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Abstract

In this review article we will describe recent developments in statistical theory of magnetohydrodynamic (MHD)
turbulence. Kraichnan and Iroshnikov first proposed a phenomenology of MHD turbulence whereAlfvén time-scale
dominates the dynamics, and the energy spectrumE(k) is proportional tok−3/2. In the last decade, many numerical
simulations show that spectral index is closer to5

3, which is Kolmogorov’s index for fluid turbulence. We review
recent theoretical results based on anisotropy and Renormalization Groups which support Kolmogorov’s scaling
for MHD turbulence.

Energy transfer among Fourier modes, energy flux, and shell-to-shell energy transfers are important quantities
in MHD turbulence. We report recent numerical and field-theoretic results in this area. Role of these quantities in
magnetic field amplification (dynamo) are also discussed. There are new insights into the role of magnetic helicity
in turbulence evolution. Recent interesting results in intermittency, large-eddy simulations, and shell models of
magnetohydrodynamics are also covered.
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1. Introduction

Fluid and plasma flows exhibit complex random behavior at high Reynolds number; this phenomena
is called turbulence. On the Earth this phenomena is seen in atmosphere, channel and rivers flow, etc.
In the universe, most of the astrophysical systems are turbulent. Some of the examples are solar wind,
convective zone in stars, galactic plasma, accretion disk etc.

Reynolds number, defined asUL/� (U is the large-scale velocity,L is the large length scale, and
� is the kinematic viscosity), has to be large (typically 2000 or more) for turbulence to set in. At large
Reynolds number, there are many active modes which are nonlinearly coupled. These modes show random
behavior along with rich structures and long-range correlations. Presence of large number of modes and
long-range correlations makes turbulence a very difficult problem that remains largely unsolved for more
than hundred years.

Fortunately, random motion and presence of large number of modes make turbulence amenable to
statistical analysis. Notice that the energy supplied at large-scales(L) gets dissipated at small scales,
sayld. Experiments and numerical simulations show that the velocity differenceu(x + l) − u(x) has a
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universal probability density function (pdf) forld>l>L. That is, the pdf is independent of experimental
conditions, forcing and dissipative mechanisms, etc. Because of its universal behavior, the above quantity
has been of major interest among physicists for last 60 years. Unfortunately, we do not yet know how
to derive the form of this pdf from the first principle, but some of the moments have been computed
analytically. The range of scalesl satisfyingld>l>L is called inertial range.

In 1941 Kolmogorov[80–82]computed an exact expression for the third moment of velocity differ-
ence. He showed that under vanishing viscosity, third moment for velocity difference for homogeneous,
isotropic, incompressible, and steady-state fluid turbulence is

〈(u||(x + l)− u||(x))3〉 = 4

5
�l ,

where|| is the parallel component alongl, 〈·〉 stands for ensemble average, and� is the energy cascade
rate, which is also equal to the energy supply rate at large scaleL and dissipation rate at the small scale
ld. Assuming fractal structure for the velocity field, and� to be constant for alll, we can show that the
energy spectrumE(k) is

E(k)=KK0�2/3k−5/3 ,

whereKK0 is a universal constant, called Kolmogorov’s constant, andL−1>k>l−1
d . Numerical simula-

tions and experiments verify the above energy spectrum apart from a small deviation called intermittency
correction.

Physics of magnetohydrodynamic (MHD) turbulence is more complex than fluid turbulence. There
are two coupled vector fields, velocityu and magneticb, and two dissipative parameters, viscosity and
resistivity. In addition, we have mean magnetic fieldB0 which cannot be transformed away (unlike mean
velocity field which can be transformed away using Galilean transformation). The mean magnetic field
makes the turbulence anisotropic, further complicating the problem. Availability of powerful computers
and sophisticated theoretical tools have helped us understand several aspects of MHD turbulence. In the
last 10 years, there have been major advances in the understanding of energy spectra and fluxes of MHD
turbulence. Some of these theories have been motivated by Kolmogorov’s theory for fluid turbulence.
Note that incompressible turbulence is better understood than compressible turbulence. Therefore, our
discussion on MHD turbulence is primarily for incompressible plasma.In this paper we focus on the
universal statistical properties of MHD turbulence, which are valid in the inertial range. In this paper
we will review the statistical properties of the following quantities:

1. The inertial-range energy spectrum for MHD turbulence.
2. Various energy fluxes in MHD turbulence.
3. Energy transfers between various wavenumber shells.
4. Anisotropic effects of mean magnetic field.
5. Structure functions〈(u||(x+ l)−u||(x))n〉 and〈(b||(x+ l)−b||(x))n〉, whereu|| andb|| are components

of velocity and magnetic fields along vectorl.
6. Growth of magnetic field (dynamo).

Currently energy spectra and fluxes of isotropic MHD turbulence is quite well established, but anisotropy,
intermittency, and dynamo is not yet fully understood. Therefore, items 1–3 will be discussed in greater
detail.
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Basic modes of incompressible MHD are Alfvén waves, which travel parallel and antiparallel to the
mean magnetic field with speedB0. The nonlinear terms induce interactions among these modes. In
mid-60s Kraichnan[85] and Iroshnikov[77] postulated that the time-scale for the nonlinear interaction
is proportional toB−1

0 , leading toE(k) ∼ B
1/2
0 k−3/2. However, research in last 10 years[35,69,108,179]

show that the energy spectrum of MHD turbulence Kolmogorov-like (k−5/3). Current understanding is
that Alfvén waves are scattered by “local mean magnetic field”B0(k) ∼ k−1/3, leading to Kolmogorov’s
spectrum for MHD turbulence. The above ideas will be discussed in Sections 7 and 9.

In MHD turbulence there are energy exchanges among the velocity–velocity, velocity–magnetic, and
magnetic–magnetic modes. These exchanges lead to energy fluxes from inside of the velocity/magnetic
wavenumber sphere to the outside of the velocity/magnetic wavenumber sphere. Similarly we have
shell-to-shell energy transfers in MHD turbulence. We have developed a new formalism called “mode-
to-mode” energy transfer rates, using which we have computed energy fluxes and shell-to-shell energy
transfers numerically and analytically[45,181,183,184]. The analytic calculations are based on field-
theoretic techniques. Note that some of the fluxes and shell-to-shell energy transfers are possible only
using “mode-to-mode” energy transfer, and cannot be computed using “combined energy transfer” in a
triad [100].

Many analytic calculations in fluid and MHD turbulence have been done using field-theoretic tech-
niques. Even though these methods are plagued with some inconsistencies, we get many meaningful
results using them. In Sections 7, 8, and 9 we will review the field-theoretic calculations of energy
spectrum, energy fluxes, and shell-to-shell energy transfers.

Growth of magnetic field in MHD turbulence (dynamo) is of central importance in MHD turbulence
research. Earlier dynamo models (kinematic) assumed a given form of velocity field and computed the
growth of large-scale magnetic field. These models do not take into account the back-reaction of magnetic
field on the velocity field. In last 10 years, many dynamic dynamo simulations have been done which
include the above-mentioned back reaction. Role of magnetic helicity (a·b, wherea is the vector potential)
in the growth of large-scale magnetic field is better understood now. Recently, Field et al.[53], Chou[39],
Schekochihin et al.[158] and Blackman[19] have constructed theoretical dynamical models of dynamo,
and studied nonlinear evolution and saturation mechanisms.

As mentioned above, pdf of velocity difference in fluid turbulence is still unsolved. We know from
experiments and simulation that pdf is close to Gaussian for small�u, but is nongaussian for large�u. This
phenomena is called intermittency. Note that various moments called Structure functions are connected
to pdf. It can be shown that the structure functions are related to the “local energy cascade rate”�(k).
Some phenomenological models, notably by She and Leveque[159] based on log-Poisson process, have
been developed to compute�(k); these models quite successfully capture intermittency in both fluid and
MHD turbulence. The predictions of these models are in good agreement with numerical results. We will
discuss these issues in Section 11.

Numerical simulations have provided many important data and clues for understanding the dynamics
of turbulence. They have motivated new models, and have verified/rejected existing models. In that sense,
they have become another type of experiment, hence commonly termed as numerical experiments. Modern
computers have made reasonably high-resolution simulations possible. The highest resolution simulation
in fluid turbulence is on 40963 grid (e.g., by Gotoh[71]), and in MHD turbulence is on 10243 grid (e.g.,
by Haugen et al.[74]). Simulations of Biskamp[15,132], Cho et al.[35], Maron and Goldreich[108]
have verified5

3 spectrum for MHD turbulence. Dar et al.[45] have computed various energy fluxes in 2D
MHD turbulence. Earlier, based on energy fluxes,Verma et al.[191]could conclude that Kolmogorov-like
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phenomenology models MHD turbulence better that Kraichnan and Iroshnikov’s phenomenology. Many
interesting simulations have been done to simulate dynamo, e.g., Chou[40] and Brandenburg[22].

Because of large values of dissipative parameters, MHD turbulence requires large length and velocity
scales. This make terrestrial experiments on MHD turbulence impossible. However, astrophysical plas-
mas are typically turbulent because of large length and velocity scales. Taking advantage of this fact,
large amount of solar-wind in situ data have been collected by spacecrafts. These data have been very
useful in understanding the physics of MHD turbulence. In fact, in 1982 Matthaeus and Goldstein[112]
had shown that solar wind data favors Kolmogorov’sk−5/3 spectrum over Kraichnan and Iroshnikov’s
k−3/2 spectrum. Solar wind data also shows that MHD turbulence exhibits intermittency. Some of the
observational results of solar wind will discussed in Section 5. In addition to the above topics, we will also
state the current results on the absolute equilibrium theories, decay of global quantities, two-dimensional
turbulence, shell model of MHD turbulence, compressible turbulence, etc.

Literature on MHD turbulence is quite extensive. Recent book “Magnetohydrodynamic Turbulence”
by Biskamp[14] covers most of the basic topics. MHD turbulence normally figures as one of the chapters
in many books on Magnetohydrodynamics, namely Biskamp[11], Priest[152], Raichoudhury[41], Shu
[161], Cowling[42], andVedenov[176].The recent developments are nicely covered by the review articles
in a book edited by Falgarone and Passot[52]. Some of the important review articles are by Montgomery
[131], Pouquet[148], Krommes[92,93]. On dynamo, the key references are books by Moffatt[125]
and Krause and Rädler[91], and recent review articles[25,67,155]. Relatively, fluid turbulence has a
larger volume of literature. Here we will list only some of the relevant ones. Leslie[101], McComb
[119–121], Zhou et al.[201], and Smith and Woodruff[163] have reviewed field-theoretic treatment
of fluid turbulence. The recent books by Frisch[61] and Lesieur[100] cover recent developments and
phenomenological theories. The review articles by Orszag[139], Kraichnan and Montgomery[90], and
Sreenivasan[164] are quite exhaustive.

In this review paper, we have focussed on statistical theory of MHD turbulence, specially on energy
spectra, energy fluxes, and shell-to-shell energy transfers.These quantities have been analyzed analytically
and numerically.A significant portion of the paper is devoted to self-consistent field-theoretic calculations
of MHD turbulence and “mode-to-mode” energy transfer rates because of their power of analysis as well
as our familiarity with these topics. These topics are new and are of current interest. Hence, this review
article complements the earlier work. Universal laws are observed in the inertial range of homogeneous
and isotropic turbulence. Following the similar approach, in analytic calculations of MHD turbulence,
homogeneity and isotropy are assumed except in the presence of mean magnetic field.

