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A self-consistent renormalization group procedure has been constructed for magnetohydrodynamic
turbulence in which small wave number modes are averaged out, and the effective mean magnetic
field at large wave numbers is obtained self consistently. In this renormalization group scheme, it is
found that an E(k) proportional to k25/3 ~Kolmogorov’s spectrum! is a self-consistent solution, and
the procedure yields a self-consistent effective mean magnetic field proportional to k21/3. It is also
deduced from the formalism that the magnitude of the cascade rate decreases as the strength of the
mean magnetic field is increased. © 1999 American Institute of Physics.
@S1070-664X~99!00805-8#

I. INTRODUCTION

Kolmogorov hypothesized that the energy spectrum
E(k) of fluid turbulence in the inertial range is isotropic and
is a power law with a spectral index of 25/3, i.e.,

E~k !5KK0P2/3k25/3, ~1!

where KKo is an universal constant called Kolmogorov’s
constant, k is the wave number, and P is the nonlinear en-
ergy cascade rate. Note that P is equal to the dissipation rate
and also the energy supply rate of the fluid. Experiments,1
simulations,2 and some of the analytical calculations based
on the direct interaction approximation,3,4 renormalization
group ~RG! techniques,5–11 self-consistent mode coupling,12

etc. are in good agreement with the above phenomenology.
In this paper, we will discuss the energy spectrum in

magnetohydrodynamic ~MHD! turbulence. In MHD there are
two fields, the velocity field u and the magnetic field B
5B01b, where B0 is the mean magnetic field or the mag-
netic field of the large eddies, and b is the magnetic field
fluctuation. It is also customary to use Elsässer variables
z6

5u6b. Here the magnetic field has been written in ve-
locity units ~b/A4pr , where r is the density of the fluid!.
We also assume that the plasma is incompressible.

There are two time scales in magnetofluid: ~i! nonlinear
time scale 1/(kzk

6) ~similar to that in fluid turbulence! and
~ii! Alfvén time scale 1/(kB0). Kraichnan,13 Iroshnikov,14

and Dobrowolny et al.15 argued that the interacting zk
1 and

zk
2 modes will get separated in one Alfvén time scale be-

cause of the mean magnetic field. Therefore, they chose the
Alfvén time scale tA5(kB0)21 as the relevant time scale
and found that

P1'P2'
1

B0
E1~k !E2~k !k3

5P , ~2!

where P6 are the cascade rates of zk
6 . If E1(k)'E2(k),

then the above equation implies that

E1~k !'E2~k !'~B0P !1/2k23/2. ~3!

In absence of a mean magnetic field, the magnetic field of
the largest eddy was taken as B0 . Kraichnan13 also argued
that the fluid and magnetic energies are equipartitioned. The
above phenomenology is referred to as Dobrowolny et al.’s
generalized Kraichnan–Iroshnikov ~KID! phenomenology.

If the nonlinear time scale tNL
6 '(kzk

7)21 is chosen as
the interaction time scales for the eddies zk

6 , we obtain

P6'~zk
6!2~zk

7!k , ~4!

which in turn leads to

E6~k !5K6~P6!4/3~P7!22/3k25/3, ~5!

where K6 are constants, which we will refer to as Kolmog-
orov’s constants for MHD turbulence. Because of its simi-
larity to Kolmogorov’s fluid turbulence phenomenology, this
phenomenology is referred to as Kolmogorov-like MHD tur-
bulence phenomenology. This phenomenology was first
given by Marsch,16 Matthaeus and Zhou,17 and Zhou and
Matthaeus18 ~it is a limiting case of a more generalized phe-
nomenology constructed by Matthaeus and Zhou,17 and Zhou
and Matthaeus18!. It is implicit in these phenomenological
arguments that KID phenomenology is expected to hold
when B0@AkE6(k), while Kolmogorov-like phenomenol-
ogy is expected to be applicable when B0!AkE6(k).

In the solar wind, which is a good testing ground for
MHD turbulence theories, Matthaeus and Goldstein19 found
that the exponents of the total energy and magnetic energy
are 1.6960.08 and 1.7360.08, respectively, somewhat
closer to 5/3 than 3/2. This is more surprising because B0
@AkE6(k) for inertial range wavenumbers in the solar
wind. The numerical simulations also tend to indicate that
the Kolmogorov-like phenomenology, rather than KID phe-
nomenology, is probably applicable in MHD turbulence.20

Hence, the comparison of the solar wind observations and
simulation results with the phenomenological predictions ap-
pears to show that there are some inconsistencies in the phe-
nomenological arguments given above. To resolve these in-a!Electronic mail: mkv@iitk.ac.in
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consistencies, we have attempted to examine the MHD
equations using renormalization group analysis.

