Books


  1. M. K. Verma, Practical Numerical Computing Using Python: Scientific & Engineering Applications, Independent Publication (2021).
  2. M. K. Verma, Python Programming for School Students, Independent Publication (2021).
  3. M. K. Verma, Energy Transfers in Fluid Flows: Multiscale and Spectral Perspectives, Cambridge University Press (2019).
  4. M. K. Verma, Physics of Buoyant Flows: From Instabilities to Turbulence, World Scientific (2018).
  5. M. K. Verma, Introduction to Mechanics, Second Edition, Universities Press, Hyderabad, (2016).

Book Chapter


  1. M. K. Verma, Hierarchical financial structures with money cascade, in New Perspectives and Challenges in Econophysics and Sociophysics, F. Abergel, B. Chakrabarti, and A. Chakraborti, D. Deb, and K. Sharma (eds.), p. 61-69 (2019).PDF

Review Papers


  1. M. K. Verma, Variable Energy Flux in Turbulence, J. Phys. A, 55, 013002 (2022). PDF
  2. M. K. Verma, Turbulent thermal convection, Scholarpedia, 14(12):53051 (2019). Link
  3. M. K. Verma, Anisotropy in quasi-static magnetohydrodynamic turbulence, Rep. Prog. Phys. 80, 087001 (2017). PDF
  4. M. K. Verma, A. Kumar, and A. Pandey, Phenomenology of buoyancy-driven turbulence: recent results, New J. Physics, 19, 025012 (2017). PDF
  5. M. K. Verma, Introduction to Statstical Theory of Fluid Turbulence, (2005).PDF
  6. M. K. Verma, Statistical theory of magnetohydrodynamics turbulence: Recent results, Phys. Rep. 401, 229-380, (2004). PDF

Popular web-articles


  1. Importance of Multiscale Description in Science (Part I of the series on multiscale description) (2020). Link
  2. Single-scale and multiscale diffusion (Part II of the series on multiscale description) (2020). Link
  3. Fundamental and Derived Laws in Multiscale Systems (Part III of the series on multiscale description) (2020). Link
  4. Flattening the much-talked COVID-19 curve—How close are we in India? (2020). Link

Covid-19 Epidemic


  1. R. Ranjan, A. Sharma, and M. K. Verma, Characterization of the Second Wave of COVID-19 in India, (2021). medarxiv [Covered in media TV18, Livemint etc.]
  2. A. Sharma, S. Sapkal, and M. K. Verma, Universal Epidemic Curve for COVID‐19 and Its Usage for Forecasting Trans Indian Natl. Acad. Eng. (2021). DOI: https://doi.org/10.1007/s41403-021-00210-5 PDF
  3. A. Asad, S. Srivastava, and M. K. Verma, Evolution of COVID-19 Pandemic in India, Trans Indian Natl. Acad. Eng. (2020). DOI: https://doi.org/10.1007/s41403-020-00166-y PDF
  4. S. Chatterjee, A. Asad, B. Shayak, S. Bhattacharya, S. Alam, and M. K. Verma, Evolution of COVID-19 pandemic: Power law growth and saturation, Journal of the Indian Statistical Association, 58, 1-31 (2020). PDF
  5. M. K. Verma, A. Asad, and S. Chatterjee, COVID‐19 Pandemic: Power Law Spread and Flattening of the Curve, Trans Indian Natl. Acad. Eng., 5, 103-108 (2020). PDF
  6. CH Unnikrishnan’s article in Future Medicine: Current infections vs testing ratio in India is inadequate to flatten the curve early (2020). PDF

