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This short article summarizes the key features
of equilibrium and non-equilibrium aspects of
Boltzmann and hydrodynamic equations. Under
equilibrium, the Boltzmann equation generates
uncorrelated random velocity that corresponds to k2

energy spectrum for the Euler equation. The latter
spectrum is produced using initial configuration
with many Fourier modes of equal amplitudes but
with random phases. However, for a large-scale
vortex as an initial condition, earlier simulations
exhibit a combination of k−5/3 (in the inertial range)
and k2 (for large wavenumbers) spectra, with the
range of k2 spectrum increasing with time. These
simulations demonstrate an approach to equilibrium
or thermalization of Euler turbulence. In addition,
they also show how initial velocity field plays an
important role in determining the behaviour of the
Euler equation. In non-equilibrium scenario, both
Boltzmann and Navier–Stokes equations produce
similar flow behaviour, for example, Kolmogorov’s
k−5/3 spectrum in the inertial range.

This article is part of the theme issue ‘Fluid
dynamics, soft matter and complex systems: recent
results and new methods’.

1. Introduction
This paper, which is based on my talk at the
conference Discrete Simulation of Fluid Dynamics 2019
(DSFD2019), is a perspective of a fluid dynamist on
equilibrium and non-equilibrium features of Boltzmann
and hydrodynamic equations. Though this topic has
been studied for more than a hundred years, some
subtle points are often missed out due to its cross-
disciplinary nature. In addition, at present these topics
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are being intensely investigated due to a recent surge in interest in thermalization of classical and
quantum systems [1–4]. Here, I recapitulate only some of the subtle results on the equilibrium
and non-equilibrium nature of hydrodynamic systems, along with some new ones.

The Boltzmann equation plays a key role in kinetic theory, and describes the behaviour of a
collection of particles [5–10]. This equation forms the basis for non-equilibrium and equilibrium
statistical physics. For example, under equilibrium condition, the Boltzmann equation yields
Maxwell–Boltzmann distribution for molecules in a microcanonical ensemble [6–9,11].

Hydrodynamics provides another window for the description of systems with a large
number of particles. Here, we assume continuum approximation according to which the mean
free path length between two collisions of a microscopic particle is much smaller than the
system size. Turbulence, a non-equilibrium state of a flow, is often studied in a hydrodynamic
picture. Interestingly, many researchers have also studied turbulent flows using the lattice
Boltzmann method (LBM) and discrete simulation Monte Carlo (DSMC), which are variants
of the Boltzmann equation in discrete space (see [12–17] and references therein). It has been
shown that the numerical results of turbulence (flow profiles, energy spectrum, etc.) obtained
using hydrodynamic equations, LBM, and DSMC are similar (see, for example, [17,18]). These
observations indicate similar non-equilibrium behaviour in these diverse descriptions of many-body
systems. In recent years, LBM has become a popular numerical scheme for simulating many
engineering and natural flows. A major factor in favour of LBM is that they are more amenable to
parallelization than many hydrodynamic schemes, especially the spectral method.

Equilibrium behaviour of Boltzmann and hydrodynamic equations has been studied in
detail. Under equilibrium, the Boltzmann equation predicts that the velocity of the molecules
is uncorrelated in space and time, and they follow the Maxwell–Boltzmann distribution [6–8]. Its
equivalent description in hydrodynamics is force-free Euler equation that exhibits a random flow
whose energy spectrum is proportional to k2 [19,20]. This is because each Fourier mode of Euler
turbulence has equal energy.

Typically, Euler turbulence is simulated using large flow structures as an initial condition [21–
23]. These simulations exhibit a combination of the k−5/3 spectrum in the inertial range and k2 for
large wavenumbers [21,22]. With time, the range of the k2 spectrum increases at the expense of
the k−5/3 spectrum. Note that the k−5/3 spectrum is due to the energy cascade from large scales to
intermediate scales, while the k2 spectrum is due to the equilibrium behaviour at small scales. The
above process describes a thermalization scenario for Euler turbulence. Similar thermalization
processes have also been studied for Burgers turbulence [24] and for turbulent Bose–Einstein
condensate [25].