For fluid turbulence, Forster et al.5 and Yakhot and
Orszag6 have applied dynamical RG procedure in which a
forcing term with a power law distribution in wave number
space is introduced. McComb,8 McComb and
Shanmugasundaram,9 McComb and Watt,10 and Zhou
et al.11 instead applied a self-consistent RG procedure that
yields Kolmogorov’s energy spectrum. For MHD turbulence,
Fournier et al.21 and Camargo and Tasso22 have used a RG
procedure similar to that of Forster et al.5 and Yakhot and
Orszag.6 In all these schemes, the averaging is done over the
small scales ~based on Wilson’s approach in his Fourier
space RG!. To date, the RG methods applied to MHD turbu-
lence do not find direct evidence of Kolmogorov-like power
law in MHD turbulence. In a more recent work, Verma and
Bhattacharjee23 have applied Kraichnan’s DIA3,4 to MHD
turbulence and obtained the Kolmogorov’s constant for
MHD, but in Verma and Bhattacharjee’s work k25/3 energy
spectra was assumed, and an artificial cutoff was introduced
for the self-energy integral.

In this paper, we construct a self-consistent RG proce-
dure similar to that used by McComb,8 McComb and
Shanmugasundaram,9 McComb and Watt,10 and Zhou
et al.11 for fluid turbulence. However, one major difference
is that we integrate the small wave number modes instead of
integrating the large wave number modes, as done by earlier
authors. In our procedure, we obtain the effective mean mag-
netic field B0(k) as we go from small wave numbers to large
wave numbers. At small wave numbers, the MHD equations
are approximately linear. During the RG process, the effects
of the nonlinear terms in the small wave number shells are
translated to the modification of B0(k) at larger wave num-
bers.

We postulate that the effective mean magnetic field is
the magnetic field of the next-largest eddy contrary to the
KID phenomenology where the effective mean magnetic
field at any scale is a constant. To illustrate, for Alfvén
waves of wave number k, the effective magnetic field B i(k)
~after ith iteration of the RG procedure defined below! will
be the magnetic field of the eddy of size k/10 or so. This
argument is based on the physical intuition that for the scat-
tering of the Alfvén waves at a wave number k, the effects of
the magnetic field of the next-largest eddy is much more than
that of the external field. The mean magnetic field at the
largest scale will simply convect the waves, whereas the lo-
cal inhomogeneities contribute to the scattering of waves,
which leads to turbulence ~note that in WKB method, the
local inhomogeneity of the medium determines the ampli-
tude and the phase evolution!. In our scheme, we show that
E(k)}k25/3 and the mean magnetic field proportional to
k21/3 are the self-consistent solutions of the RG equations.
Thus we argue that B0 appearing in the KID’s phenomenol-
ogy must be k dependent. Note that the substitution of k
dependent B0(k) in Eq. ~3! yields k25/3 energy spectrum,
which is consistent with the solar wind observations and the
simulation results. We will describe these ideas in more de-
tail in the following section.

The normalized cross helicity sc , defined as (E1

2E2)/(E1
1E2), and the Alfvén ratio rA , defined as the ratio

of fluid energy and magnetic energy, are important factors in
MHD turbulence. For simplicity of the calculation, we have
taken E1(k)5E2(k) and rA51. These conditions are met at
many places in the solar wind and in other astrophysical
plasmas.

II. CALCULATION

The MHD equation in the Fourier space is13

~2iv7i~B0•k!!z i
6~k,v !

52iM i jm~k!E dpdv8z j
7~p,v8!zm

6~k2p,v2v8!,
~6!

where

M i jm~k!5k jP im~k!; P im~k!5d im2

k ikm

k2 . ~7!

Here, we have ignored the viscous terms. The above equa-
tion will, in principle, yield an anisotropic energy spectra
~different spectra along and perpendicular to B0!. Since the
anisotropic equation is quite complicated to solve using RG,
we modify the above equation to the following form to pre-
serve isotropy:

~2iv7i~B0k !!z i
6~k,v !

52iM i jm~k!E dpdv8z j
7~p,v8!zm

6~k2p,v2v8!.
~8!

This equation can be thought of as an effective MHD equa-
tion in an isotropically random mean magnetic field.

In our RG procedure, the wave number range (k0 . .kN) is
divided logarithmically into N shells. The nth shell is
(kn21 . .kn), where kn5snk0(s.1). The modes in the first
few shells will be the energy containing eddies that will
force the turbulence. To keep our calculation procedure
simple, we assume that the external forcing maintains the
energy of the first few shells to the initial values. The modes
in the first few shells are assumed to be random with a gauss-
ian distribution.