Bouyancy-Driven Turbulence


  1. S. Bhattacharya, M. K. Verma, and R. Samtaney, Revisiting Reynolds and Nusselt numbers in turbulent thermal convection, Phys. Fluids 33, 015113 (2021). PDF
  2. S. Bhattacharya, S. Sadhukhan, A. Guha, and M. K. Verma, Similarities between the structure functions of thermal convection and hydrodynamic turbulence, Phys. Fluids 31, 115107 (2019). PDF
  3. A. Vasilev, P. Frick, A. Kumar, R. Stepanov, A. Sukhanovskii, and M. K. Verma, Transient flows and reorientations of large-scale convection in a cubic cell, Int. Commun. Heat Mass Transfer 108, 104319 (2019). PDF
  4. S. Alam, A. Guha, and M. K. Verma, Revisiting Bolgiano–Obukhov scaling for moderately stably stratified turbulence, J. Fluid Mech. 875, 961-973 (2019). PDF
  5. S. Bhattacharya, R. Samtaney, and M. K. Verma, Scaling and spatial intermittency of thermal dissipation in turbulent convection, Phys. Fluids 31, 075104 (2019). PDF
  6. Y. Nandukumar, S. Chakraborty, M. K. Verma and R. Lakkaraju, On heat transport and energy partition in thermal convection with mixed boundary conditions, Phys. Fluids, 31, 066601 (2019). PDF
  7. M. K. Verma, Contrasting turbulence in stably stratified flows and thermal convection, Physica Scripta 94, 064003(9PP) (2019). PDF
  8. S. Vashishtha, M. K. Verma, and R. Samuel, Large-eddy simulations of turbulent thermal convection using renormalized viscosity and thermal diffusivity, Phys. Rev. E 98, 043109 (2018). PDF
  9. A. Pandey, M. K. Verma, and M. Barma, Reversals in Infinite-Prandtl-number Rayleigh-Benard Convection, Phys. Rev. E 98, 023109 (2018). PDF
  10. H. Khatri, J. Sukhatme, A. Kumar, and M. K. Verma, Surface Ocean Enstrophy, Kinetic Energy Fluxes, and Spectra From Satellite Altimetry, J. Geophys. Res.: Oceans 123, 3875 (2018). PDF
  11. A. Kumar and M. K. Verma, Applicability of Taylor’s hypothesis in thermally driven turbulence, R. Soc. Open Sci., 5 172152 (2018). PDF
  12. S. Bhattacharya, A. Pandey, A. Kumar, and M. K. Verma, Complexity of viscous dissipation in turbulent thermal convection, Phys. Fluids 30, 031702 (2018). PDF
  13. M. Mannattil, A. Pandey, M. K. Verma, and S. Chakraborty, On the Applicability of Low-Dimensional Models for Convective Flow Reversals at extreme Prandtl numbers,Eur. Phys. J. B 90:259 (2017). PDF
  14. M. K. Verma, A. Kumar, and A. Pandey, Phenomenology of buoyancy-driven turbulence: recent results, New J. Physics,19, 025012 (2017). PDF
  15. A. Kumar, M. K. Verma, and J. Sukhatme, Phenomenology of two-dimensional stably stratified turbulence under large-scale forcing, J. Turb. 18, 3:219 (2017). PDF
  16. A. Pandey, A. Kumar, A. G. Chatterjee, and M. K. Verma, Dynamics of large-scale quantities in Rayleigh-Bénard convection, Phys. Rev. E 94, 053106 (2016). PDF
  17. D. Nath, A. Pandey, A. Kumar, and M. K. Verma, Near isotropic behavior of turbulent thermal convection, Phys. Rev. Fluids, 1, 064302 (2016). PDF
  18. A. Pandey and M. K. Verma, Scaling of large-scale quantities in Rayleigh-Bénard convection, Phys. Fluids, 28, 095105 (2016). PDF
  19. A. Pandey, M. K. Verma, A. G. Chatterjee, and Biplab Dutta, Similarities between 2D and 3D convection for large Prandtl number, Pramana, 87, 13 (2016). PDF
  20. M. K. Verma, S. C. Ambhire, and A. Pandey, Flow reversals in turbulent convection with free-slip walls, Phys. Fluids, 27, 047102 (2015). PDF
  21. A. Kumar and M. K. Verma, Shell model for buoyancy-driven turbulence, Phys. Rev. E 91, 043014 (2015). PDF
  22. M. K. Verma, A. Kumar, and A. G. Chatterjee, Energy spectrum and flux of buoyancy-driven turbulence,,Physics Focus, AAPPS Bulletin, 25, 45 (2015). PDF
  23. A. Kumar, A. G. Chatterjee, and M. K. Verma, Energy spectrum of buoyancy-driven turbulence, Phys. Rev. E 90, 023016 (2014). PDF
  24. A. Pandey, M. K. Verma, and P. K. Mishra, Scaling of heat flux and energy spectrum for very large Prandtl number convection, Phys. Rev. E 89, 023006 (2014). PDF
  25. D. Nath and M. K. Verma, Numerical simulation of convection of argon gas in fast breeder reactor, Annals of Nuclear Energy 63, 51–58 (2014). PDF
  26. M. Chandra and M. K. Verma, Flow Reversals in Turbulent Convection via Vortex ReconnectionsPhys. Rev. Lett. 110, 114503 (2013). PDF
  27. S. Paul, M. K. Verma, P. Wahi, Sandeep K. Reddy, and K. Kumar, Bifurcation analysis of the flow patterns in two-dimensional Rayleigh-Bénard convection. Int. J. Bifurcation Chaos22, 1230018 (2012). PDF
  28. M. K. Verma, P. K. Mishra, A. Pandey, and S. Paul, Scalings of field correlations and heat transport in turbulent convection. PRE 85, 016310 (2012). PDF
  29. M. Chandra and M. K. Verma, Dynamics and symmetries of flow reversals in turbulent convection, PRE 83, 067303 (2011). PDF
  30. S. Paul, P. Pal, P. Wahi, and M. K. Verma, Dynamics of zero-Prandtl number convection near the onset, Chaos 21, 023118 (2011). PDF
  31. S. Paul, P. Wahi and M. K. Verma, Bifurcations and chaos in large Prandtl-number Rayleigh-Bénard convection,Int. J. Non-Lin. Mech. 46, pp 772 (2011). PDF
  32. P. K. Mishra, A. K. De, M. K. Verma, and V. Eswaran, Dynamics of reorientations and reversals of large-scale flow in Rayleigh-Bénard convection, JFM 668, pp 480-499 (2011). PDF
  33. P. K. Mishra and M. K. Verma, Energy spectra and fluxes for Rayleigh-Bénard convection, PRE 81, 056316 (2010). PDF
  34. P. K. Mishra, P. Wahi, and M. K. Verma, Patterns and Bifurcation in low-Prandtl-number Rayleigh-Bénard convection, EPL 89, 44003 (2010). PDF
  35. S. Paul, K. Kumar, M. K. Verma, D. Carati, A. De, and V. Eswaran, Chaotic traveling rolls in two-dimensional Rayleigh-Bénard convection, Pramana 74, 75 (2010). PDF
  36. P. Pal, P. Wahi, S. Paul, M. K. Verma, K. Kumar, and P. K. Mishra, Bifurcation and chaos in zero Prandtl number convection, EPL 87, 54003 (2009). PDF
  37. M. K. Verma, K. Kumar, and B. Kamble, Mode-to-mode Energy Transfers and Patterns in Convection, Pramana 67, 1129 (2006). PDF