In this paper, we show that an initial configuration with many Fourier modes of equal
amplitude but random phases yield k2 energy spectrum for all the Fourier modes. This flow is
analogous to the random velocity field of the Boltzmann equation. Comparing this result with
those by Cichowlas et al. [21], we show that initial configuration affects the flow behaviour
significantly, and we can generate equilibrium and non-equilbrium behaviour in Euler turbulence
for different initial configurations.

Each topic mentioned above—Boltzmann equation, hydrodynamics, LBM, turbulence,
equilibrium versus non-equilibrium, thermalization—is very broad. In this short article, we
only attempt to contrast the equilibrium and non-equilibrium behaviour of Boltzmann and
hydrodynamic equations. More specifically, we highlight thermalization, and discuss how we can
obtain equilibrium or non-equilibrium behaviour depending on the choice of initial configuration.

The outline of the paper is as follows. In §2, we briefly introduce Boltzmann and hydrodynamic
equations. In §§ 3 and 4, we describe the key equilibrium and non-equilibrium features of these
equations. We conclude in §5.

2. Brief introduction to Boltzmann and hydrodynamic equations
In statistical physics, we deal with a large number of atoms or molecules. Let us consider
N molecules of the same species that are specified by their position (r) and velocity (u). In classical
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mechanics, it is customary to describe the dynamics of this collection in 6N-dimensional phase
space whose coordinates are (xa, ya, za, px,a, py,a, pz,a), where a is the molecule label, and xa, px,a are,
respectively, the x components of the position and momentum of ath molecule [26]. A point in the
phase space provides a unique representation of a state of the above mechanical system.

For large N, it is impractical to work in phase space due to its enormous dimensionality.
Instead, the above system is represented as N points in a six-dimensional μ-space whose
coordinates are (x, y, z, px, py, pz). The density of the μ-space points at point (r, u) and at time t
is denoted by f (r, u, t), called the distribution function [5–10]. Boltzmann [5] derived the following
equation, called the Boltzmann equation, to describe the evolution of f (r, u, t):

∂f
∂t

+ ṙ · ∇f + u̇ · ∇uf =
(

∂f
∂t

)
coll

, (2.1)

where (∂f/∂t)coll, the collision term, is typically computed for the collisions between two
molecules. If the two molecules have incoming velocities u1 and u2, and outgoing velocities u′

1
and u′

2, then it can be shown that [5,6,8,9](
∂f
∂t

)
coll

=
∫

d3p2 dΩ|u1 − u2| dσ

dΩ
( f ′

1f ′
2 − f1f2), (2.2)

where dσ/dΩ is the differential cross section, and

f1 = f (r, u1, t); f2 = f (r, u2, t) (2.3)

and

f ′
1 = f (r, u’1, t); f ′

2 = f (r, u’2, t). (2.4)

The above derivation assumes molecular chaos, according to which the velocities of the colliding
particles are uncorrelated and independent of their position. In the subsequent discussion, we
will discuss the equilibrium solution of the Boltzmann equation. Note that kinetic theory forms
a basis for many works of statistical physics, and it successfully describes many macroscopic
phenomena, for example, thermodynamics, transport processes and hydrodynamics.