To keep our discussion focussed, we have left out many important topics like coherent structures,
astrophysical objects like accretion disks and Sun, transition to turbulence, etc. Our discussion on com-
pressible turbulence and intermittency is relatively brief because final word on these topics still awaited.
Dynamo theory is only touched upon; the reader is referred to the above-mentioned references for a
detailed discussion. In the discussion on the solar wind, only a small number of results connected to
energy spectra are covered.

The outline of the paper is as follows: Section 2 contains definitions of various global and spectral
quantities along with their governing equations. In Section 3 we discuss the formalism of “mode-to-
mode” energy transfer rates in fluid and MHD turbulence. Using this formalism, formulas for energy
fluxes and shell-to-shell energy transfer rates have been derived. Section 4 contains the existing MHD
turbulence phenomenologies which include Kraichnan’s3

2 model; Kolmogorov-like models of Goldreich
and Sridhar. Absolute equilibrium theories and Selective decay are also discussed here. In Section 5
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we review the observed energy spectra of the solar wind. Section 6 describes pseudo-spectral method
along with the numerical results on energy spectra, fluxes, and shell-to-shell energy transfers. In these
discussions we verify which of the turbulence phenomenologies are in agreement with the solar wind
data and numerical results.

Next three sections cover applications of field-theoretic techniques to MHD turbulence. In Section 7, we
introduce renormalization-group analysis of MHD turbulence, with an emphasis on the renormalization
of “mean magnetic field”[179], viscosity and resistivity[180]. In Section 8, we compute various energy
fluxes and shell-to-shell energy transfers in MHD turbulence using field-theoretic techniques. Here we also
review eddy-damped quasi-normal Markovian (EDQNM) calculations of MHD turbulence. In Section
9 we discuss the anisotropic turbulence calculations of Goldreich and Sridhar[69,165]and Galtiers et
al. [63] in significant details. The variations of turbulence properties with space dimensions have been
discussed.

In Section 10 we briefly mention the main numerical and analytic results on homogeneous and isotropic
dynamo. We include both kinematic and dynamic dynamo models, with emphasis being on the later.
Section 11 contains a brief discussion on intermittency models of fluid and MHD turbulence. Section 12
contains a brief discussion on the large-eddy simulations, decay of global energy, compressible turbulence,
and shell model of MHD turbulence. Appendix A and contains the definitions of Fourier series and
transforms of fields in homogeneous turbulence. Appendixes B and C contain the Feynman diagrams
for MHD turbulence; these diagrams are used in the field-theoretic calculations. In the last Appendix D,
we briefly mention the main results of spectral theory of fluid turbulence in 2D and 3D.

2. MHD: Definitions and governing equations

2.1. MHD approximations and equations

MHD fluid is quasi-neutral, i.e., local charges of ions and electrons almost balance each other. The
conductivity of MHD fluid is very high. As a consequence, the magnetic field lines are frozen, and the
matter (ions and electrons) moves with the field.A slight imbalance in the motion creates electric currents,
that in turn generates the magnetic field. The fluid approximation implies that the plasma is collisional,
and the equations are written for the coarse-grained fluid volume (called fluid element) containing many
ions and electrons. In the MHD picture, the ions (heavier particle) carry momentum, and the electrons
(lighter particle) carry current. In the following discussion we will make the above arguments quantitative.
In this paper we will use CGS units. For detailed discussions on MHD, refer to Cowling[42], Siscoe
[162], and Shu[161].

Consider MHD plasma contained in a volume. In the rest frame of the fluid element, the electric field
E′ = J/�, whereJ is the electric current density, and� is the electrical conductivity. IfE is the electric
field in the laboratory frame, Lorenz transformation for nonrelativistic flows yields

E′ = E+ u× B
c

= J
�
, (1)

whereu is the velocity of the fluid element,B is the magnetic field, andc is the speed of light. Note
that the current density, which is proportional to the relative velocity of electrons with relative to ions,
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remains unchanged under Galilean transformation. Since MHD fluid is highly conducting(� → ∞),

E ≈ u

c
B .

This implies that for the nonrelativistic flows,E>B. Now let us look at one of the Maxwell’s equations

∇ × B= 4�

c
J+ 1

c

�E
�t

.

The last term of the above equation is(u/c)2 times smaller as compared to∇ ×B, hence it can be ignored.
Therefore,

J= c

4�
∇ × B . (2)

Hence bothE andJ are dependent variables, and they can be written in terms ofB andu as discussed
above.

In MHD both magnetic and velocity fields are dynamic. To determine the magnetic field we make use
of one of Maxwell’s equation

�B
�t

= −c∇ × E . (3)

An application of Eqs. (1, 2) yields

�B
�t

= ∇ × (u× B)+ �∇2B (4)

or

�B
�t

+ (u · ∇)B= (B · ∇)u− B∇ · u+ �∇2B . (5)

The parameter� is called the resistivity, and is equal toc2/(4��). The magnetic field obeys the following
constraint:

∇ · B= 0 . (6)

The time evolution of the velocity field is given by the Navier–Stokes equation. In this paper, we work
in an inertial frame of reference in which the mean flow speed is zero. This transformation is possible
because of Galilean invariance. The Navier–Stokes equation is[95,96]

	

(
�u
�t

+ (u · ∇)u
)

= −∇pth + 1

c
J× B+ 
∇2u+ 2


3
∇(∇ · u) , (7)
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where	(x) is the density of the fluid,pth is the thermal pressure, and
 is the dynamic viscosity. Note
that kinematic viscosity� = 
/	. Substitution ofJ in terms ofB [Eq. (2)] yields

�u
�t

+ (u · ∇)u= 1

	

[
−∇

(
pth + B2

8�

)
+ (B · ∇)B

]
+ �∇2u+ 2�

3
∇(∇ · u), (8)

wherepth + B2/8� = p is called total pressure. The ratiopth/(B
2/8�) is called�, which describes the

strength of the magnetic field with relative to thermal pressure.
Mass conservation yields the following equation for density field	(x):

�	

�t
+ ∇ · (	u)= 0 . (9)

Pressure can be computed from	 using equation of state

p = f (	) . (10)

This completes the basic equations of MHD, which are (5, 8, 9, 10). Using these equations we can
determine the unknowns(u,B, 	, p). Note that the number of equations and unknowns are the same.

When� is large,B2 is much less thanpth, and it can be ignored. On nondimensionalization of the
Navier–Stokes equation, the term∇p becomes(d	/dx′)/	 ×(Cs/U)

2, whereCs is the sound speed,U
is the typical velocity of the flow,x′ is the position coordinate normalized with relative to the length scale
of the system[171]. Cs → ∞ is the incompressible limit, which is widely studied because water, the
most commonly found fluid on earth, is almost incompressible (�	/	<0.01) in most practical situations.
The other limitCs → 0 or U?Cs (supersonic) is the fully compressible limit, and it is described by
Burgers equation. As we will see later, the energy spectrum for both these extreme limits well known.
WhenU/Cs>1 but nonzero, then we call the fluid to be nearly incompressible; Zank and Matthaeus
[195,196]have given theories for this limit. The energy and density spectra are not well understood for
arbitraryU/Cs.

When� is small,pth can be ignored. Now the Alfvén speedCA =B/
√

4�	 plays the role ofCs. Hence,
the fluid is incompressible ifU>CA [14]. For most part of this paper, we assume the magnetofluid to be
incompressible. In many astrophysical and terrestrial situations (except near shocks), incompressibility
is a reasonably good approximation for the MHD plasma because typical velocity fluctuations are much
smaller compared to the sound speed or the Alfvén speed. This assumption simplifies the calculations
significantly. In Section 12.4 we will discuss compressible MHD.

The incompressibility approximation can also be interpreted as the limit when volume of a fluid parcel
will not change along its path, that is, d	/dt = 0. From the continuity equation (9), the incompressibility
condition reduces to

∇ · u= 0 . (11)

This is a constraint on the velocity fieldu. Note that incompressibility does not imply constant density.
However, for simplicity we take density to be constant and equal to 1. Under this condition, Eqs. (5, 8)
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reduce to
�u
�t

+ (u · ∇)u= − ∇p + (B · ∇)B+ �∇2u , (12)

�B
�t

+ (u · ∇)B= (B · ∇)u+ �∇2B . (13)

To summarize, the incompressible MHD equations are

�u
�t

+ (u · ∇)u= −∇p + (B · ∇)B+ �∇2u

�B
�t

+ (u · ∇)B= (B · ∇)u+ �∇2B

∇ · u= 0
∇ · B= 0

When we take divergence of Eq. (12), we obtain Poisson’s equation

−∇2p = ∇ · [(u · ∇)u− (B · ∇)B] .
Hence, givenu andB fields at any given time, we can evaluatep. Therefore,p is a dependent variable in
the incompressible limit.

Incompressible MHD has two unknown vector fields(u,B). They are determined using Eqs. (12, 13)
under constraints (6, 11). The fieldsE, J andp are dependent variables that can be obtained in terms of
u andB.

The MHD equations are nonlinear, and that is the crux of the problem. There are two dissipative terms:
viscous(�∇2u) and resistive(�∇2B). The ratio of the nonlinear vs. viscous dissipative term is called
Reynolds numberRe = UL/�, whereU is the velocity scale, andL is the length scale. There is another
parameter called magnetic Reynolds numberRem =UL/�. For turbulent flows, Reynolds number should
be high, typically more than 2000 or so. The magnetic Prandtl number�/� also plays an important role in
MHD turbulence. Typical values of parameters in commonly studied MHD systems are given inTable 1
[99,131,157,178]. The calculation of viscosity and resistivity of MHD plasma is quite involved because
of anisotropy caused by mean magnetic field[161]. In Table 1we have provided rough estimates of these
quantities.

2.2. Energy equations and conserved quantities

In this section we derive energy equations for compressible and incompressible fluids. For compressible
fluids we can construct equations for energy using Eqs. (5, 8). Following Landau[96] we derive the
following energy equation for the kinetic energy:

�

�t

(
1

2
	u2 + 	ε

)
= −∇ ·

[(
1

2
u2 + ε

)
	u
]

− ∇ · (pu)+ 1

c
u · (J× B)+ � , (14)

whereε is the internal energy function. The first term on the RHS is the energy flux, and the second term
is the work done by the pressure, which enhances the energy of the system. The third term on the RHS
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Table 1
Typical values of parameters in commonly studied MHD systems

System Earth’s core Solar convective zone Solar wind Galactic disk Ionized H(105 K,42 Pa) Hg

Length (cm) 108 1010 1013 1022 10 10
Velocity (cm/s) 10−2 104 106 106 102 10
Mean mag. field (G) 102 103 10−5 10−5 103 104

Density(gm/cm3) 10 10−5 10−23 10−24 10−10 10
Kinematic viscosity(cm2/s) 10−2 1011 104 1021 105 10−3

Reynolds number 108 103 1013 107 10−2 105

Resistivity(cm2/s) 104 1011 104 107 1.5 × 105 104

Magnetic Reynolds no. 102 103 104 1021 7 × 10−3 10−2

Magnetic Prandtl no. 10−6 (1)? (1)? 1014 0.7 10−7

Viscosity and resistivity of first 4 columns are rough estimates[99,131,157,178].

is work done by magnetic force on the fluid, while�, a complex function of strain tensor, is the energy
change due to surface forces.

For the evolution of magnetic energy we use Eq. (3) and obtain[95]

�

�t

1

8�
B2 = − c

4�
B · ∇ × E

= − ∇ ·
[ c

4�
E× B

]
− J · E . (15)

The first term on the RHS is the Poynting flux (energy flux of the electro-magnetic field), and the second
term is the work done by the electro-magnetic field on fluid. The second term also includes the Joule
dissipation term. Combination of Eqs. (14, 15) yields the following dynamical equation for the energy in
MHD:

�

�t

(
1

2
	u2 + 	ε + 1

8�
B2
)

= − ∇ ·
[(

1

2
u2 + ε

)
	u+ c

4�
E× B

]

− ∇ · (pu)+ � + 1

�
J 2 .