Fluid Turbulence


  1. S. Sadhukhan, S. Bhattacharya, and M. K. Verma, fastSF: A parallel code for computing the structure functions of turbulence, Journal of Open source Software 6, 2185 (2021). PDF
  2. M. Anas, P. Joshi, and M. K. Verma, Freely decaying turbulence in a finite domain at finite Reynolds number, Phys. Fluids, 32, 095105 (2020). PDF
  3. M. K. Verma, A.Kumar, and A. Gupta, Hydrodynamic turbulence: Sweeping effect and Taylor’s hypothesis via correlation function, Trans Indian Natl. Acad. Eng., (2020). DOI: https://doi.org/10.1007/s41403-020-00161-3 PDF
  4. F. Plunian, A. Teimurazov, R. Stepanov, and M. K. Verma, Inverse cascade of energy in helical turbulence, J. Fluid Mech., 895 A13 (2020). PDF
  5. M. K. Verma, R. Samuel, S. Chatterjee, S. Bhattacharya, and A. Asad, Challenges in fluid flow simulations using Exascale computing, S. N. Computer Science, 1:178 (2020). PDF
  6. S. Chatterjee and M. K. Verma, Kolmogorov flow: Linear stability and energy transfers in a minimal low-dimensional model, Chaos 30, 073110 (2020). PDF
  7. M. Anas, and M. K. Verma, Modelling Ekman and quasi-static magnetohydrodynamic turbulence using Pao’s hypothesis, Phys. Rev. Fluids, 4 104611 (2019). PDF
  8. A. Gupta, R. Jayaram, A. G. Chatterjee, S. Sadhukhan, R. Samtaney, and M. K. Verma, Energy and enstrophy spectra and fluxes for the inertial-dissipation range of two-dimensional turbulence, Phys. Rev. E, 100 053101 (2019). PDF
  9. M. K. Verma, Asymmetric energy transfers in driven nonequilibrium systems and arrow of time, Eur.Phys.J.B, 92, 190 (2019). PDF
  10. S. Sadhukhan, R. Samuel, F. Plunian, R. Stepanov, R. Samtaney, and M. K. Verma, Enstrophy transfers in helical turbulence, Phys. Rev. Fluids, 4, 084607 (2019). PDF
  11. S. Vashishtha, R. Samuel, A. G. Chatterjee, R. Samtaney and M. K. Verma Large eddy simulation of hydrodynamic turbulence using renormalized viscosity, Phys. Fluids, 31, 065102 (2019). PDF
  12. M. K. Verma, A. Kumar, P. Kumar, S. Barman, A. G. Chatterjee, R. Samtaney, and R. A. Stepanov, Energy Spectra and Fluxes in Dissipation Range of Turbulent and Laminar Flows, Fluid Dynamics, 53, 6, 862-873 (2018). PDF
  13. A. S. Teimurazov, R. A. Stepanov, M. K. Verma, S. Barman, A. Kumar, and S. Sadhukhan, Direct Numerical Simulation of Homogeneous Isotropic Helical Turbulence with the TARANG Code, Journal of Applied Mechanics and Technical Physics, 59, No. 7, 1279-1287 (2018). PDF
  14. A. G. Chatterjee, M. K. Verma, A. Kumar, R. Samtaney, B. Hadri, and R. Khurram, Scaling of a Fast Fourier Transform and a pseudo-spectral fluid solver up to 196608 cores, J. Parallel Distrib. Comput., 113, 77-91 (2017). PDF
  15. P. K. Mishra, J. Herault, S. Fauve, and M. K. Verma, Dynamics of reversals and condenstaes in two-dimensional Kolmogorov flows, ,Phys. Rev. E, 91, 053005 (2015). PDF
  16. M. K. Verma, A. G. Chatterjee, K. S. Reddy, R. K. Yadav, S. Paul, M. Chandra, and R. Samtaney, Benchmarking and scaling studies of a pseudospectral code Tarang for turbulence simulations, Pramana 81, 617 (2013). PDF
  17. M. K. Verma, Variable enstrophy flux and energy spectrum in two-dimensional turbulence with Ekman friction, EPL 98, 14003 (2012). PDF
  18. M. K. Verma and D. Donzis, Energy transfer and bottleneck effect in turbulence, J. Phys. A 40, 4401 (2007). PDF
  19. V. Avinash, M. K. Verma, and A. V. Chandra, Field-theoretic Calculation of Kinetic Helicity Flux, Pramana 66, 447 (2006). PDF
  20. M. K. Verma, Incompressible turbulence as a non-local field theory, Pramana 64, 333 (2005). PDF
  21. M. K. Verma, A. Ayyer, O. Debliquy, Shishir Kumar, and A. V. Chandra, Local shell-to-shell energy transfer via nonlocal interactions in fluid turbulence, Pramana 65, 297 (2005). PDF
  22. M. K. Verma, Field theoretic calculation of scalar turbulence, Int. J. Modern Physics B 15, 3419 (2001). PDF
  23. M. K. Verma, Intermittency exponents and energy spectrum of the Burgers and KPZ equations with correlated noise, Physica A 277, 359-388 (2000). PDF