It is much more convenient to work in real space with only r as an independent variable.
Here, the relevant variables are the density field (ρ) and velocity field (u). Under hydrodynamic
approximation, it is assumed that the smallest length of hydrodynamics is much larger than the
collisional mean free path length. By employing conservation of mass and linear momentum
under collisions, one can derive the following equations [7,8,10]:

∂ρ

∂t
+ ∇ · (ρu) = 0 (2.5)

and

ρ

[
∂u
∂t

+ (u · ∇)u
]

= −∇p + η∇2u + (ζ + η/2)∇(∇ · u) + Fu, (2.6)

where p is the pressure field, Fu is the external force field, and η and ζ are the viscous parameters.
The above equations are the continuity and Navier–Stokes equations, respectively. In this paper,
we focus on incompressible flows for which ∇ · u = 0. Also note that η and ζ vanish for the Euler
equation, and Fu = 0 for the force-free case.

In the next two sections, we consider some generic equilibrium and non-equilibrium behaviour
of the Boltzmann equation and its hydrodynamic counterpart.

3. Equilibrium behaviour
Thermodynamics and equilibrium statistical physics deal with systems under equilibrium. Using
kinetic theory, Boltzmann showed that the distribution function for an equilibrium configuration
is Gaussian in u [5,6,8,9]. The arguments are as follows. For simplicity, we assume that the system
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is made of one kind of molecule. For a homogeneous, isotropic, steady, and force-free (Fu = 0)
system, the left-hand side of equation (2.1) vanishes. Therefore, (∂f/∂t)coll = 0, and hence

f ′
1f ′

2 = f1f2, (3.1)

one of whose trivial homogeneous and isotropic solutions is [7,8,10]

f (u) =
(

m
2πkBT

)3/2
exp

(
− mu2

2kBT

)
, (3.2)

where m is the mass of the molecules, kB is Boltzmann constant, and T is the temperature of the
system. On average, each molecule has an equal kinetic energy: m〈u2〉/2 = kBT. The velocities
of the molecules are uncorrelated with each other. In addition, the energy exchange among the
molecules satisfies a detailed balance condition. That is, on average, a molecule neither receives
nor gives energy to another molecule.

In hydrodynamic descriptions, the Euler equation, which has ν = 0, exhibits equilibrium
behaviour under certain conditions [27]. Under equilibrium, the real-space velocity field (at equal
time) is uncorrelated, i.e.

〈ui(r, t)uj(r
′, t)〉 = 〈u2〉δijδ(r − r′). (3.3)

Here, u(r, t) is interpreted as the average velocity of many molecules in a small region near the
point r and at time t. Using the Wiener–Khinchin theorem, we deduce that the modal kinetic
energy

C(k) = 1
2
〈|u(k)|2〉 = E

N
, (3.4)

where E is the total energy of the system that is evenly distributed across N available Fourier
modes. The above spectrum represents white noise. If Fourier modes reside in a wavenumber
sphere of radius of kmax, then, in three-dimensional (3D) space,

N = 4
3 πk3

max. (3.5)

For the above system, called the truncated Euler equation, the shell spectrum is [20]

E(k) = 3E

k3
max

k2. (3.6)

For two-dimensional (2D) hydrodynamics, the corresponding shell spectrum is

E(k) = 2E

k2
max

k (3.7)

and

N = πk2
max. (3.8)

The above relations were first derived by Lee [19] and Kraichnan [20] using Liouville’s theorem
and ergodic hypothesis. The above energy spectra get altered in the presence of kinetic helicity in
3D or enstrophy in 2D [20], but this discussion is beyond the scope of this paper.

In kinetic theory, the mean free path length is the only relevant length scale (apart from trivial
molecular size). The corresponding hydrodynamic equation, the Euler equation, has a range of
wavenumbers (up to kmax). This is because generation of an ideal random uncorrelated signal of
equation (3.3) requires an infinite number of Fourier modes. Note, however, that the velocity field
becomes correlated at the scale of molecular size, denoted by b. Therefore, equation (3.3) could be
replaced by

〈ui(r, t)uj(r
′, t)〉 = 〈u2〉δij

1
b
θ (b − |r − r′|), (3.9)

where θ (·) is the step function. The above definition provides an estimate of the wavenumber
cut-off kmax as 1/b.
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In the Fourier-space version of the Euler equation, the energy transfer from a Fourier mode
to another Fourier mode vanishes statistically. It follows from the mode-to-mode energy transfer
formula [28,29]:

Suu(k|p|q) = �[{k · u(q)}{u(p) · u∗(k)}], (3.10)

which is the energy transfer from mode u(p) to mode u(k′) with the mediation of mode u(q).
Verma [30] computed the above quantity using field-theory and showed that for non-helical
flows, ensemble average of Suu(k|p|q) is

〈Suu(k|p|q)〉 = 1
denr

[k′ sin(β − γ )C(p)C(q) + p sin(γ − α)C(k′)C(q)

+ q sin(α − β)C(k′)C(p) + k′ sin βC(q){C(k′) − C(p)}], (3.11)

where
denr = ν(k)k2 + ν(p)p2 + ν(q)q2, (3.12)

and α, β, γ are the respective internal angles across k, p, q in a triangle formed by vectors (k, p, q).
In equation (3.11), we substitute C(k) of equation (3.4), and employ the following identity:

sin α

k
= sin β

p
= sin γ

q
, (3.13)

that yields
〈Suu(k|p|q)〉 = 0. (3.14)

Thus we verify detailed balance of energy transfer for the equilibrium configuration of the Euler
equation.

We performed a numerical simulation to test the aforementioned equilibrium behaviour of the
Euler equation. For the same, we simulated a force-free incompressible Euler equation on a 1283

grid using pseudospectral code TARANG [31,32]. We imposed periodic boundary conditions on
all the walls. Importantly, for the initial condition, we took the amplitudes of all the Fourier modes
to be a constant (E/N = 10−5), and set their phases as random. In particular, we chose [30]

u(k) = A exp(iφ(k))ê2(k), (3.15)

where ê2 is the component of the velocity field in the Craya–Herring basis [30], and the phase
φ(k) is a random variable taken from a uniform distribution in the range [0, 2π ]. The above choice
ensures zero kinetic helicity for the flow. The above initial condition is chosen so as to nullify the
energy transfers across scales during the initial phase itself (see equation (3.14)).

The flow is evolved until t = 1 in the unit of L/U, where L, U are the large-scale length and
velocity, respectively. In figure 1, we plot the energy spectrum E(k) for the final flow profile.
Clearly, E(k) ∼ k2, consistent with equation (3.6) for flows in equilibrium. As shown above,
〈S(k|p|q)〉 = 0 for E(k) ∼ k2. Thus, we deduce that the energy transfers among modes remain zero
during the evolution, thus respecting the detailed balance of energy transfer. Interestingly, for the
random velocity field, the nonlinear term in Euler turbulence yields zero energy transfer among
any pair of modes, leading to equilibrium behaviour. This is an example of a nonlinear system that
yields random behaviour. Contrast this with a view that nonlinear interactions typically induce
order out of chaos, as proposed by Prigogine [33,34].

There have been earlier numerical simulations that attempted to verify the above energy
spectrum [21,35,36]. In most of these simulations, small wavenumber Fourier modes were
excited as the initial condition. For example, Cichowlas et al. [21] simulated Euler turbulence on
2562, 5123, 10243, 16003 grids with initial condition as

u(r, t = 0) = x̂ sin x cos y cos z − ŷ cos x sin y cos z, (3.16)

which is a Taylor–Green vortex, whose extent is the box size. They observed that for the developed
flow, the energy spectrum E(k) is a combination of Kolmogorov’s k−5/3 spectrum at intermediate
wavenumbers, and k2 at large wavenumbers. See figure 2 for an illustration.
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Figure 1. For a spectral simulation of force-free Euler equation, the energy spectrum E(k)∼ k2 at t = 1 in non-dimensional
time unit. (Online version in colour.)
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Figure 2. (a) For a Euler turbulence simulation on a 16003 grid, the energy spectrum at t = 6.5, 8, 10, 14 in non-dimensional
time units (pink, orange, purple and brown curves, respectively; or in increasing amplitudes at large wavenumbers). (b) The
energy spectra for 2562, 5123, 10243, 16003 grids at t = 8 (green, yellow, blue and red curves, respectively; or in decreasing
amplitudes at largewavenumbers). From Cichowlas et al. [21]. Reproducedwith permission fromAPS. (Online version in colour.)