In the following discussion, we first carry out the elimi-
nation of the first shell (k0 . .k1) and obtain the modified
MHD equation. We then proceed iteratively to eliminate
higher shells and get a general expression for the modified
MHD equation after elimination of the nth shell. The details
of the renormalization group operation are as follows.

A. RG procedure

1. Decompose the modes into the modes to be eliminated
(k,) and the modes to be retained (k.). In the first iteration,
(k0 . .k1)5k, and (k1 . .kN)5k.. Note that B0(k) is the
mean magnetic field before the elimination of the first shell.

2. We rewrite the Eq. ~8! for k, and k.. The equation
for z i

6.(k,t) modes is
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~2iv7i~B0k !!z i
6.~k,v !52iM i jm~k!E dpdv8@z j

7.~p,v8!zm
6.~k2p,v2v8!#1@z j

7.~p,v8!zm
6,~k2p,v2v8!

1z j
7,~p,v8!zm

6.~k2p,v2v8!#1@z j
7,~p,v8!zm

6,~k2p,v2v8!# , ~9!

while the equation for z i
6,(k,t) modes can be obtained by

interchanging , and . in the above equation.
3. The terms given in the second and third brackets in

the right hand side ~RHS! of Eq. ~9! is calculated perturba-
tively. We perform ensemble average over the first shell,
which is to be eliminated. We assume that z i

6,(k,t) has a
gaussian distribution with zero mean. Hence,

^z i
6,~k,t !&50, ^z i

6.~k,t !&5z i
6.~k,v !, ~10!

and

^zs
a,~p,v8!zm

b,~q,v9!&

5P sm~p!Cab~p ,v8!d~p1q!d~v81v9!, ~11!

where a ,b56 . Also, the triple order correlations
^zs

6,(k,v)zm
6,(p,v8)z t

6,(q,v9)& are zero. We keep only
the nonvanishing terms to first order. For the relevant Feyn-
mann diagrams, refer to Zhou et al.11 Taking rA51 and
E1(k)5E2(k), Eq. ~9! becomes

~2iv7i~B0k !!z i
6.~k,v !52iM i jm~k!E dpdv8@z j

7.~p,v8!zm
6.~k2p,v2v8!#

1~2i !2M i jm~k!E
p1q5k

D

dqdv8M mst~p!P js~q!G66~p,v8!C77,~q,v2v8!z t
6.~k,v !

1~2i !2M i jm~k!E
p1q5k

D

dqdv8M mst~p!P js~q!G67~p,v8!C77,~q,v2v8!z t
6.~k,v !, ~12!

where G is the Green’s function obtained from the equation

G21~k ,v !5S 2iv2ikB0
11~k ! 2ikB0

12~k !

ikB0
21~k ! 2iv1iKB0

22~k !
D .

~13!

Here the integration is done over the first shell ~D!. In deriv-
ing Eq. ~12! we have neglected the contribution of the triple
nonlinearity ^zs

6.(k,v)zm
6.(p,v8)z t

6.(q,v9)&. McComb,8
McComb and Shanmugsundaram,9 and McComb and Watt10

have also ignored the triple nonlinearity for fluid turbulence.
4. Since rA51 and E1(k)5E2(k), we find that

B0
12(k)5B0

21(k). When the nonlinearity is absent, it can
be easily shown that the correlation functions C66(k ,v)
have the same frequency dependence as G66(k ,v), i.e.,

C66~k ,v6!5

C66~k !

2iv6
7ikB0

66~k !
. ~14!

We assume the above relationship in our perturbative
scheme, as well. Note that C66(k)5E66(k)/(4pk2) in

three dimensions. After some manipulations, the Eq. ~12!
becomes

~2iv7i@B0~k !1dB0
66~k !#k !z i

6.~k,t !

7idB0
67~k !z i

7.~k,t !

5M i jm~k!E dp@z j
7.~p,t !zm

6.~k2p,t !# , ~15!

where

dB0
66~k !

52kE
p1q5k

D

dqS E~q !

4pq2D

3Fa2~k ,p ,q !@X0
66~p !1B0

66~p !#2a4~k ,p ,q !B0
12~p !

2X0~p !@kB0
66~k !1pX0

66~p !2qX0
66~q !#

G
~16!

and

dB0
67~k !52kE

p1q5k

D

dqS E~q !