Here1
2	u2+	ε+1/8�B2 is the total energy. Physical interpretation of the above equation is the following:

the rate of change of total energy is the sum of energy flux, the work done by the pressure, and the viscous
and resistive dissipation. It is convenient to use a new variable for magnetic fieldB = BCGS/

√
4�. In

terms of the new variable, the total energy is1
2	u2 + 	ε + 1

2B
2. From this point onward we use this new

variable for the magnetic field.
In the above equations we apply the isoentropic and incompressibility conditions. For the incompress-

ible fluids we can choose	 = 1. Landau[96] showed that under this conditionε is a constant. Hence, for
incompressible MHD fluid we treat(u2+B2)/2 as total energy. For ideal incompressible MHD (�=�=0)
the energy evolution equation is

�

�t

1

2
(u2 + B2)= −∇ ·

[(
1

2
u2 + 1

2
B2 + p

)
u
]

− 2∇ · [(B · u)B] .
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Table 2
Global quantities in MHD

Quantity Symbol Definition Conserved in MHD?

Kinetic energy Eu
∫

dxu2/2 No
Magnetic energy EB ∫

dxB2/2 No
Total energy E

∫
dx(u2 + B2)/2 Yes (2D,3D)

Cross helicity Hc
∫

dx(u · B)/2 Yes (2D,3D)
Magnetic helicity HM

∫
dx(A · B)/2 Yes (3D)

Kinetic helicity HK
∫

dx(u · �)/2 No
Mean-square vector potential A2

∫
dxA2/2 Yes (2D)

Enstrophy �
∫

dx2/2 No

By applying Gauss law we find that

�

�t

∫
1

2
(u2 + B2)dx = −

∮ [(
1

2
u2 + 1

2
B2 + p

)
u+ (B · u)B

]
dS .

For the boundary conditionBn = un = 0 or periodic boundary condition, the total energy
∫ 1

2(u
2 + B2)

is conserved.
There are some more important quantities in MHD turbulence. They are listed inTable 2. Note thatA is

the vector potential, and is the vorticity field. By following the same procedure as described above, we
can show thatE,Hc, andHM are conserved in 3D MHD, whileE,Hc andA2 are conserved in 2D MHD
[11,112]. Note that in 3D fluids,Eu andHK are conserved, while in 2D fluids,Eu and� are conserved
[100,101].

Magnetic helicity is a tricky quantity. Because of the choice of gauge it can be shown that magnetic
helicity is not unique unlessBn = 0 at the boundary. Magnetic helicity is connected with flux tubes, and
plays important role in magnetic field generation. For details refer to Biskamp[11].

In addition to the above global quantities, there are infinite many conserved quantities. In the following
we will show that the magnetic flux defined as

� =
∫
B · dS ,

where dSis the area enclosed by any closed contour moving with the plasma, is conserved. Since infinitely
many closed curves are possible in any given volume, we have infinitely many conserved quantities. To
prove the above conservation law, we use vector potentialA, whose dynamical evolution is given by

�

�t
A = u× B+ ∇� ,

where� is the scalar potential[112]. The above equation can be rewritten as

dAi
dt

= uk�iAk + �i� .
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Now we write magnetic flux� in terms of vector potential

� =
∮
A · dl .

The time derivative of� will be

d�

dt
=
∮

dAi
dt

dli + Ai
d

dt
dli

=
∮

d� + dliuk�iAk + dliAk�iuk

= 0 .

Hence, magnetic flux over any surface moving with the plasma is conserved.
The conserved quantities play very important role in turbulence. These aspects will be discussed later

in Sections 7 and 8 of this review. Now we turn to the linear solutions of MHD equations.

2.3. Linearized MHD equations and their solutions; MHD waves

The fields can be separated into their mean and fluctuating parts:B= B0 + b and	 = 	0 + �	. Here
B0 and	0 denote the mean, andb and�	 denote the fluctuating fields. Note that the velocity fieldu is
purely fluctuating field; its mean can be eliminated by Galilean transformation.

The linearized MHD equations are (cf. Eqs. (5, 8, 9))

�u
�t

− (B0 · ∇)b= − 1

	0
∇p − ∇(B0 · b) ,

�b
�t

− (B0 · ∇)u= −B0∇ · u ,
��	

�t
+ ∇ · (	0u)= 0 .

We attempt a plane-wave solution for the above equations:

[u,b, p, �	] = [u(k),b(k), p(k), 	(k)] exp(ik · x − it) .

Substitutions of these waves in the linearized equations yield

u(k)+ (B0.k)b(k)= 1

	0
kp(k)+ k(B0 · b) ,

b(k)+ (B0.k)u(k)= B0(k · u(k)) ,
	(k)− 	0k · u(k)= 0 .

Let us solve the above equations in coordinate system(k, t1, t2) shown inFig. 1. Heret1,2 are transverse
to k, with t1 in B0-k plane, andt2 perpendicular to this plane. The components of velocity and magnetic
field alongt1,2 are denoted byu(1)⊥ , u

(2)
⊥ , b

(1)
⊥ , b

(2)
⊥ , and alongk areu|| andb||. The angle betweenB0 and
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Fig. 1. Basis vectors for MHD waves. Compressible waves have components alongk, while Alfvén waves have components
alongt1andt2.

k is �. The equations along the new basis vectors are

u|| − C2
s


k2u|| = B0b

(1)
⊥ k sin � , (16)

b|| = 0 , (17)

u(1)⊥ + B0k cos�b(1)⊥ = 0 , (18)

b(1)⊥ + B0k cos�u(1)⊥ = B0k sin�u|| , (19)

u(2)⊥ + B0k cos�b(2)⊥ = 0 , (20)

b(2)⊥ + B0k cos�u(2)⊥ = 0 . (21)

usingCs = √
p(k)/	(k). Note thatb|| = 0, which also follows from∇ · b= 0. From the above equations

wee can infer the following basic wave modes:

1. Alfvén wave(incompressible mode): Hereu|| =u
(1)
⊥ =b

(1)
⊥ =0, andu(2)⊥ �= 0, b(2)⊥ �= 0, and the relevant

equations are (20, 21). There are two solutions, which correspond to waves traveling antiparallel and
parallel to the mean magnetic field with phase velocity±CA cos� (CA =B0). For these waves thermal
and magnetic pressures are constants. These waves are also called shear Alfvén waves.

2. Pseudo-Alfvén wave(incompressible mode): Hereu|| = u
(2)
⊥ = b

(2)
⊥ = 0, andu(1)⊥ �= 0, b(1)⊥ �= 0, and

the relevant equations are (18, 19). The two solutions correspond to waves moving antiparallel and
parallel to the mean magnetic field with velocity±CA cos�.

3. Compressible mode(purely fluid): Here u(1)⊥ = b
(1)
⊥ = u

(2)
⊥ = b

(2)
⊥ = 0, andu|| �= 0, and the

relevant equation is (16). This is the sound wave in fluid arising due to the fluctuations of thermal
pressure only.
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4. MHD compressible mode: Hereu(2)⊥ =b
(2)
⊥ =0, andu(1)⊥ �= 0, b(1)⊥ �= 0,u|| �= 0. Clearly,u|| is coupled

to b(1)⊥ as evident from Eqs. (16, 19). Solving Eqs. (16, 18, 19) yields

4 − 2k2(C2
s + C2

A)+ C2
AC

2
sk

4 cos2 � = 0 .

Hence, the two compressible modes move with velocities

V 2
ph = 1

2

[
(C2

A + C2
s)±

√
(C2

A + C2
s)

2 − 4C2
sC

2
A cos�

]
. (22)

The faster between the two is called fast wave, and the other one is called slow waves. The pressure
variation for these waves are provided by both thermal and magnetic pressure. For details on these
waves, refer to[162,152].

Turbulent flows contain many interacting waves, and the solution cannot be written in a simple way.
A popular approach to analyze the turbulent flows is to use statistical tools. We will describe below the
application of statistical methods to turbulence.

2.4. Necessity for statistical theory of turbulence

In turbulent fluid the field variables are typically random both in space and time. Hence the exact
solutions given initial and boundary conditions will not be very useful even when they were available
(they are not!). However statistical averages and probability distribution functions are reproducible in
experiments under steady state, and they shed important light on the dynamics of turbulence. For this
reason many researchers study turbulence statistically. The idea is to use the tools of statistical physics
for understanding turbulence. Unfortunately, only systems at equilibrium or near equilibrium have been
understood reasonably well, and a good understanding of nonequilibrium systems (turbulence being one
of them) is still lacking.

The statistical description of turbulent flow starts by dividing the field variables into mean and fluctu-
ating parts. Then we compute averages of various functions of fluctuating fields. There are three types are
averages: ensemble, temporal, and spatial averages. Ensemble averages are computed by considering a
large number of identical systems and taking averages over all these systems. Clearly, ensemble averag-
ing demands heavily in experiments and numerical simulations. So, we resort to temporal and/or spatial
averaging. Temporal averages are computed by measuring the quantity of interest at a point over a long
period and then averaging. Temporal averages make sense for steady flows. Spatial averages are computed
by measuring the quantity of interest at various spatial points at a given time, and then averaging. Clearly,
spatial averages are meaningful for homogeneous systems. Steady-state turbulent systems are generally
assumed to be ergodic, for which the temporal average is equal to the ensemble average[61].

As discussed above, certain symmetries like homogeneity help us in statistical description. Formally,
homogeneity indicates that the average properties do not vary with absolute position in a particular
direction, but depends only on the separation between points. For example, a homogeneous two-point
correlation function is

〈ui(x, t)uj (x′, t)〉 = Cij (x − x′, t)= Cij (r , t) .
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Similarly, stationarity or steady state implies that average properties depend on time difference, not on
the absolute time. That is,

〈ui(x, t)uj (x, t ′)〉 = Cij (x, t − t ′) .

Another important symmetry is isotropy. A system is said to be isotropic if its average properties are
invariant under rotation. For isotropic systems

〈ui(x, t)uj (x′, t)〉 = Cij (|x − x′|, t)= Cij (|r |, t) .
Isotropy reduces the number of independent correlation functions. Batchelor[8] showed that the isotropic
two-point correlation could be written as

Cij (r )= C(1)(r)rirj + C(2)(r)�ij ,

whereC(1) andC(2) are even functions ofr = |r |. Hence we have reduced the independent correlation
functions to two. For incompressible flows, there is only one independent correlation function[8].

In the previous subsection we studied the global conserved quantities. We revisit those quantities in
presence of mean magnetic field. Note that mean flow velocity can be set to zero because of Galilean
invariance, but the same trick cannot be used for the mean magnetic field. Matthaeus and Goldstein[112]
showed that the total energy and cross helicity formed using the fluctuating fields are conserved. We
denote the fluctuating magnetic energy byEb, in contrast to total magnetic energyEB. In the presence
of a mean magnetic field the magnetic helicity

∫
a · b/2 is not conserved, butB0 · 〈A〉 + ∫ a · b/2 instead

is conserved.
In turbulent fluid, fluctuations of all scales exist. Therefore, it is quite convenient to use Fourier basis

for the representation of turbulent fluid velocity and magnetic field. Note that in recent times another
promising basis called wavelet is becoming popular. In this paper we focus our attention on Fourier
expansion, which is the topic of the next subsection.