MHD Turbulence, Dynamo, Solar Wind


  1. M. K. Verma, S. Alam, and S. Chatterjee, Turbulent drag reduction in magnetohydrodynamic and quasi-static magnetohydrodynamic turbulence, Phys. Plasmas, 27, 052301 (2020). PDF
  2. V. Titov, R. Stepanov, N. Yokoi, M. K. Verma, and R. Samtaney, Cross Helicity Sign Reversals in the Dissipative Scales of Magnetohydrodynamic Turbulence, Magnetohydrodynamics, 55, No. 1-2, 225-231 (2019). PDF
  3. M. K. Verma, R. Stepanov, and F. Plunian, Energy Transfers in MHD Turbulence and its Applications to Dynamo, Magnetohydrodynamics, 55, No. 1-2, 215-223 (2019). PDF
  4. R. Kumar and M. K. Verma, Amplification of large-scale magnetic field in nonhelical magnetohydrodynamics,Phys. Plasmas, 24, 092301 (2017). PDF
  5. R. Kumar and Pankaj Wahi, Dynamo transition in a five-mode helical model, Phys. Plasmas, 24, 092305 (2017). PDF
  6. R. Bandopadhyay and M. K. Verma, Discrete symmetries in dynamo reversals, Phys. Plasmas, 24,  062307 (2017).  PDF
  7. M. K. Verma, Anisotropy in quasi-static magnetohydrodynamic turbulence, Rep. Prog. Phys. 80, 087001 (2017). PDF
  8. S. Sundar, M. K. Verma, A. Alexakis, and A. G. Chatterjee, Dynamic anisotropy in MHD turbulence induced by mean magnetic field,,Phys. Plasmas, 24, 022304 (2017). PDF
  9. M. K. Verma and R. Kumar, Dynamos at extreme magnetic Prandtl numbers: Insights from shell models,,J. Turb., 17:11, 1112 (2016). PDF
  10. R. Kumar, M. K. Verma, and R. Samtaney, Energy transfers in dynamos with small magnetic Prandtl numbers, J. Turb., 16:11, 1114 (2015). PDF
  11. M. K. Verma and K. S. Reddy, Modelling quasi-static magnetohydrodynamic turbulence with variable energy flux, Phys. Fluids 27, 025114 (2015). PDF
  12. K. S. Reddy, R. Kumar, and M. K. Verma, Anisotropic energy transfers in quasi-static magnetohydrodynamic turbulence, Phys. Plasmas 21, 102310 (2014). PDF
  13. K. S. Reddy and M. K. Verma, Strong anisotropy in quasi-static MHD turbulence for high interaction parameters, Phys. Fluids 26, 025109 (2014). PDF
  14. R. Kumar, M. K. Verma, and R. Samtaney, Energy transfers and magnetic energy growth in small-scale dynamo, EPL 104, 54001 (2013). PDF
  15. M. K. Verma, B. B. Karak, and R. Kumar, Dynamo in protostars, Pramana 81, 1037 (2013). PDF
  16. M. K. Verma and R. K. Yadav, Supercriticality to subcriticality in dynamo transitions, Phys. Plasmas 20, 072307 (2013). PDF
  17. R. K. Yadav, M. K. Verma, and P. Wahi, Bistability and chaos in the Taylor-Green dynamo, PRE 85, 036301 (2012). PDF
  18. R. K. Yadav, M. Chandra, M. K. Verma, S. Paul, and P. Wahi, Dynamo transition under Taylor-Green forcing, EPL 91, 69001 (2010). PDF
  19. T. Lessiness, D. Carati, and M. K. Verma, Energy transfers in shell modes for magnetohydrodynamic turbulence, PRE 79, 066307 (2009). PDF
  20. B. Teaca, M. K. Verma, B. Knaepen, and D. Carati, Energy transfer in anisotropic magnetohydrodynamic turbulence, PRE 79, 046312 (2009). PDF
  21. M. K. Verma, T. Lessinnes, D. Carati, I. Sarris, K. Kumar, and M. Singh, Dynamo transition in low-dimensional models, PRE 78, 036409 (2008). PDF
  22. D. Carati, O. Debliquy, B. Knaepen, B. Teaca, and M. K. Verma, Energy transfers in forced MHD turbulence, J. Turb., 7, N51 (2006). PDF
  23. M. K. Verma, A. Ayyer, and A. V. Chandra, Energy transfers and locality in magnetohydrodynamic turbulence, Phys. Plasmas 12, 82307 (2005). PDF
  24. O. Debliquy, M. K. Verma, and D. Carati, Energy fluxes and shell-to-shell transfers in three-dimensional decaying magnetohydrodynamic turbulence, Phys. Plasmas, 12, 42308 (2005). PDF
  25. M. K. Verma, Statistical theory of magnetohydrodynamics turbulence: Recent results, Phys. Rep. 401, 229-380 (2004). PDF, Errata
  26. M. K. Verma and S. Kumar, Large eddy simulations of fluid and magnetohydrodynamic turbulence using renormalized parameters, Pramana 63, 553 (2004). PDF
  27. M. K. Verma, Field theoretic calculation of energy cascade rates in nonhelical magnetohydrodynamic turbulence, Pramana, 61 577 (2003). PDF, Errata
  28. M. K. Verma, Energy fluxes in helical magnetohydrodynamics and dynamo action, Pramana 61, 707 (2003). PDF,Errata
  29. M. K. Verma, On generation of magnetic field in astrophysical bodies, Current Science 85, 620 (2002). PDF
  30. M. K. Verma, G. Dar, and V. Eswaran, Comment on “On two-dimensional magnetohydrodynamic turbulence” [Phys. Plasmas, 8, 3282 (2001)], Phys. Plasmas 9, 1484 (2002). PDF
  31. M. K. Verma, Field theoretic calculation of renormalized-viscosity, renormalized-resistivity, and energy fluxes of magnetohydrodynamic turbulence, PRE 64, 26305 (2001). PDF
  32. G. Dar, M. K. Verma, and V. Eswaran, Energy transfer in two-dimensional magnetohydrodynamic turbulence: formalism and numerical results, Physica D 157, 207 (2001). PDF, Errata
  33. M. K. Verma, Calculation of renormalized viscosity and resistivity in magnetohydrodynamic turbulence, Phys. Plasmas 8, 3945 (2001). PDF, Errata
  34. M. K. Verma, Mean magnetic field renormalization and Kolmogorov’s energy spectrum in magnetohydrodynamic turbulence, Phys. Plasmas 6, 1455 (1999). PDF, Errata
  35. G. Dar, M. K. Verma, and V. Eswaran, Initial condition sensitivity of  global quantities in MHD turbulence, Phys. Plasmas 5, 2528 (1998). PDF
  36. M. K. Verma, D. A. Roberts, M. L. Goldstein, S. Ghosh, and W. T. Stribling, A Numerical Study of Nonlinear Cascade of Energy in Magnetohydrodynamic Turbulence, J. Geophys. Res. 101, 21619 (1996). PDF
  37. M. K. Verma, Role of turbulent dissipation and thermal convection in solar wind’s temperature evolution, J. Geophys. Res. 101, 27543 (1996). PDF
  38. M. K. Verma, Nonclassical Viscosity and Resistivity of the Solar Wind Plasma, J. Geophys. Res. 101, 27549 (1996). PDF
  39. M. K. Verma, D. A. Roberts, and M. L. Goldstein, Turbulent Heating and Temperature Evolution in the Solar Wind Plasma, J. Geophys. Res. 100, 19839 (1995). PDF
  40. M. K. Verma and J. K. Bhattacharjee, Computation of Kolmogorov’s Constant in MHD Turbulence, Europhys. Lett., 31, 195 (1995). PDF
  41. M. K. Verma and D. A. Roberts, The Radial Evolution of the Amplitudes of “Dissipationless” Turbulent Solar Wind Fluctuations, J. Geophys. Res., 98, 5625 (1993). PDF

