a RBC simulation is 18 (15 for fluids plus three for
θ(k), θ(r), nlinθ ). Thus, the memory requirement for RBC is (18/15) times that for the
fluid simulation. Regarding the time complexity, the number of FFT operations required
per time-step is 13 × 4 FFT operations (4 inverse + 9 forward transforms per RK4 step).
As a result, the total time requirement for a RBC simulation is (13/9) times the respective
fluid simulation.

For code validation of Tarang’s RBC solver, we compare the Nusselt number Nu =
1+〈u3θ〉 computed using Tarang with that computed by Thual [10] for a two-dimensional
simulation with the free-slip boundary condition. The analysis is performed for the
steady-state dataset. The comparative results shown in table 5 illustrate excellent

Table 5. Verification of Tarang against Thual’s [10] 2D RBC simulations. We com-
pare Nusselt numbers (Nu) computed in our simulations on a 642 grid against Thual’s
simulations on 162 (THU1), 322 (THU2), and 642 (THU3) grids. All Nu values
tabulated here are for Pr = 6.8.

r THU1 THU2 THU3 Tarang

2 2.142 – – 2.142
3 2.678 – – 2.678
4 3.040 3.040 – 3.040
6 3.553 3.553 – 3.553

10 4.247 4.244 – 4.243
20 5.363 5.333 5.333 5.333
30 6.173 6.105 6.105 6.105
40 6.848 6.742 6.740 6.740
50 7.441 7.298 7.295 7.295

Pramana – J. Phys., Vol. 81, No. 4, October 2013 625



Mahendra K Verma et al

agreement between the two runs. We also compute the Nusselt number for a three-
dimensional flow with Pr = 6.8 and observe that Nu = (0.27 ± 0.04)(PrRa)0.27±0.01

[11], which is in good agreement with earlier experimental and numerical results.
Using the RBC module of Tarang, we also studied the energy spectra and fluxes of

the velocity and temperature fields [12], the Nusselt number scaling [11], and chaos and
bifurcations near the onset of convection [13,14].

In the next section we shall discuss the results of the MHD module of Tarang.

6. Magnetohydrodynamic turbulence and dynamo

The equations for the incompressible MHD turbulence [15] are

∂t u + (u · ∇)u = −∇ p + (B · ∇)B + ν∇2u + Fu, (13)

∂t B + (u · ∇)B = (B · ∇)u + η∇2B + FB, (14)

∇ · u = ∇ · B = 0, (15)

where u, B, and p are the velocity, magnetic, and pressure (thermal+magnetic) fields
respectively, ν is the kinematic viscosity, and η is the magnetic diffusivity. The Fu and FB

are the external forcing terms for the velocity and magnetic fields respectively. Typically,
FB = 0, but Tarang implements FB for generality. The magnetic field B can be separated
into its mean B0 and fluctuations b: B = B0 + b. The number of nonlinear terms in the
above equations is four whose computation requires 27 FFTs. However, the number of
FFT computations in terms of the Elsasser variables z± = u ± b is only 15, thus saving
significant computing time. We use the relations

(u · ∇)u − (B · ∇)B = (z− · ∇)z+ + (z+ · ∇)z−, (16)

(u · ∇)B − (B · ∇)u = (z− · ∇)z+ − (z+ · ∇)z− (17)

to compute the nonlinear terms. Thus, the time requirement for a MHD simulation would
be around 15/9 times that for the fluid simulation. In figure 4 we plot the time taken
per step for different sets of processors on Shaheen. The results are consistent with the
above estimates. Regarding the space complexity, an MHD simulation requires 27 arrays
for storing u(k), B(k), B(r), u(r), Fu(k), FB(k), nlinu(k), nlinB(k), and three temporary
fields. Hence, the memory requirement for a MHD simulation is 27/15 times that of a
fluid simulation.

We perform code validation of Tarang’s MHD module using the results of Breyiannis
and Valougeorgis’s [16] lattice kinetic simulations of three-dimensional decaying MHD.
Following Breyiannis and Valougeorgis, we solve the MHD equations inside a cube with
periodic boundary conditions on all directions, and with a Taylor–Green vortex (given
below) as an initial condition,

u = [sin(x) cos(y) cos(z),− cos(x) sin(y) cos(z), 0], (18)

B = [sin(x) sin(y) cos(z), cos(x) cos(y) cos(z), 0]. (19)

This Taylor–Green vortex is then allowed to evolve freely. The simulation box is dis-
cretized using 323 grid points.

626 Pramana – J. Phys., Vol. 81, No. 4, October 2013



Benchmarking and scaling studies of pseudospectral code Tarang

The results of this test case for different parameter values (ν = η = 0.01, 0.05, 0.1) are
presented in figure 6. The top and bottom panels exhibit the time evolution of the total
kinetic and magnetic energies respectively. Tarang’s datapoints, illustrated using blue
dots, are in excellent agreement with Breyiannis and Valougeorgis’ results [16], which is
represented by solid lines. We thus verify the MHD module of Tarang.

We have used Tarang to perform extensive simulations of dynamo transition under the
Taylor–Green forcing [17,18]. Using Tarang, we have also computed the magnetic and

0 1 2 3 4 5
0

0.02

0.04

0.06

0.08

0.1

0.12

Time

K
in

et
ic

E
n

er
g

y

Breyiannis and Valougeorgis
Tarang

0 1 2 3 4 5
0

0.05

0.1

0.15

Time

M
ag

n
et

ic
E

n
er

g
y

Breyiannis and Valougeorgis
Tarang

(a)

(b)

Figure 6. Time evolution of total kinetic energy (a) and total magnetic energy (b) for
a decaying MHD simulation with Taylor–Green vortex as an initial condition. Blue
dots are Tarang’s datapoints, while the solid lines are the lattice simulation results of
Breyiannis and Valougeorgis [16]. The three different curves reported here are for
ν = η = 0.01, 0.05, 0.1 from top to bottom.