2.5. Turbulence equations in spectral space

Turbulent fluid velocityu(x, t) is represented in Fourier space as

u(x, t)=
∫

dk

(2�)d
u(k, t)exp(ik · x) ,

u(k, t)=
∫

dxu(x, t)exp(−ik · x) ,

whered is the space dimensionality.
In Fourier space, the equations forincompressibleMHD are[14](

�

�t
− i(B0 · k)+ �k2

)
ui(k, t)= − ikiptot(k, t)− ikj

∫
dp

(2�)d
uj (k − p, t)ui(p, t)

+ ikj

∫
dp

(2�)d
bj (k − p, t)bi(p, t) , (23)
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�

�t
− i(B0 · k)+ �k2

)
bi(k, t)= − ikj

∫
dp

(2�)d
uj (k − p, t)bi(p, t)

+ ikj

∫
dp

(2�)d
bj (k − p, t)ui(p, t) , (24)

with the following constrains

k · u(k)= 0 ,

k · b(k)= 0 .

The substitution of the incompressibility conditionk ·u (k)=0 into Eq. (23) yields the following expression
for the pressure field

p(k)= −kikj

k2

∫
dp

(2�)d
[uj (k − p, t)ui(p, t)− b(k − p, t)bi(p, t)] .

Note that the density field has been taken to be a constant, and has been set equal to 1.
It is also customary to write the evolution equations symmetrically in terms ofp andk − p variables.

The symmetrized equations are(
�

�t
− i(B0 · k)+ �k2

)
ui(k, t)= − i

2
P+
ijm(k)

∫
dp

(2�)d
[uj (p, t)um(k − p, t)

− bj (p, t)bm(k − p, t)] , (25)(
�

�t
− i(B0 · k)+ �k2

)
bi(k, t)= − iP−

ijm(k)
∫

dp

(2�)d
[uj (p, t)bm(k − p, t)] , (26)

where

P+
ijm(k)= kjPim(k)+ kmPij (k) ,

Pim(k)= �im − kikm

k2 ,

P−
ijm(k)= kj�im − km�ij .

Alfvén waves are fundamental modes of incompressible MHD. It turns out that the equations become
more transparent when they are written in terms of Elsässer variablesz± = u± b, which “represent” the
amplitudes of Alfvénic fluctuations with positive and negative correlations. Note that no pure wave exist
in turbulent medium, but the interactions can be conveniently written in terms of these variables. The
MHD equations in terms ofz± are(

�

�t
∓ i (B0 · k)+ �+k2

)
z±i (k)+ �−k2z∓i (k)= −iMijm(k)

∫
dpz∓j (p)z

±
m(k − p) ,

kiz
±
i (k)= 0 , (27)

where�± = (� ± �)/2 and

Mijm(k)= kjPim(k) .

From Eq. (27) it is clear that the interactions are betweenz+ andz− modes.
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Energy and other second-order quantities play important roles in MHD turbulence. For a homogeneous
system these quantities are defined as

〈Xi(k, t)Yj (k ′, t)〉 = CXY
ij (k, t)(2�)d�(k + k ′) ,

whereX,Y are vector fields representingu, b, or z±. The spectrum is also related to the correlation
function in real space

CXY
ij (r )=

∫
dk

(2�)d
CXY
ij (k)exp(ik · r ) .

When mean magnetic field is absent, or its effects are ignored, then we can takeCXY
ij (k) to be an

isotropic tensor, and it can be written as[8]

CXY
ij (k)= Pij (k)CXY (k) . (28)

When turbulence is isotropic andX =Y, then a quantity called 1D spectrum or reduced spectrumEX(k)

defined below is very useful.

EX = 1

2
〈X2〉 = 1

2

∫
dk

(2�)d
CXX
ii (k)

∫
EX(k)dk = 1

2

∫
dk

Sdk
d−1

(2�)d
Pii(k)CXX(k)

=
∫

dk
Sdk

d−1(d − 1)

2(2�)d
CXX(k) ,

whereSd = 2�d/2/�(d/2) is the area ofd-dimensional unit sphere. Therefore,

EX(k)= CXX(k)kd−1 Sd(d − 1)

2(2�)d
. (29)

Note that the above formula is valid only for isotropic turbulence. We have tabulated all the important
spectra of MHD turbulence inTable 3. The vector potentialA =A0 + a, whereA0 is the mean field, and
a is the fluctuation.

The global quantities defined inTable 2are related to the spectra defined inTable 3by Perceval’s
theorem[8]. Since the fields are homogeneous, Fourier integrals are not well defined. In Appendix A
we show that energy spectra defined using correlation functions are still meaningful because correlation
functions vanish at large distances. We consider energy per unit volume, which are finite for homogeneous
turbulence.As an example, the kinetic energy per unit volume is related to energy spectrum in the following
manner:

1

Ld

∫
dx

1

2
〈u2〉 = 1

2

∫
dk

(2�)d
Cii(k)=

∫
Eu(k)dk .

Similar identities can be written for other fields.
In three dimensions we have two more important quantities, magnetic and kinetic helicities. In Fourier

space magnetic helicityHM(k) is defined using

〈ai(k, t)bj (k ′, t)〉 = Pij (k)HM(k)(2�)3�(k + k ′) .
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Table 3
Various spectra of MHD turbulence

Quantity Symbol Derived from Symbol for 1D

Kinetic energy spectrum Cuu(k) 〈ui(k)uj (k ′)〉 Eu(k)

Magnetic energy spectrum Cbb(k) 〈bi(k)bj (k ′)〉 Eb(k)

Total energy spectrum C(k) Cuu + Cbb E(k)
Cross-helicity spectrum Cub(k) 〈ui(k)bj (k ′)〉 Hc(k)

Elsässer variable spectrum C±±(k) 〈z±
i
(k)z±

j
(k ′)〉 E±(k)

Elsässer variable spectrum C±∓(k) 〈z±
i
(k)z∓

j
(k ′)〉 ER(k)

Enstrophy spectrum �(k) 〈i (k)j (k ′)〉 �(k)
Mean-square vector pot. spectrum A2(k) 〈ai(k)aj (k ′)〉 A2(k)

The total magnetic helicityHM can be written in terms of

HM = 1

2
〈a(x) · b(x)〉

= 1

2

∫
dk

(2�)3
dk ′

(2�)3
〈a(k) · b(k ′)〉

=
∫

dk

(2�)3
HM(k)

=
∫

dkHM(k) .

Therefore, one-dimensional magnetic helicityHM is

HM(k)= 4�k2

(2�)3
HM(k) .

Using the definitionb(k)= ik × a(k), we obtain

〈bi(k, t)bj (k ′, t)〉 = [Pij (k)Cbb(k)− iεij lklHM(k)](2�)3�(k + k ′) .

The first term is the usual tensor described in Eq. (28), but the second term involving magnetic helicity
is new. We illustrate the second term with an example. Ifk is alongz axis, then

bx(k)by(k)= −ikHM(k) .

This is a circularly polarized field wherebx andby differ by a phase shift of�/2. Note that the magnetic
helicity breaks mirror symmetry.

A similar analysis for kinetic helicity shows that

〈ui(k, t)�j (k ′, t)〉 = Pij (k)HK(k)(2�)3�(k + k ′)

HK = 1

2
〈u · �〉 =

∫
dk

(2�)3
HK(k)
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and

〈ui(k, t)uj (k ′, t)〉 =
[
Pij (k)Cuu(k)− iεij lkl

HM(k)
k2

]
(2�)3�(k + k ′) .

We can Fourier transform time as well using

u(x, t)=
∫

dk̂u(k,)exp(ik · x − it) ,

u(k,)=
∫

dx dtu(x, t)exp(−ik · x + it) ,

where d̂k = dk d/(2�)d+1. The resulting MHD equations in̂k = (k,) space are

(−i + �k2)ui(k̂)= − i

2
P+
ijm(k)

∫
p̂+q̂=k̂

dp̂[uj (p̂)um(q̂)− bj (p̂)bm(q̂)] , (30)

(−i + �k2)bi(k̂)= −iP−
ijm(k)

∫
p̂+q̂=k̂

dp̂[uj (p̂)bm(q̂)] , (31)

or

(−i ∓ i(B0 · k)+ �+k2)z±i (k̂)+ �−k2z∓i (k̂)= −iMijm(k)
∫

dp̂[z∓j (p̂)z±m(k̂ − p̂)] . (32)

After we have introduced the energy spectra and other second-order correlation functions, we move on
to discuss their evolution.

2.6. Energy equations

The energy equation for general (compressible) Navier–Stokes is quite complex. However, incom-
pressible Navier–Stokes and MHD equations are relatively simpler, and are discussed below.

From the evolution equations of fields, we can derive the following spectral evolution equations for
the incompressible MHD:(

�

�t
+ 2�k2

)
Cuu(k, t)= 2

(d − 1)�(k + k ′)

∫
k ′+p+q=0

dp

(2�)2d
[−I〈(k ′ · u(q))(u(p) · u(k ′))〉

+ I〈(k ′ · b(q))(b(p) · u(k ′))〉] , (33)(
�

�t
+ 2�k2

)
Cbb(k, t)= 2

(d − 1)�(k + k ′)

∫
k ′+p+q=0

dp

(2�)2d
[−I〈(k ′ · u(q))(b(p) · b(k ′))〉

+ I〈(k ′ · b(q))(u(p) · b(k ′))〉] , (34)

whereI stands for the imaginary part. Note thatk ′ + p + q = 0 andk ′ = −k. In Eq. (33) the first
term in the RHS provides the energy transfer from the velocity modes tou(k) mode, and the second
term provides the energy transfer from the magnetic modes tou(k) mode. While in Eq. (34) the first
term in the RHS provides the energy transfer from the magnetic modes tob(k) mode, and the second
term provides the energy transfer from the velocity modes tob(k) mode. Note that the pressure couples
with compressible modes only, hence it is absent in the incompressible equations. Simple algebraic
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manipulations show that the mean magnetic field also disappears in the energy equation. In a finite box,
using〈|u(k)|2〉 = C(k)/((d − 1)Ld), and�(k)(2�)d = Ld (see Appendix A), we can show that(

�

�t
+ 2�k2

)
1

2
〈|u(k)|2〉 =

∑
k ′+p+q=0

[−I〈(k ′ · u(q))(u(p) · u(k ′))〉

+ I〈(k ′ · b(q))(b(p) · u(k ′))〉] ,(
�

�t
+ 2�k2

)
1

2

〈|b(k)|2〉= ∑
k ′+p+q=0

[−I〈(k ′ · u(q))(b(p) · b(k′))〉

+ I〈(k ′ · b(q))(u(p) · b(k ′))〉] .
Many important quantities, e.g. energy fluxes, can be derived from the energy equations. We will

discuss these quantities in the next section.

3. Mode-to-mode energy transfers and fluxes in MHD turbulence

In turbulence energy exchange takes place between various Fourier modes because of nonlinear inter-
actions. Basic interactions in turbulence involves a wavenumber triad(k ′,p,q) satisfyingk ′ +p+q=0.
Usually, energy gained by a mode in the triad is computed using thecombined energy transferfrom the
other two modes[100]. Recently Dar et al.[45] devised a new scheme to compute the energy transfer
rate between two modes in a triad, and called it “mode-to-mode energy transfer”. They computed energy
cascade rates, and energy transfer rates between two wavenumber shells using this scheme.We will review
these ideas in this section. Note that we are considering only the interactions of incompressible modes.