4pq2D Fa3~k ,p ,q !B0
12~p !2a1~k ,p ,q !@X0

66~p !1B0
66~p !#

2X0
66~p !@kB0

66~k !1pK0
66~p !2qX0

66~q !#
G , ~17!
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where 2k2a i(k ,p ,q)5A i(k ,p ,q) and X0
66(k)

5A(B0
66(k))2

2(B0
67(k))2. The terms A i(k ,p ,q) are given

in the Appendix of Leslie4 as B i(k ,p ,q). Since, E1
5E2

and rA51, it is clear that dB0
11(k)5dB0

22(k). Therefore,
B0

11(k)5B0
22(k)5B0(k) and X0

11(k)5X0
22(k)5X0(k).

While solving for Eqs. ~16! and ~17! we have postulated
using dynamical scaling arguments that

vk
6

57kB0
66~k !. ~18!

This is equivalent to using v5kz, except that we want to
express v in terms of Alfvén speed B0(k).
Let us denote B1(k) as the effective mean magnetic field
after the elimination of the first shell. Therefore,

B1~k !5B0~k !1dB0~k !. ~19!

Similarly,

B1
12~k !5B0

12~k !1dB0
12~k !. ~20!

5. We keep eliminating the shells one after the other by
the above procedure. After n11 iterations, we obtain

Bn11
ab ~k !5Bn

ab~k !1dBn
ab~k !, ~21!

where the equations for dBn
66(k) and dBn

67(k) are the
same as Eqs. ~16! and ~17! except that the terms B0

ab(k) and
X0

ab(k) are to be replaced by Bn
ab(k) and Xn

ab(k), respec-
tively. Clearly, Bn11(k) is the effective mean magnetic field
after the elimination of the (n11)th shell.

The set of RG equations to be solved are Eqs. ~16! and
~17! with B0 replaced by Bns, and Eq. ~21!.

B. Solution of RG equations

To solve the Eqs. ~16! and ~17! with Bns and Eq. ~21!,
we substitute the following forms for E(k) and Bn(k) in the
modified Eqs. ~16! and ~17!

E~k !5KP2/3k25/3, ~22!

Bn
ab~knk8!5K1/2P1/3kn

21/3Bn*ab~k8!, ~23!

with k5kn11k8 (k8.1). We expect that Bn*ab(k8) is an
universal function for large n. We use P1

5P2
5P due to

symmetry. After the substitution, we obtain the equations for
Bn*ab(k8) that are

dBn*~k8!52E
p81q85k8

dq8S E~q8!

4pq8
2D Fa2~k8,p8,q8!@Xn*~sp8!1Bn*~sp8!#2a4~k8,p8,q8!Bn*12~sp8!

2Xn*~sp8!@k8Bn*~sk8!1p8Xn*~sp8!2q8Xn*~sq8!#
G , ~24!

dBn*12~k8!52E
p81q85k8

dq8S E~q8!

4pq8
2D Fa3~k8,p8,q8!Bn*12~sp8!2a1~k8,p8,q8!@Xn*~sp8!1Bn*~sp8!#

2Xn*~sp8!@k8Bn*~sk8!1p8Xn*~sp8!2q8Xn*~sq8!#
G , ~25!

where the integrals in the Eqs. ~24! and ~25! is performed
over a region 1/s<p8, q8<1 with the constraint that p8

1q85k8. The recurrence relation for Bn is

Bn11*ab ~k8!5s1/3Bn*ab~sk8!1s21/3dBn*ab~k8!. ~26!

Now we need to solve the above three equations self consis-
tently. We use Monte Carlo technique to solve the integrals.
Since the integrals are identically zero for k8.2, the initial
B0*(k i8)5B0*initial for k i8,2 and B0*(k i8)
5B0*initial*(k i8/2)21/3 for k i8.2. We take B0

12
50. Equations

~24!–~26! are solved iteratively. We continue iterating the
equations till Bn11* (k8)'Bn*(k8), that is, till the solution
converges. The Bn*s for various n ranging from 0 to 3 are
shown in Fig. 1. Here, the convergence is very fast, and after
n5324 iterations Bn*(k) converges to an universal function

f ~k8!51.24*B0*initialk8
20.32

5B0*initial~k8/2!21/3. ~27!

The other parameter Bn*12(k8) remains close to zero. The
above solution of the universal function is an stable solution
in the RG sense. The function Bn* converges to the universal
function f (k8).

The substitution of the function Bn*(k8) in Eq. ~23!
yields

B0~k !5H K1/2P1/2k0
21/3B0*initial

5

def
B0 for k<2k0

B0S k

2k0
D

21/3

for k.2k0

~28!

and

Bn11~k !5K1/2P1/2B0*initial~k/2!21/3
5B0S k

2k0
D

21/3

~29!

for k.kn11 when n is large ~stable RG solution!. Hence, we
see that Bn(k)}k21/3 in our self-consistent scheme.