Pramana – J. Phys., Vol. 81, No. 4, October 2013 627



Mahendra K Verma et al

kinetic energy spectra, various energy fluxes [15], and shell-to-shell energy transfers for
MHD turbulence; these results would be presented in a subsequent paper.

In addition to the fluid, MHD, and Rayleigh–Bénard convection solvers, Tarang has
modules for simulating rotating turbulence, passive and active scalars, liquid metal flows,
rotating convection [19], and Kolmogorov flow.

7. Conclusions

In this paper we describe the salient features and code validation of Tarang. Tarang passes
several validation tests performed for fluid, Rayleigh–Bénard convection, and magneto-
hydrodynamic solvers. We also report scaling analysis of Tarang and show that it exhibits
excellent strong and weak scaling up to several thousand processors. Tarang has been
used for studying Rayleigh–Bénard convection, dynamo, and magnetohydrodynamic tur-
bulence. It has been ported to various computing platforms including the HPC system of
IIT Kanpur, Shaheen of KAUST, PARAM YUVA of the Centre for Advanced Computing
(Pune), and EKA of the Computational Research Laboratory (Pune).

Acknowledgement

Tarang simulations were performed on Shaheen supercomputer of KAUST (through the
project k97) and on the HPC system of IIT Kanpur, for which the authors thank the
personnels of respective Supercomputing Centres, especially Abhishek and Brajesh Pande
of IIT Kanpur. The authors are grateful to Sandeep Joshi and Late Dr V Sunderarajan
(CDAC) who encouraged them to run Tarang on very large grids. The authors also thank
Daniele Carati and his group at ULB Brussels for sharing the details of a pseudospectral
code, and CDAC engineers and Arvind Mishra for their help at various stages. MKV
acknowledges the support of Swaranajayanti fellowship and a research grant 2009/36/81-
BRNS from Bhabha Atomic Research Centre.

References

[1] J P Boyd, Chebyshev and Fourier spectral methods (Dover Publishers, New York, 2001)
[2] C Canuto, M Y Hussaini, A Quarteroni and T A Zhang, Spectral methods in fluid turbulence

(Springer-Verlag, Berlin, 1998)
[3] M Yokokawa, K Itakura, A Uno, T Ishihara and Y Kaneda, 16.4-TFlops direct numerical

simulation of turbulence by a Fourier spectral method on the Earth Simulator, Tech. Rep.,
dspace.itri.aist.go.jp (2002)

[4] Y Kaneda, T Ishihara, M Yokokawa, K Itakura and A Uno, Phys. Fluids 15, L21 (2003)
[5] Diego Donzis, K Sreenivasan and P Yeung, Flow, Turbulence and Combustion 85, 549 (2010)
[6] A Pouquet, J Baerenzung, P D Mininni, D Rosenberg and S Thalabard, J. Phys.: Conf. Ser.

318(4), 042015 (2011)
[7] M Frigo and S G Johnson, Proceedings of the IEEE 93(2), 216 (2005). Special issue on

Program Generation, Optimization, and Platform Adaptation
[8] Parallel three-dimensional fast Fourier transforms (P3DFFT) library, http://code.

google.com/p/p3dfft (2008)

628 Pramana – J. Phys., Vol. 81, No. 4, October 2013

http://code.google.com/p/p3dfft
http://code.google.com/p/p3dfft


Benchmarking and scaling studies of pseudospectral code Tarang

[9] A N Kolmogorov, Dokl. Akad. Nauk SSSR 30, 9 (1941)
[10] O Thual, J. Fluid Mech. 240, 229 (1992)
[11] M K Verma, P K Mishra, A Pandey and S Paul, Phys. Rev. E 85, 016310 (2012)
[12] P K Mishra and M K Verma, Phys. Rev. E 81, 056316 (2010)
[13] P Pal, P Wahi, S Paul, M K Verma, K Kumar and P K Mishra, Europhys. Lett. 87, 54003

(2009)
[14] S Paul, P Pal, P Wahi and M K Verma, Chaos: An Interdisciplinary Journal of Nonlinear

Science 21, 023118 (2011)
[15] M K Verma, Phys. Rep. 401, 229 (2004)
[16] G Breyiannis and D Valougeorgis, Comput. Fluids 35(8), 920 (2006)
[17] R Yadav, M Chandra, M K Verma, S Paul and P Wahi, Europhys. Lett. 91, 69001 (2010)
[18] Rakesh K Yadav, Mahendra K Verma and Pankaj Wahi, Phys. Rev. E 85, 036301 (2012)
[19] Hirdesh K Pharasi, Rahul Kannan, Krishna Kumar and Jayanta K Bhattacharjee,

Phys. Rev. E 84, 047301 (2011)

Pramana – J. Phys., Vol. 81, No. 4, October 2013 629


	Benchmarking and scaling studies of pseudospectral code Tarang for turbulence simulations-30ptQ1Please check if ``a'' in ``Benchmarking and scaling studies of a pseudospectral...'' should be changed to ``the''.
	Abstract
	Introduction
	Salient features of Tarang
	 Parallelization strategy
	Fluid turbulence
	Rayleigh--Bénard convection
	Magnetohydrodynamic turbulence and dynamo
	Conclusions
	References