3.1. “Mode-to-mode” energy transfer in fluid turbulence

In this subsection we discuss evolution of energy in turbulent fluidin a periodic box. The equation for
MHD will be discussed subsequently. We consider an ideal case where viscous dissipation is zero(�=0).
The equations are given in Lesieur[100]

�

�t

1

2
|u(k ′)|2 =

∑
k ′+p+q=0

−1

2
I[(k ′ · u(q))(u(k ′) · u(p))+ (k ′ · u(p))(u(k ′) · u(q))] , (35)

whereI denotes the imaginary part. Note that the pressure does not appear in the energy equation because
of the incompressibility condition.

Consider a case in which only three modesu(k ′),u(p),u(q), and their conjugates are nonzero. Then
the above equation yields

�

�t

1

2
|u(k ′)|2 = 1

2
S(k ′|p,q) , (36)

where

S(k ′|p,q)= −I[(k ′ · u(q))(u(k ′) · u(p))+ (k ′ · u(p))(u(k ′) · u(q))] . (37)
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Lesieur and other researchers physically interpretedS(k ′|p,q) as thecombined energy transfer ratefrom
the modesp andq to the modek ′. The evolution equations for|u(p)|2 and|u(q)|2 are similar to that for
|u(k ′)|2. By adding the energy equations for all the three modes, we obtain

�

�t
[|u(k ′)|2 + |u(p)|2 + |u(q)|2]/2 = S(k ′|p,q)+ S(p|q, k ′)+ S(q|k ′,p)

= I[(q · u(q))(u(k ′) · u(p))
+ (p · u(p))(u(k ′) · u(q))
+ (k ′ · u(k ′))(u(p) · u(q))] .

For incompressible fluid, the right-hand side is identically zero becausek ′ · u(k ′)= 0. Hence the energy
in each of the interacting triad is conserved, i.e.,

|u(k ′)|2 + |u(p)|2 + |u(q)|2 = const.

The question is whether we can derive an expression for the mode-to-mode energy transfer rates from
the modep to the modek ′, and from the modeq to the modek ′ separately. Dar et al.[45] showed that
it is meaningful to talk about energy transfer rate between two modes. They derived an expression for
the mode-to-mode energy transfer, and showed it to be unique apart from an irrelevant arbitrary constant.
They referred to this quantity as “mode-to-mode energy transfer”. Even though they talk about mode-to-
mode transfer, they are still within the framework of triad interaction, i.e., a triad is still the fundamental
entity of interaction.

3.1.1. Definition of mode-to-mode transfer in a triad
Consider a triad (k ′|p,q). Let the quantityRuu(k ′|p|q) denote the energy transferred from the mode

p to the modek ′ with the modeq playing the role of a mediator. We wish to obtain an expression forR.
TheR’s should satisfy the following relationships:

1. The sum of energy transfer from the modep to the modek ′ (Ruu(k ′|p|q)), and from the modeq to the
modek ′ (Ruu(k ′|p|q)) should be equal to the total energy transferred to the modek ′ from the modes
p andq, i.e.,Suu(k ′|p,q) [see Eq. (36)]. That is,

Ruu(k ′|p|q)+ Ruu(k ′|q|p)= Suu(k ′|p,q) , (38)

Ruu(p|k ′,q)+ Ruu(p|q|k ′)= Suu(p|k ′,q) , (39)

Ruu(q|k ′|p)+ Ruu(q|p|k ′)= Suu(q|k ′,p) . (40)

2. By definition, the energy transferred from modep to modek ′,Ruu(k ′|p|q), will be equal and opposite
to the energy transferred from modek ′ to modep, Ruu(p|k ′|q). Thus,

Ruu(k ′|p|q)+ Ruu(p|k ′|q)= 0 , (41)

Ruu(k ′|q|p)+ Ruu(q|k ′|p)= 0 , (42)

Ruu(p|q|k ′)+ Ruu(q|p|k ′)= 0 . (43)
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These are six equations with six unknowns. However, the value of the determinant formed from the
Eqs. (38)–(43) is zero. Therefore we cannot find uniqueR’s given just these equations. In the following
discussion we will study the set of solutions of the above equations.

3.1.2. Solutions of equations of mode-to-mode transfer
Consider a function

Suu(k ′|p|q)= −I([k ′ · u(q)][u(k ′) · u(q)]) . (44)

Note thatSuu(k ′|p|q) is altogether different function compared toS(k ′|p,q). In the expression for
Suu(k ′|p|q), the field variables with the first and second arguments are dotted together, while the field
variable with the third argument is dotted with the first argument.

It is very easy to check thatSuu(k ′|p|q) satisfy the Eqs. (38)–(43). Note thatSuu(k ′|p|q) satisfy the
Eqs. (41)–(43) because of incompressibility condition. The above results implies that the set ofSuu(||)’s
is one instanceof the Ruu(||)’s. However,Suu(k ′|p|q) is not a unique solution. If another solution
Ruu(k ′|p|q) differs fromS(k ′|p|q) by an arbitrary functionX�, i.e.,Ruu(k ′|p|q) = Suu(k ′|p|q) + X�,
then by inspection we can easily see that the solution of Eqs. (38)–(43) must be of the form

Ruu(k ′|p|q)= Suu(k ′|p|q)+X� , (45)

Ruu(k ′|q|p)= Suu(k ′|q|p)−X� , (46)

Ruu(p|k ′|q)= Suu(p|k ′|q)−X� , (47)

Ruu(p|q|k ′)= S(p|q|k ′)+X� , (48)

Ruu(q|k ′|p)= S(q|k ′|p)+X� , (49)

Ruu(q|p|k ′)= S(q|p|k ′)−X� . (50)

Hence, the solution differs fromSuu(k ′|p|q) by a constant. SeeFig. 2 for an illustration. A careful
observation of the figure indicates that the quantityX� flows alongp → k ′ → q → p, circulating

Fig. 2. Mode-to-mode energy transfer in fluid turbulence.Suu(k ′|p|q) represents energy transfer rate from modeu(p) to mode
u(k ′) with the mediation of modeu(q).X� is the arbitrary circulating transfer.
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around the entire triad without changing the energy of any of the modes. Therefore we will call it the
Circulating transfer. Of the total energy transfer between two modes,Suu+X�, onlySuu can bring about
a change in modal energy.X� transferred from modep to modek ′ is transferred back to modep via mode
q. Thus the energy that is effectively transferred from modep to modek ′ is justSuu(k ′|p|q). Therefore
Suu(k ′|p|q) can be termed as theeffective mode-to-mode energy transferfrom modep to modek ′. Hence

Ruu
eff(k

′|p|q)= Suu(k ′|p|q) . (51)

Note thatX� can be a function of wavenumbersk ′,p,q, and the Fourier componentsu(k ′),u(p),u(q).
It may be possible to determineX� using constraints based on invariance, symmetries, etc. Dar et al.[44]
attempted to obtainX� using this approach, but could show thatX� is zero to linear order in the expansion.
However, a general solution forX� could not be found. Unfortunately,X� cannot be calculated even
by simulation or experiment, because we can experimentally compute only the energy transfer rate to a
mode, which is a sum of two mode-to-mode energy transfers. The mode-to-mode energy transfer rate is
really an abstract quantity, somewhat similar to “gauges” in electrodynamics.

The termsuj�jui anduiuj�jui are nonlinear terms in the Navier–Stokes equation and the energy
equation respectively. When we look at formula (44) carefully, we find that theuj (q) term is contracted
with kj in the formula. Hence,uj field is the mediator in the energy exchange between first(ui) and third
field (ui) of uiuj�jui .

In this following discussion we will compute the energy fluxes and the shell-to-shell energy transfer
rates usingSuu(k ′|p|q).

3.2. Shell-to-shell energy transfer in fluid turbulence using mode-to-mode formalism

In turbulence energy transfer takes place from one region of the wavenumber space to another region.
Domaradzki and Rogallo[49] have discussed the energy transfer between two shells using the combined
energy transferSuu(k ′|p,q). They interpret the quantity

T uunm = 1

2

∑
k ′∈n

∑
p∈m

Suu(k ′|p,q) (52)

as the rate of energy transfer from shellm to shelln. Note thatk ′-sum is over shelln, p-sum over shell
m, andk ′ + p + q = 0. However, Domaradzki and Rogallo[49] themselves points out that it may not
be entirely correct to interpret formula (52) as the shell-to-shell energy transfer. The reason for this is as
follows.

In the energy transfer between two shellsm andn, two types of wavenumber triads are involved, as
shown inFig. 3. The real energy transfer from the shellm to the shelln takes place through bothk ′-p and
k ′-q legs of triad I, but only throughk ′-p leg of triad II. But in Eq. (52) summation erroneously includes
k ′-q leg of triad II also along with the three legs given above. Hence Domaradzki and Ragallo’s formalism
[49] do not yield totally correct shell-to-shell energy transfers, as was pointed out by Domaradzki and
Rogallo themselves. We will show below how Dar et al.’s formalism[45] overcomes this difficulty.

By definition of the mode-to-mode transfer functionRuu(k ′|p|q), the energy transfer from shellm to
shelln can be defined as

T uunm =
∑
k ′∈n

∑
p∈m

Ruu(k ′|p|q) , (53)
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Fig. 3. Shell-to-shell energy transfer from wavenumber-shellm to wavenumber-shelln. The triads involved in this process fall
in two categories: Type I, where bothp andq are inside shellm, and Type II, where onlyp is inside shellm.

where thek ′-sum is over the shelln, andp-sum is over the shellm. The quantityRuu can be written as
a sum of an effective transferSuu(k ′|p|q) and a circulating transferX�. As discussed in the last section,
the circulating transferX� does not contribute to the energy change of modes. FromFigs. 2and3 we can
see thatX� flows from the shellm to the shelln and then flows back tom indirectly through the modeq.
Therefore theeffectiveenergy transfer from the shellm to the shelln is justSuu(k ′|p|q) summed over all
thek ′-modes in the shelln and all thep-modes in the shellm, i.e.,

T uunm =
∑
k ′∈n

∑
p∈m

Suu(k ′|p|q) . (54)

Clearly, the energy transfer throughk ′ − q of the triad II ofFig. 3 is not present inT uunm of Dar et al.’s
formalism becauseq /∈m. Hence, the formalism of the mode-to-mode energy transfer rates provides us
a correct and convenient method to compute the shell-to-shell energy transfer rates in fluid turbulence.

3.3. Energy cascade rates in fluid turbulence using mode-to-mode formalism

The kinetic energy cascade rate (or flux)� in fluid turbulence is defined as the rate of loss of kinetic
energy by the modes inside a sphere to the modes outside the sphere. Letk0 be the radius of the sphere
under consideration. Kraichnan[84], Leslie [101], and others have computed the energy flux in fluid
turbulence usingSuu(k ′|p|q)

�(k0)= −
∑

|k|<k0

∑
|p|>k0

1

2
Suu(k ′|p|q) . (55)

Although the energy cascade rate in fluid turbulence can be found by the above formula, the mode-to-mode
approach of Dar et al.[45] provides a more natural way of looking at the energy flux. SinceRuu(k ′|p|q)
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represents energy transfer fromp to k ′ with q as a mediator, we may alternatively write the energy flux
as

�(k0)=
∑

|k ′|>k0

∑
|p|<k0

Ruu(k ′|p|q) . (56)

However,Ruu(k ′|p|q)= Suu(k ′|p|q)+X�, and the circulating transferX� makes no contribution to the
energy flux from the sphere because the energy lost from the sphere throughX� returns to the sphere.
Hence,

�(k0)=
∑

|k ′|>k0

∑
|p|<k0

Suu(k ′|p|q) . (57)

Both the formulas given above, Eqs. (55) and (57), are equivalent as shown by Dar et al.[44].
Frisch[61] has derived a formula for energy flux as

�(k0)= 〈u<k0
· (u<k0

· ∇u>k0
)〉 + 〈u<k0

· (u>k0
· ∇u>k0

)〉 .
It is easy to see that the above formula is consistent with mode-to-mode formalism. As discussed in the
Section 3.1.2, the second field of both the terms are mediators in the energy transfer. Hence in mode-to-
mode formalism, the above formula will translate to

�(k0)=
∑
k>k0

∑
p<k0

−I[(k ′ · u<(q))(u<(p) · u>(k ′))+ (k ′ · u>(q))(u<(p) · u>(k ′))] ,

which is same as mode-to-mode formula (57) of Dar et al.[45].
After discussion on energy transfers in fluid turbulence, we move on to MHD turbulence.