Rotating Turbulence


  1. M. K. Sharma, M. K. Verma, and S. Chakraborty, Anisotropic energy transfers in rapidly rotating turbulence, Physics of Fluids, 31, 085117 (2019). PDF
  2. M. K. Sharma, M. K. Verma, and S. Chakraborty, On the energy spectrum of rapidly rotating forced turbulence, Physics of Fluids, 30, 115102 (2018). PDF
  3. M. K. Sharma, A. Kumar, M. K. Verma, and S. Chakraborty, Statistical features of rapidly rotating decaying turbulence: Enstrophy and energy spectra and coherent structures, Physics of Fluids, 30, 045103 (2018). PDF
  4. Sagar Chakraborty, Morgen H. Jensen, and Amartya Sarkar, On two-dimensionalization of three-dimensional turbulence in shell models, The European Physical Journal B, 73(3):447-453 (2010). Link
  5. Sagar Chakraborty and Jayanta K. Bhattacharjee, Third-order structure function for rotating three-dimensional homogeneous turbulent flow, Physical Review E, 76(3) (2007). Link
  6. Sagar Chakraborty, Signatures of two-dimensionalisation of 3d turbulence in the presence of rotation, EUROPHYSICS LETTERS, 79(1):14002 (2007). Link

Statistical Physics


  1. M. K. Verma, Microscopic Laws vs. Macroscopic Laws: Perspectives from Kinetic Theory and Hydrodynamics, Trans Indian Natl. Acad. Eng., (2020). DOI: https://doi.org/10.1007/s41403-020-00152-4 PDF
  2. M. K. Verma, Boltzmann equation and Hydrodynamic equations: Their equilibrium and nonequilibrium behaviour, Philosophical Transactions A, 378: 20190470 (2020). PDF
  3. M. K. Verma, A. Kumar, and A. Pattanayak, Stochastic Bistable Systems: Competing Hysteresis and Phase Coexistence, Journal of Experimental and Theoretical Physics, 127, No. 3, 549–557 (2018). PDF

Astrophysical Fluids


  1. Shubhadeep Sadhukhan, Himanshu Gupta, and Sagar Chakraborty, On the helium fingers in the intracluster medium, Monthly Notices of the Royal Astronomical Society, Volume 469, Issue 3, Pages 2595–2601, (2017). Link
  2. Manu Mannattil, Himanshu Gupta, and Sagar Chakraborty, Revisiting evidence of chaos in X-ray light curves: The case of GRS 1915+105, The Astrophysical Journal, 833:208 (2016). Link
  3. Himanshu Gupta, Shailendra K. Rathor, Martin E. Pessah, and Sagar Chakraborty,  Stability analysis of convection in the intracluster medium, Physics Letters A, 380:2407-2415 (2016). Link
  4. Shubhadeep Sadhukhan, Surajit Mondal, and Sagar Chakraborty, Stability of rotating self-gravitating filaments: effects of magnetic field, Monthly Notices of the Royal Astronomical Society, 459(3):3059-3067 (2016). Link
  5. Surajit Mondal and Sagar Chakraborty, Effect of a tide on the parker-jeans instability, Monthly Notices of the Royal Astronomical Society, 450(2):1874-1878 (2015). Link
  6. Martin E. Pessah and Sagar Chakraborty, The stability of weakly collisional plasmas with thermal and composition gradients, The Astrophysical Journal, 764(1):13 (2013). Link
  7. Sagar Chakraborty, Arnab Rai Choudhuri, and Piyali Chatterjee. Why does the Sun’s torsional oscillation begin before the sunspot cycle? PHYSICAL REVIEW LETTERS, 102(4) (2009). LinkErratum