In the flow generated in the simulations of Cichowlas et al. [21], due to the dominance of large
scales, the kinetic energy cascades to intermediate scales, and then to small scales. It can be shown
that for the Euler equation, the energy flux for a wavenumber sphere of radius k0 is given by

Π (k0, t) = − d
dt

∫ k0

0
dkE(k, t). (3.17)
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Because of the loss of energy in the sphere, the flux Π (k0, t) is positive. Consequently, the
interacting modes are not in equilibrium. After some time, the intermediate scales exhibit the
Kolmogorov’s k−5/3 spectrum. However, the Fourier modes at small scales are in equilibrium,
hence E(k) ∼ k2 for these scales. As time progresses, the k2 regime increases at the expense of
the k−5/3 regime (figure 2a). We expect an asymptotic k2 spectrum that represents the asymptotic
equilibrium state. Thus, the above numerical results of Cichowlas et al. [21] describe the approach
to equilibrium in Euler turbulence. We remark that the existence of energy flux breaks the detailed
balance of energy transfer for the modes in the intermediate range. The energy flux vanishes
asymptotically as we approach the equilibrium state. Interestingly, the above description is in
terms of energy flux, not entropy, which is often employed in non-equilibrium statistical physics.

The above example demonstrates the strong effects of initial configuration on the behaviour
of Euler turbulence. Our k2 spectrum and the mixed spectrum (k−5/3 and k2) of Cichowlas
et al. [21] differ primarily due to the choice of initial velocity configuration. Random initial velocity
configuration with equal amplitudes for all the Fourier modes yields a k2 spectrum without
any energy flux, but initial configuration with large-scale velocity field yields a mixed energy
spectrum. The later flow is more ordered and is in a non-equilibrium state, and it evolves towards
the equilibrium configuration with asymptotic k2 spectrum.

It is important to note that the Kolmogorov flow, in which forcing is employed at intermediate
scales, also exhibits E(k) ∼ k2 for wavenumbers smaller than the forcing wavenumbers [35,36]; it
is believed that the small wavenumber modes are in equilibrium. It is an interesting example in
which the large-scale structures are in equilibrium, while the inertial and small-scale modes are
not in equilibrium.

In the next section, we will describe the non-equilibrium behaviour of Boltzmann and Navier–
Stokes equations.

4. Non-equilibrium behaviour
On an introduction of viscosity, hydrodynamic systems exhibit non-equilibrium behaviour.
Some of the leading examples of such flows are hydrodynamic turbulence, turbulent thermal
convection, magnetohydrodynamic turbulence, etc. [23,27]. In such systems, the fluid is typically
forced at large scales, while the viscous force destroys the fluid kinetic energy at small scales [23,
27,37]. Note that the scale separation between the energy injection wavenumber and dissipation
wavenumber induces a kinetic energy flux that breaks the detailed balance. Therefore, the
above turbulent systems are far from equilibrium. In the following discussion we contrast the
equilibrium and non-equilibrium behaviour of hydrodynamic turbulence using energy spectrum,
energy flux and velocity correlations as diagnostics.