3.4. Mode-to-mode energy transfer in MHD turbulence

In Fourier space, the kinetic energy and magnetic energy evolution equations are[166]

�Eu(k)
�t

+ 2�k2Eu(k)=
∑

k ′+p+q=0

1

2
Suu(k ′|p,q)+

∑
k ′+p+q=0

1

2
Sub(k ′|p,q) , (58)

�Eb(k)
�t

+ 2�k2Eb(k)=
∑

k ′+p+q=0

1

2
Sbb(k ′|p,q)+

∑
k ′+p+q=0

1

2
Sbu(k ′|p,q) , (59)

whereEu(k)= |u(k)|2/2 is the kinetic energy, andEb(k)= |b(k)|2/2 is the magnetic energy. The four
nonlinear termsSuu(k ′|p,q), Sub(k ′|p,q), Sbb(k ′|p,q) andSbu(k ′|p,q) are

Suu(k ′|p,q)= −I([k ′.u(q)][u(k ′).u(p)] + [k ′.u(p)][u(k ′).u(q)]) , (60)

Sbb(k ′|p,q)= −I([k ′.u(q)][b(k ′).b(p)] + [k ′.u(p)][b(k ′).b(q)]) , (61)

Sub(k ′|p,q)= I([k ′.b(q)][u(k ′).b(p)] + [k ′.b(p)][u(k ′).b(q)]) , (62)

Sbu(k ′|p,q)= I([k ′.b(q)][b(k ′).u(p)] + [k ′.b(p)][b(k ′).u(q)]) . (63)
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These terms are conventionally taken to represent the nonlinear transfer rates from the modesp andq to
the modek ′ of a triad[100,166]. The termSuu(k ′|p,q) represents the net transfer of kinetic energy from
the modesp andq to the modek ′. Likewise the termSub(k ′|p,q) is the net magnetic energy transferred
from the modesp andq to the kinetic energy in the modek ′, whereasSbu(k ′|p,q) is the net kinetic
energy transferred from the modesp andq to the magnetic energy in the modek ′. The termSbb(k ′|p,q)
represents the transfer of magnetic energy from the modesp andq to the modek ′.

Stanis̆ić [166] showed that the nonlinear terms satisfy the following detailed conservation properties:

Suu(k ′|p,q)+ Suu(p|k ′,q)+ Suu(q|k ′,p)= 0 , (64)

Sbb(k ′|p,q)+ Sbb(p|k ′,q)+ Sbb(q|k ′,p)= 0 , (65)

and

Sub(k ′|p,q)+ Sub(p|k ′,q)+ Sub(q|k ′,p)+ Sbu(k ′|p,q)+ Sbu(p|k ′,q)+ Sbu(q|k ′,p)= 0 .

(66)

Eqs. (64, 65) implies that the kinetic (magnetic) energy are transferred conservatively between the velocity
(magnetic) modes of a wavenumber triad. Eq. (66) implies that the cross-transfers of kinetic and magnetic
energy,Sub(k ′|p,q) andSbu(k ′|p,q), within a triad are also energy conserving.

Dar et al.[44,45]provided an alternative formalism called themode-to-mode energy transferfor MHD
turbulence. This is a generalization fluid’s mode-to-mode formalism described in the previous subsection.
We consider ideal MHD fluid(�=�=0). The basic unit of nonlinear interaction in MHD is a triad involving
modesu(k ′),u(p),u(q),b(k ′),b(p),b(q)with k ′ +p+q=0, and the “mode-to-mode energy transfer”
is from velocity to velocity, from magnetic to magnetic, from velocity to magnetic, and from magnetic
to velocity mode. We will discuss these transfers below.

3.4.1. Velocity mode to velocity mode energy transfer
In Section 3.1 we discussed the mode-to-mode transfer,Ruu, between velocity modes in fluid flows.

In this section we will findRuu for MHD flows. LetRuu(k ′|p|q) be the energy transfer rate from the
modeu(p) to the modeu(k ′) in mediation of the modeu(q). The transfer of kinetic energy between
the velocity modes is brought about by the termu · ∇u, both in the Navier–Stokes and MHD equations.
Therefore, the expression for the combined kinetic energy transfer in MHD will be same as that in fluid.
Consequently,Ruu for MHD will satisfy the constraints given in Eqs. (38)–(43). As a result,Ruu(k ′|p|q)
in MHD can be expressed as a sum of a circulating transferX� and the effective transferSuu(k ′|p|q)
given by Eq. (44), i.e.,

Ruu(k ′|p|q)= Suu(k ′|p|q)+X� . (67)

As discussed in Section 3.1, the circulating transferX� is irrelevant for the energy flux or the shell-to-shell
energy transfer. Therefore, we useSuu(k ′|p|q) as the energy transfer rate from the modeu(p) to the mode
u(k ′) with the mediation of the modeu(q). Hence,

Ruu
eff(k

′|p|q)= Suu(k ′|p|q) . (68)

Suu(k ′|p|q) and other transfers in MHD turbulence are shown inFig. 4.
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Fig. 4. Mode-to-mode energy transfers in MHD turbulence.Sbb(k ′|p|q) represents energy transfer rate from modeb(p) to mode
b(k ′) with the mediation of modeu(q), while Sub(q|k ′|p) represents energy transfer rate from modeb(k ′) to modeu(q) with
the mediation of modeb(p).

3.4.2. Magnetic mode to magnetic mode energy transfers
Now we consider the magnetic energy transferRbb(k ′|p|q) fromb(p) tob(k ′) in the triad(k ′,p,q) (see

Fig. 4). This transfer is due to the termu · ∇b of induction equation (Eq. (13)). The functionRbb(k ′|p|q)
should satisfy the same relationships as (38)–(43) withRuu andSuu replaced byRbb andSbb respectively.
The solution ofRuu’s are not unique. Following arguments of Section 3.1 we can show that

Rbb(k ′|p|q)= Sbb(k ′|p|q)+ Y� , (69)

where

Sbb(k ′|p|q)= −I([k ′ · u(q)][b(k ′) · b(p)]) , (70)

andY� is the circulating energy transfer that is transferred fromb(p) → b(k ′) → b(q) and back tob(p).
Y� does not cause any change in modal energy. Hence, the magnetic energyeffectivelytransferred from
b(p) to b(k ′) is justSbb(k ′|p|q), i.e.,

Rbb
eff(k

′|p|q)= Sbb(k ′|p|q) . (71)

3.4.3. Energy transfer between a velocity mode to a magnetic mode
We now consider the energy transferRub(k ′|p|q) (from b(p) to u(k ′)) andRbu(k ′|p|q) (from u(p) to

b(k ′)) as illustrated inFig. 4. These functions satisfy properties similar to Eqs. (38)–(43). For example,
for energies coming tou(k ′), we have

Rub(k ′|p|q)+ Rub(k ′|q|p)= Sub(k ′|p,q) , (72)

Rub(k ′|p|q)+ Rbu(p|k ′|q)= 0 . (73)



258 M.K. Verma / Physics Reports 401 (2004) 229–380

The solutions of these equations are not unique. Using arguments similar to those in Section 3.1, we
can show that the general solution ofR’s are

Sbu(k ′|p|q)= Sbu(k ′|p|q)+ Z� , (74)

Sub(k ′|q|p)= Sub(k ′|q|p)− Z� , (75)

where

Sbu(k ′|p|q)= I([k ′ · b(q)][b(k ′) · u(p)]) , (76)

Sub(k ′|p|q)= I([k ′ · b(q)][u(k ′) · b(p)]) , (77)

andZ� is the circulating transfer, transferring energy fromu(p) → b(k ′) → u(q) → b(p) → u(k ′) →
b(q) and back tou(p) without resulting in any change in modal energy. SeeFig. 4for illustration. Since
the circulating transfer does not affect the net energy transfer, we interpretSbu andSub as the effective
mode-to-mode energy transfer rates. For example,Sbu(k ′|p|q) is the effective energy transfer rate from
u(p) to b(k ′) with the mediation ofb(q), i.e,

Rbu
eff(k

′|p|q)= Sbu(k ′|p|q) . (78)

To summarize, the energy evolution equations for a triad(k,p,q) are

�

�t

1

2
|u(k ′)|2 = Suu(k ′|p|q)+ Suu(k ′|q|p)+ Sub(k ′|p|q)+ Sub(k ′|q|p) , (79)

�

�t

1

2
|b(k ′)|2 = Sbb(k ′|p|q)+ Sbb(k ′|q|p)+ Sbu(k ′|p|q)+ Sbu(k ′|q|p) . (80)

As discussed aboveSYX(k ′|p|q) (X, Y =u or b) is the mode-to-mode energy transfer rate from the mode
p of field X to the modek ′ of field Y with the modeq acting as a mediator. These transfers have been
schematically shown inFig. 4.

The triads interactions can are also be written in terms of Elsässer variables. Here the participating
modes arez±(k ′), z±(p) andz±(q). The energy equations for these modes are

�

�t

1

2
|z±(k ′)|2 = S±(k ′|p|q)+ S±(k ′|q|p) , (81)

where

S±(k ′|p|q)= −I([k ′ · z∓(q)][z±(k ′) · z±(p)]) . (82)

From Eq. (82) we deduce that thez+ modes transfer energy only toz+ modes, andz− modes transfer
energy only toz− modes. This is in spite of the fact that nonlinear interaction involves bothz+ andz−
modes. These deductions became possible only because of mode-to-mode energy transfers proposed by
Dar et al.

The evolution equation of magnetic helicity in a triad interaction is given by

�

�t
HM(k)= 1

2

[
b∗(k) · �a(k)

�t
+ a∗(k) · �b(k)

�t

]
(83)

= SHM (k ′|p|q)+ SHM (k ′|q|p) , (84)
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where

SHM (k ′|p|q)= 1

4
R[b(k ′) · (u(p)× b(q))]

+ 1

4
I[(k ′ · b(q))(a(k ′) · u(p))− (k ′ · u(q))(a(k ′) · b(p))] . (85)

In ideal MHD, the functionsSYX(k ′|p|q) and energy functions have the following interesting proper-
ties:

1. Energy transfer rate fromX(p) toY(k ′) is equal and opposite to that fromY(k ′) toX(p), i.e.,

SYX(k ′|p|q)= −SXY (p|k ′|q) .
2. Sum of all energy transfer rates alongu–u, b–b, z+–z+, andz−–z− channels are zero, i.e.,

SXX(k ′|p|q)+ SXX(k ′|q|p)+ SXX(p|k ′|q)
+ SXX(p|q|k ′)+ SXX(q|k ′|p)+ SXX(q|p|k ′)= 0 ,

whereX could be any vector field amongu,b, z+, z−.
3. Sum of all energy transfer rates alongu–b channel is zero, i.e.,

Sbu(k ′|p|q)+ Sbu(k ′|q|p)+ Sbu(p|k ′|q)
+ Sbu(p|q|k ′)+ Sbu(q|k ′|p)+ Sbu(q|p|k ′)
+ Sub(k ′|p|q)+ Sub(k ′|q|p)+ Sub(p|k ′|q)
+ Sub(p|q|k ′)+ Sub(q|k ′|p)+ Sub(q|p|k ′)= 0 .