Conference Proceedings


  1. M. K. Verma, Description of nature: A single law or many laws?, In proceedings of “Conference on Nonlinear Dynamics and Systems”, Indian Academy of Sciences Conference Series (2019) 2:1. (2019). PDF
  2. M. K. Verma, R. Stepanov and F. Plunian, Energy transfers in MHD turbulence and its applications to dynamo, In proceedings of “Third Russian Conference on Magnetohydrodynamics (RMHD-2018)” Magnetohydrodynamics, 55 (1/2) , p. 215 (2019). PDF
  3. V. Titov, R. Stepanov, N. Yokoi, M. K. Verma, and R. Samtaney, Cross helicity sign reversals in the dissipative scales of magnetohydrodynamic turbulence, In proceedings of “Third Russian Conference on Magnetohydrodynamics (RMHD-2018)” Magnetohydrodynamics, 55 (1/2) , p. 225 (2019). PDF
  4. A. Teimurazov, R. Stepanov, M. K. Verma, S. Barman, A. Kumar, and S. Sadhukhan, Direct numerical simulation of homogeneous isotropic turbulence with TARANG code, In proceedings of “Computational Continuum Mechanics”, 10, 474 (2017). PDF
  5. R. Stepanov, A. Teimurazov, V. Titov, M. K. Verma, S. Barman, A. Kumar, and F. Plunian, Direct numerical simulation of helical magnetohydrodynamic turbulence with TARANG code, In proceedings “Ivannikov ISPRAS Open Conference (ISPRAS)”, p. 90, IEEE (2017). PDF
  6. M. K. Verma, A. Kumar, and A. G. Chatterjee, Energy Spectrum and Flux of Buoyancy-Driven Turbulence, In proceedings “Advances in Computation, Modeling and Control of Transitional and Turbulent Flows”, Eds. T. K. Sengupta, S. Lele, K. R. Sreenivasan, and P. A. Davidson, p. 442, World Scientific (2016). PDF
  7. A. Kumar and M. K. Verma, Shell Model for Buoyancy-Driven Turbulent Flows, In proceedings “Advances in Computation, Modeling and Control of Transitional and Turbulent Flows”, Eds. T. K. Sengupta, S. Lele, K. R. Sreenivasan, and P. A. Davidson, p. 232, World Scientific (2016). PDF
  8. S. Paul and M. K. Verma, Proper Orthogonal Decomposition vs. Fourier Analysis for Extraction of Large-Scale Structures of Thermal Convection, ” In proceedings “Advances in Computation, Modeling and Control of Transitional and Turbulent Flows”, Eds. T. K. Sengupta, S. Lele, K. R. Sreenivasan, and P. A. Davidson, p. 433, World Scientific (2016). PDF
  9. M. K. Verma, A. Pandey, P. K. Mishra, and M. Chandra, Role of bulk flow in turbulent convection, In proceedings “International Conference on Complex Processes In Plasmas And Nonlinear Dynamical Systems” (Senfest), Gandinagar, AIP Conference proceedings series, CP1582, p. 224 (2014). PDF
  10. P. Wahi, P. K. Mishra, S. Paul, and M. K. Verma, Nonlinear dynamics of low-Prandtl number Rayleigh–Bénard convection, In proceedings “IUTAM Symposium on Nonlinear Dynamics for Advanced Technologies and Engineering Design”, 32, 123 (2013).
  11. M. K. Verma, A. Chatterjee, and S. Reddy, Object-oriented Pseudo-spectral code TARANG for turbulence simulation, In proceedings “ATIP/A*CRC Workshop on Accelerator Technologies for High-Performance Computing: Does Asia Lead the Way?”, Singapore, p. 4 (2012).
  12. M. K. Verma, P. K. Mishra, M. Chandra, and S. Paul, Energy spectra in Rayleigh-Benard convection, In proceedings 13th EUROMECH European Turbulence Conference, Warsaw, Poland, J. Phys.: Conf. Ser., 318, 082014 (2011). PDF
  13. M. Chandra and M. K. Verma, On flow reversals in Rayleigh-Bénard convection, In proceedings 13th EUROMECH European Turbulence Conference, Warsaw, Poland, J. Phys.: Conf. Ser., 318, 082002 (2011).
  14. R. Yadav, M. K. Verma, M. Chandra, S. Paul, and P. Wahi, Bifurcations and Chaos in Taylor-Green Dynamo, In proceedings UAH Huntsville Workshop 2010 on “Partial Ionized Plasmas Throughout The Cosmos”, Nashville, Oct. 2010, AIP Conference proceedings series, CP1366, p. 129 (2011). PDF