Hydrodynamic turbulence exhibits a constant energy flux and k−5/3 energy spectrum in the
inertial range, i.e. [23,27,37]

Π (k) = const = εu (4.1)

and
E(k) = KKoε

2/3
u k−5/3, (4.2)

where εu is the energy dissipation rate.1 Consequently, the velocity field of a turbulent flow
exhibits nonzero correlation, in contrast to equation (3.3) for the equilibrium case. It can be easily
shown that [23,27,37]

〈u(r) · u(r + l))〉 = 〈u2〉 − C(εul)2/3, (4.3)

where C is a constant. Also, in a turbulent flow, the distance between two nearby particles
increases with time as t3/2 (called Taylor diffusion) [38], in strong contrast to the corresponding
variation as

√
t for the equilibrium case [8]. In addition, we can determine the arrow of time

in turbulent systems using energy flux [39,40], while time is frozen in equilibrium systems.
The particle trajectories also provide a measure of irreversibility or non-equilibrium nature of

1Contrast this with equilibrium hydrodynamics that exhibits Π(k) = εu = 0 and E(k) ∼ k2.
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the flow [41–43]. Note that in the dissipation range of the Navier–Stokes equation, the energy
spectrum is exponential in k. Pao [44] argued the inertial-dissipation energy spectrum to be of the
form k−5/3 exp(−(k/kd)4/3), where kd is Kolmogorov’s wavenumber; Verma et al. [45] verified this
scaling using numerical simulation. The energy transferred to the microscopic scales heats up the
molecules. Hence, we can argue that the microscopic part of the system is in quasi-equilibrium
due to slow heating. Contrast the disipative spectrum k−5/3 exp(−(k/kd)4/3) with the k2 spectrum
for large k’s of Euler turbulence [21].

The aforementioned non-equilibrium behaviour of fluid flows has been observed in many
experiments and numerical simulations of hydrodynamics. Due to its high accuracy, the
pseudospectral method [46] is often employed for testing Kolmogorov’s theory of turbulence.
Refer to [23,27], and references therein for numerous hydrodynamic results. Since the present
paper is part of the proceedings of the conference on Discrete Simulations of Fluid Dynamics,
I describe some of the recent discrete simulations that reproduce Kolmogorov’s k−5/3 energy
spectrum. In general, LBM implementations are second-order accurate, but their accuracy can
be improved using advanced algorithms, as in finite-difference schemes [14].

Though there are many methods to simulate particles in kinetic theory, here we present some
of the recent results that employ Direct Simulation Monte Carlo (DSMC) [16], and LBM [12,14].
Gallis et al. [17] simulated three-dimensional turbulence using DSMC and spectral element
methods. For the initial condition, they used a large-scale Taylor–Green vortex of equation (3.16).
They reported a close agreement between the DSMC and spectral results. For example, they
obtained Kolmogorov’s k−5/3 energy spectrum in both the methods. At the final time, the flow
profiles of the two runs are very similar.

In LBM, the Bhatnagar–Gross–Krook (BGK) procedure is adopted to obtain local equilibrium
in the flow [12–15]. Many numerical simulations demonstrate that both hydrodynamic
simulations and LBM simulations yield similar results, for example, k−5/3 spectrum for
3D hydrodynamic turbulence (see [12–15,17,18] and references therein). Martinez et al. [18]
performed fluid simulations of 2D hydrodynamic turbulence using LBM and spectral method
in a periodic box of size (2π )2, and compared the results in detail. They used a 5122 grid for LBM
and a 2562 grid for the spectral simulation. For the initial condition, they employed two sharp
vortices of opposite signs. The Reynolds number of the flow based on the relaxation parameter
was 10000. They observed remarkable similarities between the LBM and spectral results, thus
illustrating functional equivalence of the two methods.

The discrete methods are less accurate compared to the pseudo-spectral scheme. Still, given
sufficiently large lattice, discrete methods capture the essential non-equilibrium features of
turbulence. This is due to fact that the presence of large-scale structures and small-scale
dissipation naturally generates the energy cascade, and hence Kolmogorov’s k−5/3 spectrum.
Thus, inaccurate methods too capture this robust feature. Note, however, that discrete methods
require larger grids than the spectral method due to the lower accuracy of discrete methods.