4. Using the above identities we can show that total energy in a triad interaction is conserved, i.e.,

Eu(k ′)+ Eu(p)+ Eu(q)+ Eb(k ′)+ Eb(p)+ Eb(q)= const.

Kinetic energy and magnetic energies arenotconserved individually.
5. Sum of allE+ energies of in a triad are conserved. Similarly, sum of allE− energies are conserved,

i.e.,

E±(k ′)+ E±(p)+ E±(q)= const.

Since cross-helicityHc=(E+−E−)/4, we find the cross helicity is also conserved in a triad interaction.
6. Sum of transfer rates of magnetic helicity in a triad is zero, i.e.,

SHM (k ′|p|q)+ SHM (k ′|q|p)+ SHM (p|k ′|q)
+ SHM (k ′|p|q)+ SHM (k ′|q|p)+ SHM (p|k ′|q)= 0 .

7. Sum ofHM in a triad is conserved, i.e.,

HM(k ′)+HM(p)+HM(q)= const.

8. In incompressible flows, ikp(k) is perpendicular to both the transverse components of the velocity
field, and it does not couple with them. That is why pressure is absent in the energy transfer formulas
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for incompressible flows. Pressure does not isotropize energy in the transverse direction, contrary to
Orszag’s conjecture[139]. In compressive flows pressure couples with the compressive component of
velocity field and internal energy.

9. Mean magnetic field only convects the waves; it does not participate in energy exchange. Hence, it is
absent in the energy transfer formulas.

In the above subsections we derived formulas for mode-to-mode energy transfer rates in MHD turbulence.
In the next subsections, we will use these formulas to define (a) shell-to-shell transfers and (b) cascade
rates in MHD turbulence.

3.5. Shell-to-shell energy transfer rates in MHD turbulence

Using the definition of the mode-to-mode energy transfer functionSYX(k ′|p|q), the energy transfer
rate from themth shell of fieldX to thenth shell of fieldY is

T YXnm =
∑
k ′∈n

∑
p∈m

SYX(k ′|p|q) . (86)

Thep-sum is over themth shell, and thek ′-sum is over thenth shell. As discussed in Section 3.2, the
circulating transfer ratesX�, Y�, andZ� do not appear in the expressions for the shell-to-shell energy
transfer rates.Also, as discussed in Section 3.2, the shell-to-shell energy transfer can be reliably computed
only by mode-to-mode transferS(k ′|p|q).

The numerical and analytical computation of the shell-to-shell energy transfer rates will be discussed
in the later part of the paper.

3.6. Energy cascade rates in MHD turbulence

The energy cascade rate (or flux) is defined as the rate of loss of energy from a sphere in the wavenumber
space to the modes outside the sphere. There are various types of cascade rates in MHD turbulence. We
have shown them schematically inFig. 5. For flux studies, we split the wavenumber space into two regions:
k < k0 (inside “k0 sphere”) andk > k0 (outside “k0 sphere”). The energy transfer could take place from
the inside/outside of theu/b-sphere to the inside/outside of theu/b-sphere. In terms ofSYX(k ′|p|q) the
energy transfer rate from regionA of field X to regionB of fieldY is

�X,A
Y,B =

∑
k ′∈B

∑
p∈A

SYX(k ′|p|q) . (87)

For example, energy flux from the inside of theu-sphere of radiusk0 to the outside of theb-sphere of the
same radius is

�u<
b<(k0)=

∑
|k ′|<k0

∑
|p|<k0

Sbu(k ′|p|q) .

In this paper we denote the inside region of a sphere by< sign and the outside region of a sphere by
> sign. Note that the energy flux is independent of circulatory energy transfer. The total energy flux is
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Fig. 5. Various energy fluxes in MHD turbulence.�X<
Y>

represents energy flux from the inside ofX-sphere to the outside of
Y-sphere.

defined as the total energy (kinetic+magnetic) lost by thek0-sphere to the modes outside of the sphere,
i.e.,

�tot(k0)= �u<
u>(k0)+ �u<

b>(k0)+ �b<
b>(k0)+ �b<

u>(k0) .

Using arguments of Section 3.2, it can be easily seen that the fluxes�u<
u>(k0),�

u<
b>(k0),�

b<
b>(k0),

�b<
u>(k0) can all be computed using the combined energy transferS(k ′|p,q), and the mode-to-mode

energy transferS(k ′|p|q). However,�u<
b<(k0) and�u>

b>(k0) can be computed only usingS(k ′|p|q), not
by S(k ′|p,q).

We also define the energy flux�+(�−) from inside thez+-sphere (z−-sphere) to outside ofz+-sphere
(z−-sphere)

�±(k0)=
∑

|k ′|>k0

∑
|p|<k0

S±(k ′|p|q) .

as shown inFig. 6. Note that there is no cross transfer betweenz+-sphere andz−-sphere.
The energy fluxes have been computed analytically and numerically by researchers. These results will

be described in the later part of the paper.

3.7. Digression to infinite box

In the above discussion we assumed that the fluid is contained in a finite volume. In simulations, box
size is typically taken to 2�. However, most analytic calculations assume infinite box. It is quite easy to
transform the equations given above to those for infinite box using the method described in appendix.
Here, the evolution of energy spectrum is given by (see Section 2)(

�

�t
+ 2�k2

)
Cuu(k, t)= 2

(d − 1)�(k + k ′)

∫
k ′+p+q=0

dp

(2�)2d

× [Suu(k ′|p|q)+ Sub(k ′|p|q)] , (88)
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Fig. 6. Energy flux�+(�−) from inside thez+-sphere (z−-sphere) to outside ofz+-sphere (z−-sphere).

(
�

�t
+ 2�k2

)
Cbb(k, t)= 2

(d − 1)�(k + k ′)

∫
k ′+p+q=0

dp

(2�)2d

× [Sbu(k ′|p|q)+ Sbb(k ′|p|q)] . (89)

The shell-to-shell energy transfer rateT YXnm from themth shell of fieldX to thenth shell of fieldY is

T YXnm = 1

(2�)d�(k ′ + p+ q)

∫
k′∈n

dk ′

(2�)d

∫
p∈m

dp

(2�)d
〈SYX(k ′|p|q)〉 . (90)

In terms of Fourier transform, the energy cascade rate from regionA of field X to regionB of fieldY is

�X,A
Y,B = 1

(2�)d�(k ′ + p+ q)

∫
B

dk ′

(2�)d

∫
A

dp

(2�)d
〈SYX(k ′|p|q)〉 . (91)

In z± variables, the energy evolution equations are(
�

�t
+ 2�+k2

)
C±±(k, t)+ 2�−k2C±∓(k, t)= 2

(d − 1)�(k + k ′)

∫
k ′+p+q=0

dp

(2�)2d
S±(k ′|p|q) ,

and the energy fluxes�±(k0) coming out of a wavenumber sphere of radiusk0 is

�±(k0)= 1

(2�)d�(k ′ + p+ q)

∫
|k ′|>k0

dk ′

(2�)d

∫
|p|<k0

dp

(2�)d
〈S±±(k ′|p|q)〉 . (92)

For isotropic flows, after some manipulations and using Eq. (29), we obtain[100](
�

�t
+ 2�k2

)
Eu,b,±(k, t)= T u,b,±(k, t) , (93)
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whereT (k, t), calledtransfer function, can be written in terms ofSYX(k ′|p|q). The above formulas will
be used in analytic calculations.

The mode-to-mode formalism discussed here is quite general, and it can be applied to scalar turbulence
[182], Rayleigh–Benard convection, enstrophy, Electron MHD, etc. One key assumption however is
incompressibility.With this remark we close our formal discussion on energy transfers in MHD turbulence.
In the next section we will discuss various turbulence phenomenologies and models of MHD turbulence.

4. MHD turbulence phenomenological models

In the last two sections we introduced Navier–Stokes and MHD equations, and spectral quantities
like the energy spectra and fluxes. These quantities will be analyzed in most part of this paper using (a)
phenomenological (b) numerical (c) analytical (d) observational or experimental methods. In the present
section, we will present some of the existing phenomenological models of MHD turbulence.

Many MHD turbulence models are motivated by fluid turbulence models. Therefore, we present a brief
review of fluid turbulence models before going to MHD turbulence. The most notable theory in fluid
turbulence is due to Kolmogorov, which will be presented below.

4.1. Kolmogorov’s 1941 theory for fluid turbulence

For homogeneous, isotropic, incompressible, and steady fluid turbulence with vanishing viscosity (large
Re), Kolmogorov[80–82,96]derived an exact relation that

〈(�u)3‖〉 = −4

5
εl , (94)

where(�u)|| is component ofu(x+ l)− u(x) alongl, ε is the dissipation rate, andl lies between forcing
scale(L) and dissipative scales(ld), i.e.,ld>l>L. This intermediate range of scales is called the inertial
range. Note that the above relationship is universal, which holds independent of forcing and dissipative
mechanisms, properties of fluid (viscosity), and initial conditions. Therefore it finds applications in wide
spectrum of phenomena, e.g., atmosphere, ocean, channels, pipes, and astrophysical objects like stars,
accretion disks, etc.

More popular than Eq. (94) is its equivalent statement on energy spectrum. If we assume�u to be
fractal, andε to be independent of scale, then

〈(�u)2〉 ∝ ε2/3l2/3 .

Fourier transform of the above equation yields

E(k)=KK0ε2/3k−5/3 , (95)

whereKK0 is a universal constant, commonly known as Kolmogorov’s constant.
Kolmogorov’s derivation of Eq. (94) is quite involved. However, Eqs. (94, 95) can be derived using

scaling arguments (dimensional analysis) under the assumption that

1. The energy spectrum in the inertial range does not depend on the large-scaling forcing processes and
the small-scale dissipative processes, hence it must be a powerlaw in the local wavenumber.
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2. The energy transfer in fluid turbulence is local in the wavenumber space. The energy supplied to the
fluid at the forcing scale cascades to smaller scales, and so on. Under steady state the energy cascade
rate is constant in the wavenumber space, i.e.,�(k)= constant= ε.

Eq. (95) has been supported by numerous experiments and numerical simulations. Kolmogorov’s constant
KK0 has been found to lie between 1.4 and 1.6 or so. It is quite amazing that complex interactions among
fluid eddies in various different situations can be quite well approximated by Eq. (95).

In the framework of Kolmogorov’s theory, several interesting deductions can be made.

1. Kolmogorov’s theory assumes homogeneity and isotropy. In real flows, large scales (forcing) as well
as dissipative scales do not satisfy these properties. However, experiments and numerical simulations
show that in the inertial range (ld>l>L), the fluid flows are typically homogeneous and isotropic.

2. The velocity fluctuations at any scalel goes as

ul ≈ ε1/3l1/3 .

Therefore, the effective time-scale for the interaction among eddies of sizel is

�l ≈ l

ul
≈ ε−1/3l2/3 .

3. An extrapolation of Kolmogorov’s scaling to the forcing and the dissipative scales yields

ε ≈ u3
L

L
≈ u3

ld

ld
.

Taking� ≈ uldld, one gets

ld ≈
(

�3

ε

)1/4

.

Note that the dissipation scale, also known as Kolmogorov’s scale, depends on the large-scale quantity
ε apart from kinematic viscosity.