  15. M. K. Verma, R. Yadav, M. Chandra, S. Paul, and P. Wahi, Dynamo Transition, In proceedings International Symposium on Waves, Coherent Structures, and Turbulence in Plasmas (Kawfest), IPR Gandhinagar (Ed. A. Sen, S. Sharma, P. N. Guzdar), AIP Conference proceedings series CP1308 , p. 25 (2010). PDF
  16. K. Kumar, S. Paul, P. Pal, and M. K, Verma, A model of flow reversal in two-dimensional convection, In proceedings Recent Developments in Theoretical Physics, Kolkata, 2007 (Ed. S. Ghosh and G. Kar), p. 365, World Scientific, Singapore (2010).
  17. D. Nath, M. K. Verma, T. Lessiness, D. Carati, I. Sarris, Direct numerical simulation of dynamo transition for nonhelical MHD, In proceedings 23rd National Symposium on Plasma Science & Technology (PLASMA-2008), Mumbai 2008, Journal of Physics: Conference Series 208, 012039 (2010).
  18. R. Kumar, M. K. Verma, and V. Kumar, Anisotropic turbulence studies of liquid metal MHD flows using numerical simulations, In proceedings 23rd National Symposium on Plasma Science & Technology (PLASMA-2008), Mumbai 2008, Journal of Physics: Conference Series 208, 012007 (2010).
  19. B. Teaca, D. Carati, B. Knaepen, and M.K. Verma, Spectral analysis of energy transfers in anisotropic MHD turbulence, In proceedings 12th EUROMECH European Turbulence Conference, Marburg, Germany, 2009 (Ed. B. Eckhardt), Springer proceedings in Physics, 132, p. 841 (2009).
  20. M. K. Verma, J. J. Niemela, K. Kumar, S. Pal, and D. Carati, Large-scale behaviour of turbulent convection governed by low-dimensional fixed-points, In proceedings Advances in Turbulence XI (ETC-11), Porto, 2007 (Eds. J. M. L. M. Palma and A. Silva Lopes), p. 609 (2007).
  21. M. K. Verma, Recent developments in Rayleigh-Bénard convection, In proceedings National Conference on Nonlinear Systems and Dynamics-2006, Chennai (Eds. M. Lakshmanan, R. Sahadevan), p. 137 (2006).
  22. D. Carati, O. Debliquy, B. Knaepen, B. Teaca, and M. K. Verma, Energy fluxes and shell-to-shell transfers in MHD turbulence, In proceedings the Cyprus International Symposium on Complex Effects in Large Eddy Simulations (CY-LES 2005) (Eds. S. C. Kassinos, C. A. Langer, G. Iaccarino, and P. Moin), Lecture Notes in Computational Science and Engineering, 56, p. 401 (2007).
  23. M. K. Verma, K. Kumar, B. Kamble, Mode-to-mode energy transfers and patterns in convection, In proceedings National Conference on Nonlinear Systems and Dynamics 2005, Aligarh (2005).
  24. M. K. Verma, Incompressible turbulence as a non-local field theory, In proceedings Perspectives in Nonlinear Dynamics (PNLD 2004), Pramana-J. Phys., 64, p. 333 (2005).
  25. M. K. Verma, Energy cascade in magnetohydrodynamic turbulence, In proceedings The First National Conference on Nonlinear Systems and Dynamics, Kharagpur, 2003 (Eds. S. Banerjee et al.), p. 259 (2003).
  26. M. K. Verma, Magnetohydrodynamic turbulence in the solar wind, In proceedings PRL Golden Jubilee Workshop on Solar Physics, Udaipur, 1998 (Ed. A. Ambastha) in Bull. Astr. Soc. India, 26, p. 231 (1998).
  27. M. K. Verma and G. Dar, Probing physics of magnetohydrodynamic turbulence using direct numerical simulations, In proceedings Nonlinear Dynamics and Computational Physics, PRL Ahmedabad, 1997, (Eds. V. Sheorey), Narosa, New Delhi, p. 192 (1998).
  28. G. Dar and M. K. Verma, Parallelization of spectral MHD turbulence, In proceedings Parallel Computing Applications in Science and Engineering, Kanpur, 1997 (Ed. M. K. Verma), p. 61 (1997).