It is important to note that numerical implementations of LBM and DSMC have distinct
benefits over their hydrodynamic counterparts [12–15,47,48]. For example, computer programs
based on LBM and DSMC can be efficiently parallelized; they can also take advantage of a large
number of cores available in graphical processing units (GPUs). In addition, implementation of
complex boundary conditions is easier in LBM than in a spectral method [14,15,32]. As a result,
LBM is often employed to simulate numerous complex engineering flows, e.g. flows around
automobiles, cooling of computer CPU, etc. [14,15]. This extensive and important topic however
is beyond the scope of this paper.

In Kolmogorov flows where the forcing is employed at the intermediate scales, the spectrum
beyond the forcing band is similar to that in hydrodynamic turbulence [35,36]. That is,
we obtain k−5/3 spectrum in the inertial range, and an exponential tail in the dissipative
range. As described in the last section, the small wavenumber modes exhibit k2 spectrum for
Kolmogorov flows.

We conclude in the next section.
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Figure 3. Schematic energy spectra and fluxes for various kinds of flows (a) Euler-1: unforced Euler flow that has random
uncorrelated initial configuration (white noise). (b) K41: turbulent flow of Kolmogorov [37] model. Such flows have small
viscosity, and they are forced at large scales. (c) Euler-2: unforced Euler flowwhose initial condition is large-scale Taylor–Green
vortex. (d) Kolmogorov-flow: flow that is forced at an intermediate scale. (Online version in colour.)

5. Summary and discussions
In this paper, we reviewed some of the important equilibrium and non-equilibrium properties of
Boltzmann and hydrodynamic equations. Boltzmann, Gibbs, and others demonstrated that the
particle velocity under equilibrium configuration is given by Maxwell–Boltzmann distribution,
and that the total energy of the system is equipartitioned among all the particles [5]. Interestingly,
similar behaviour is observed in the force-free Euler equation for a random initial configuration;
such systems exhibit steady equilibrium behaviour with energy spectrum of k2 [19,20]. Thus,
both Boltzmann and hydrodynamic equations exhibit equilibrium behaviour for a random initial
condition. We illustrate schematic energy spectrum and flux for such flows in figure 3a.

In the presence of viscosity, the Navier–Stokes equation (hydrodynamic description) exhibits
non-equilibrium behaviour. According to Kolmogorov’s famous theory of forced hydrodynamic
turbulence, the energy injected at large scales is transferred to the intermediate scales, and then to
small scales. The steady-state energy spectrum in the inertial range is proportional to k−5/3, while
that in the dissipation range is of the form k−5/3 exp(−(k/kd)4/3). See figure 3b for an illustration.
The large-scale forcing and initial configuration, as well as the viscous dissipation at small scales,
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play a crucial role in the above behaviour. Decaying turbulence with large-scale structures also
exhibits k−5/3 spectrum in the inertial range. Interestingly, the above features have also been
observed in kinetic theory, mainly LBM [12–15] and discrete simulation Monte Carlo (DSMC) [17].
Note that Boltzmann’s equation is derived using microscopic dynamics. Still, the coarse-grained
solution of Boltzmann’s equation exhibits turbulence properties under appropriate conditions.

In the force-free Euler equation, which has no external force and viscosity, an initial excitation
at large scales yields a combination of Kolmogorov’s k−5/3 spectrum in the intermediate range
and k2 spectrum in the dissipative range, as illustrated in figure 3c. The k−5/3 spectrum is due
to the energy transfer from large scales to intermediate scales, while the k2 spectrum at small
scales is attributed to the equilibrium behaviour at these scales. With time, the range of k2

spectrum increases at the expense of the k−5/3 regime. This process illustrates thermalization
of Euler turbulence in terms of energy flux and spectrum, rather than entropy. Based on the
above observations, we expect that the Boltzmann equation without dissipation to yield a similar
steady state. Note however that most of the LBM simulations involve a finite dissipation. Also, a
decaying turbulence with random initial velocity at all scales may exhibit a k2 spectrum.