FIG. 1. Bn*(k8) for n50...3. The line of best fit f (k8) to B3*(k8) overlaps
with B3* .
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To summarize, we have shown that the mean magnetic
field B0 becomes renormalized due to the nonlinear term.
The self-consistent solutions of our RG schemes are

E~k !5KP2/3k25/3, ~30!

Bn~k !5B021/3~k/k0!21/3. ~31!

C. Calculation of K

We can calculate the Kolmogorov’s constant for MHD
turbulence K by calculating the cascade rate P.4 In MHD the
cascade rates are

P1~k !5P2~k !52E
0

k

dk8T~k8!. ~32!

The numerical solution of the cascade rate integral yields4

1.24B0*initial

K3/2 53.85. ~33!

From the above equation it is evident that the Kolmogorov’s
constant K is dependent on the mean magnetic field B0*initial ,
in fact, K}(B0*initial)2/3. Clearly, an increase in the mean
magnetic field leads to an increase in the Kolmogorov con-
stant, which in turn will lead to a suppression in the cascade
rate @cf. Eq. ~5!#. This result is consistent with the simulation
results of Oughton.24 However, a cautious remark is neces-
sary here. We have considered the mean magnetic field to be
isotropic; this isotropy assumption has to be dropped for
studies of realistic situations.

III. DISCUSSIONS AND CONCLUSIONS

In this paper, we have worked out the renormalization
group scheme for the MHD equations to first order. We av-
erage out the small wavenumber modes and solve for the
renormalized mean magnetic field Bn(k). Ours is a self-
consistent scheme in which we show that E(k) proportional
to k25/3 is consistent with our procedure, and that this pro-
cedure yields a self-consistent Bn(k) proportional to k21/3.
When we start with B0 , after each RG step the mean mag-
netic field increases in the region k,2k0 @see Eq. ~29!# until
we get a stable Bn(k), which is proportional to k21/3.
Clearly, the Alfvén time scale using B1(k) is less than that
using B0(k). Similarly, for Bn , we find that tA

Bn11
,tA

Bn. The
relavant nonlinear time scale is usually taken to be the lowest
time scale of the system. Therefore, the scale-dependent
Bn(k) should be the nonlinear time scale that yields
Kolomogorov-like energy spectrum for MHD. This result
justifies our choice of Bn(k) as the effective mean magnetic
field for the analysis. Note that KID take tA'(kB0)21 to be
the effective time scale for the nonlinear interactions that
gives E(k)}k23/2. Also, tNL

Bn is of the same order as the
nonlinear time scales of z6, tNL

6 '(kzk
6)21. The quantity

tNL
Bn11 can possibly be obtained numerically using the time

evolution of the Fourier components; this test will validate
the theoretical assumptions made in our paper. The numeri-
cal investigation in this direction is under progress.

The physical idea behind our argument is that for the
scattering of the Alfvén waves at a wave number k, the ef-
fective magnetic field is due more to the next largest eddy,
than to the mean magnetic field. In other words, the effective
mean magnetic field, which appears in the Kraichnan–
Iroshnokov–Dobrowolny ~KID! turbulence phenomenology,
should really be the renormalized mean magnetic field ~an
scale dependent quantity!. Using this physical argument, we
have been able to obtain a self-consistent Kolmogorov-like
solution for the RG equations. Simple power counting in
Eqs. ~16! and ~20! shows that that B05const, and E(k)
}k23/2 ~prediction of the KID phenomenology! does not sat-
isfy the RG equations, indicating that modification in KID’s
argument is necessary. This paper presents one solution
which resolves this problem. In this paper, we have worked
out the energy spectrum and renormalized mean magnetic
field for E1

5E2 and rA51 for simplicity of the calculation.
The generalization to arbitrary parameters is planned for fu-
ture studies.

In our methodology, the averaging has been performed
for small wave numbers, in contrast to the earlier RG analy-
sis of turbulence in which higher wavenumbers were aver-
aged out. In our scheme we obtain a self-consistent power-
law energy spectrum for large wave number modes, and the
spectrum is independent of the small wave number forcing
states. This is in agreement with the Kolmogorov’s hypoth-
esis, which states that the energy spectrum of the intermedi-
ate scale is independent of the large-scale forcing. Any ex-
tension of our scheme to fluid turbulence in presence of
large-scale shear, etc, will yield interesting insights into the
connection of energy spectrum with large-scale forcing.
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