PhD Thesis


  1. Shashwat Bhattacharya, Properties of small-scale turbulence in Rayleigh-Bénard convection, PhD Thesis (2021). PDF
  2. Manohar Kumar Sharma, Statistical properties of rapidly rotating turbulence, PhD Thesis (2020). PDF
  3. Anando Gopal Chatterjee, Spectral Simulations of Hydrodynamic and Thermal Turbulence for Extreme Resolutions, PhD Thesis (2018). PDF
  4. Abhishek Kumar, Energy Spectra and Fluxes of Buoyancy-Driven Turbulent Flows, PhD Thesis (2016). PDF
  5. Ambrish Pandey, Scaling of large-scale quantities in Rayleigh-Benard convection, PhD Thesis (2016). PDF
  6. Rohit Kumar, Energy Transfers in Dynamos with Small and Large Magnetic Prandtl Numbers, PhD Thesis (2015). PDF
  7. K. Sandeep Reddy, Anisotropic Energy Spectrum, Flux and Transfers in Quasi-Static Magnetohydrodynamic Turbulence, PhD Thesis (2014). PDF
  8. Pankaj K. Mishra, Instabilities and Turbulence in Rayleigh-Bénard Convection: Numerical and Phenomenological Studies, PhD Thesis (2011). PDF
  9. Gaurav Dar, Energy Spectra and Transfers in Magnetohydrodynamic Turbulence, PhD Thesis (2000). PDF

Preprints


  1. M. K. Verma and A. Kumar, and A. Gupta, Sweeping effect and Taylor’s hypothesis via correlation function, Journal of Fluid Mechanics, (Submitted). PDF
  2. S. Vashishtha, A. G. Chatterjee, A. Kumar, and M. K. Verma, Large eddy simulations using recursive renormalization-group based eddy viscosity, (Submitted). PDF