The above observations indicate that initial configuration plays a major role in determining
system’s behaviour. A noisy initial excitation at all scales is expected to yield equilibrium
behaviour [11]. However, initial excitation at large scales yield non-equilibrium behaviour.
Thus, the energy transfers across various scales play a major role in creating a non-equilibrium
behaviour. It may be interesting to relate these fluxes to the entropy production mechanism
and irreversibility proposed by Prigogine [33,34]. External forcing too plays an important role
in setting equilibrium or non-equilibrium behaviour in flows. For example, forcing at large
scales sets up non-equilibrium energy cascade prescribed in Kolmogorov’s theory of turbulence.
However, forcing at an intermediate scale, say near k = kf as in Kolmogorov flow, yields k2

spectrum for k < kf , and a combination of k−5/3 and exponential spectrum for k > kf . See figure 3d
for an illustration. Also, various forms of random forcing are expected to yield different energy
spectra [49].

The results on Euler turbulence provide several interesting insights into the thermalization
process. They demonstrate the importance of initial condition for the thermalization process.
In addition, these results also indicate that energy transfers or energy flux could be a
good diagnostics for understanding thermalization in other setups, for example, quantum
systems [2–4].

Though numerical simulations using LBM and hydrodynamic methods exhibit similar
behaviour, it is not certain if some of the analytical hydrodynamic laws could be derived using
the Boltzmann equation alone. Kolmogorov [37] derived the four-fifth law of turbulence starting
from Navier–Stokes equations under the assumption of large-scale forcing and small viscosity.
Also, the nonlinear term generates energy cascade from the large scales to intermediate scales,
and then to the viscous scales.

Although Navier–Stokes equations can be derived from the Boltzmann equation, it is still
very cumbersome, if not impossible, to derive the energy flux in the framework of kinetic
theory. The energy flux is a multi-scale energy transfer, and it is difficult to formulate it using
the microscopic viewpoint alone. Note however that the coarse-grained velocity field can be
computed by averaging over particle velocities of lattice-Boltzmann simulation. Gallis et al. [17]
computed the energy spectrum of the flow using this procedure. However, the k−5/3 spectrum
reported by Gallis et al. is based on post-processing; it is not the same as deriving Kolmogorov’s
four-fifth law from the first principle.

The above phenomenon is analogous to the theory of phase transition proposed by Landau
and Wilson [50]. Some spin systems exhibit paramagnetic to ferromagnetic transition on decrease
of temperature. So far, such phase transition has not been derived analytically for three-
dimensional Ising spins. However, Wilson [51] constructed the free energy of the system using
coarse-grained magnetization, and successfully demonstrated the existence of paramagnetic to
ferromagnetic phase transition. Here, Ising spins form microscopic description (analogous to
kinetic theory), while coarse-grained magnetization is the macroscopic description, similar to
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fluid picture of the Navier–Stokes equation. This example also demonstrates that macroscopic
descriptions reveal certain natural laws that are very difficult to derive using microscopic theory
alone.

In a similar manner, it will be very cumbersome to derive Taylor’s diffusion using kinetic
theory, but it is straightforward to do so using Kolmogorov’s theory of turbulence. Verma [52,53]
argues that the structures in nature, as well as their laws, are organized hierarchically. In
this framework, kinetic theory (or Boltzmann’s equation) describes dynamics at microscopic
scales, while hydrodynamic equations are useful for describing phenomena at a coarser level.
Description of flows at planetary and galactic scales requires even further coarse-grained pictures.
This hierarchical prescription tends to resolve some of the aforementioned difficulties.

In summary, both Boltzmann and hydrodynamic equations capture multiscale features of
turbulent flows. These methods have their own practical advantages that become handy for
simulating engineering and natural flows.
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