4. From the definition of Reynolds number

Re = ULL

�
≈ ULL

uldld
≈
(
L

ld

)4/3

.

Therefore,

L

ld
≈ Re3/4 .

Onset of turbulence depends on geometry, initial conditions, noise, etc. Still, in most experiments
turbulences sets in afterReof 2000 or more. Therefore, in three dimensions, number of active modes
(L/ld)

3 is larger than 26 million. These large number of modes make the problem quite complex and
intractable.

5. Space dimension does not appear in the scaling arguments. Hence, one may expect Kolmogorov’s
scaling to hold in all dimensions. It is however found that the above scaling law is applicable in three
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dimension only. In two dimension (2D), conservation of enstrophy changes the behavior significantly
(see Appendix D). The solution for one-dimensional incompressible Navier–Stokes isu(x, t)=const,
which is a trivial solution.

6. Mode-to-mode energy transfer termS(k|p|q) measures the strength of nonlinear interaction. Kol-
mogorov’s theory implicitly assumes that energy cascades from larger to smaller scales. It is called
local energy transfer in Fourier space. These issues will be discussed in Section 8 and Appendix D.

7. Careful experiments and simulations show that the spectral index is close to 1.71 instead of 1.67. This
correction of≈ 0.04 is universal and is due to the small-scale structures. This phenomena is known
as intermittency, and will be discussed in Section 11.

8. Kolmogorov’s model for turbulence works only for incompressible flow. It is connected to the fact that
incompressible flow has local energy transfer in wavenumber space. Note that Burgers equation, which
represents compressible flow(U?Cs), hask−2 energy spectrum, very different from Kolmogorov’s
spectrum.

Kolmogorov’s theory of turbulence had a major impact on turbulence research because of its universality.
Properties of scalar, MHD, Burgers, Electron MHD, wave turbulence have been studied using similar
arguments. In the next subsection we will investigate the properties of MHD flows.

4.2. MHD turbulence models for energy spectra and fluxes

Alfvén waves are the basic modes of incompressible MHD equations. In absence of the nonlinear term
(z∓ ·%)z±, z± are the two independent modes traveling antiparallel and parallel to the mean magnetic
field. However, when the nonlinear term is present, new modes are generated, and they interact with each
other, resulting in a turbulent behavior. In the following we will discuss various phenomenologies of
MHD turbulence.

4.2.1. Kraichnan, Iroshnikov, and Dobrowolny et al.’s (KID) phenomenology—E(k) ∝ k−3/2

In the mid-60s, Kraichnan[85] and Iroshnikov[77] gave the first phenomenological theory of MHD
turbulence. For MHD plasma with mean magnetic fieldB0, Kraichnan and Iroshnikov argued that the
localizedz+ and z− modes travel in opposite directions with phase velocity ofB0. When the mean
magnetic fieldB0 is much stronger than the fluctuations (B0?uk), the fluctuations (oppositely moving
waves) will interact weakly. They suggested that Alfvén time-scale�A(k)= (B0k)

−1 is the effective time-
scale for the relaxation of the locally built-up phase correlations, thereby concluding that triple correlation
and the energy flux� will be proportional to(B0k)

−1. Note that(B0k)
−1>(ukk)−1. Using dimensional

arguments they concluded

� = A2�A(k)(E
b(k))2k4 = A2B−1

0 (Eb(k))2k3 (96)

or

Eb(k)= A(�B0)
1/2k−3/2 , (97)

whereA is a nondimensional constant of order 1.
The above approximation yields “weak turbulence”. In absence of anyB0, the magnetic field of the large

eddies was assumed to play the role ofB0. Kraichnan[85] and Iroshnikov[77] also argued that theAlfvén
waves are not strongly affected by the weak interaction among themselves, hence kinetic and magnetic
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energy remain equipartitioned. This phenomenon is called “Alfvén effect”. Note that Kraichnan’s spectral
index is 3

2 as compared to Kolmogorov’s index of5
3.

In 1980 Dobrowolny et al.[48] derived Kraichnan’s32 spectrum based on random interactions ofz+
andz− modes. Dobrowolny et al.’s argument is however more general, and provide us energy spectrum
even whenuk is comparable toB0. They assumed that the interaction between the fluctuations are local
in wavenumber space, and that in one interaction, the eddiesz±k interact with the other eddies of similar
sizes for time interval�±

k . Then from Eq. (27), the variation in the amplitudes of these eddies,�z±k , during
this interval is given by

�z±k ≈ �±
k z

+
k z

−
k k . (98)

In Nsuch interactions, because of their stochastic nature, the amplitude variation will be�z±k ≈ √
N(�z±k ).

Therefore, the number of interactionsN±
k required to obtain a variation equal to its initial amplitudez±k

is

N±
k ≈ 1

k2(z∓k )
2(�±

k )
2 , (99)

and the corresponding timeT ±
k =Nk�

±
k is

T ±
k ≈ 1

k2(z∓k )
2�±
k

. (100)

The time-scale of the energy transfer at wavenumberk is assumed to beT ±
k . Therefore, the fluxes�± of

the fluctuationsz±k can be estimated to be

�± ≈ (z∓k )
2

T ±
k

≈ �±
k (z

±
k )

2(z∓k )
2k2 . (101)

By choosing different interaction time-scales, one can obtain different energy spectra. Using the same
argument as Kraichnan[85], Dobrowolny et al.[48] choseAlfvén time-scale�A =(kB0)

−1 as the relevant
time-scale, and found that

�+ ≈ �− ≈ 1

B0
E+(k)E−(k)k3 = � . (102)

If E+(k) ≈ E−(k), then

E+(k) ≈ E−(k) ≈ (B0�)
1/2k−3/2 . (103)

This result of Dobrowolny et al. is the same as that of Kraichnan[85]. We refer to the above as KID’s
(Kraichnan, Iroshnikov, Dobrowolny et al.) phenomenology.

4.2.2. Marsch, Matthaeus and Zhou’s Kolmogorov-like phenomenology—E(k) ∝ k−5/3

In 1990 Marsch[109] chose the nonlinear time-scale�±
NL ≈ (kz∓k )

−1 as the interaction time-scale for
the eddiesz±k , and substituted those in Eq. (101) to obtain

�± ≈ (z±k )
2(z∓k )k , (104)
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which in turn led to

E±(k)=K±(�±)4/3(�∓)−2/3k−5/3 , (105)

whereK± are constants, referred to as Kolmogorov’s constants for MHD turbulence. WhenE+(k) =
E−(k), we obtain

E(k)=K�2/3k−5/3 , (106)

whereK =K+ =K−. Because of its similarity with Kolmogorov’s fluid turbulence phenomenology, we
refer to this phenomenology as Kolmogorov-like MHD turbulence phenomenology.

During the same time, Matthaeus and Zhou[117], and Zhou and Matthaeus[200]attempted to combine
3
2 and 5

3 spectrum for an arbitrary ratio ofuk andB0. They postulated that the relevant time-scales�±(k)
for MHD turbulence are given by

1

�±(k)
= 1

�A(k)
+ 1

�±
NL(k)

= kB0 + kz∓k .

Substitution of�±(k) in Eq. (101) yields

�± = A2E+(k)E−(k)k3

B0 +
√
kE±(k)

, (107)

where A is a constant. If Matthaeus and Zhou’s phenomenology (Eq. (107)) were correct, the
small wavenumbers (

√
kE±(k)?B0) would follow 5

3 spectrum, whereas the large wavenumbers

(
√
kE±(k)>B0) would follow 3

2 spectrum.

4.2.3. Grappin et al.—Alfvénic turbulence
Grappin et al.[73] analyzed MHD turbulence for nonzero cross helicity; this is also referred to as

Alfvénic MHD. They used Alfvén time-scale as relaxation time-scale for triple correlations, and derived
the transfer function (Eq. (93)) to be

T ±(k, t)=
∫

dp dq(k + p + q)−1(mkpq/p)[k2E±(p)E∓(q)− p2E∓(q)E±(k)] .

They postulated that in the inertial range, energy spectraE±(k)=K±k−m±
. Using�±(k0)=− ∫ k0

0 dkT ±
k ,

and demanding that fluxes are independent ofk0, they derived

m+ +m− = 3 . (108)

In addition, using

ε± = 2�

∫ k±
D

k0

dpp2E±(p) ,

and assumingK+ =K−, andk+
D ≈ k−

D ≈ kD, they concluded that

ε+

ε−
= m+

m− . (109)
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Later we will show that the solar wind observations and numerical results are inconsistent with the above
predictions. We will show later that Grappin et al.’s key assumptions (1) Alfvén time-scale to be the
relevant time-scale, and (2)K+ =K− are incorrect.

4.2.4. Goldreich and Sridhar—E(k⊥) ∝ k
−5/3
⊥

When the mean magnetic field is strong, the oppositely moving Alfvén waves interact weakly. Suppose
three Alfvén waves under discussion arez+(p,p), z−(q,q) andz+(k,k). The wavenumbers and
frequency of the triads must satisfy the following relationships:

p+ q= k ,

+
p + −

q = +
k ,

where±
k = ∓B0k||, and|| and⊥ represent parallel and perpendicular components respectively to the

mean magnetic field (Shebalin et al.[160]). Above relationships immediately imply thatq|| = 0. Hence,
energy transfer could take place fromp tok in a plane perpendicular to the mean magnetic field, as shown
in Fig. 7.

Under a strong mean magnetic field, the turbulence is termed as weak. In 1994 Sridhar and Goldreich
[165] argued that the three-wave resonant interaction is absent in MHD turbulence. They constructed a
kinetic theory based on four-wave interaction and showed that

E(k||, k⊥) ∼ ε1/3VAk
−10/3
⊥ .

Later, Galtier et al.[63] showed that three-wave interactions are present in MHD, and modified the above
arguments (to be discussed in Section 4.2.6).

In a subsequent paper, Goldreich and Sridhar[69] constructed a phenomenology for the strong turbu-
lence. According to them, the strong turbulence occurs when the time�cascadefor eddies of width�⊥ and
length�‖ to pass their energy to the smaller eddies is approximately�||/CA ∼ �perp/z

±
�⊥ . Assuming local

Fig. 7. An illustration of an interacting MHD triad in the presence of strong mean magnetic field.
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interactions in the wavenumber-space, the turbulence cascade rate� will be (z±�⊥)
2/�cascade∼ (z±�⊥)

3/�⊥.
Since steady state� is independent of�⊥,

z±�⊥ ∝ �1/3
⊥ , (110)

that immediately implies that

E(k⊥) ∝ k
−5/3
⊥ . (111)

The condition�||/CA ∼ �perp/z
±
�⊥ along with Eq. (110) yields

�|| ∝ �2/3
⊥ .

The above results were expressed in the combined form as

E(k⊥, k||) ∼ �2/3k
−10/3
⊥ g(k||/k2/3

⊥ ) , (112)

from which we can derive

E(k⊥) ∼
∫
E(k⊥, k||)dk|| ∼ k

−8/3
⊥ ,

and

E(k||) ∼
∫
E(k⊥, k||)k⊥ dk⊥ ∼ k−2

|| .

Thus Goldreich and Sridhar exploited anisotropy in MHD turbulence and derived Kolmogorov-like
spectrum for energy. The above argument is phenomenological. In Section 9.2 we will present Goldreich
and Sridhar’s analytic argument[69]. As will be discussed later,53 exponent matches better with solar
wind observations and numerical simulation results.

4.2.5. Verma—effective mean magnetic field andE(k) ∝ k−5/3

In 1999, Verma[179] argued that the scattering of Alfvén waves at a wavenumberk is caused by the
combined effect of the magnetic field with wavenumbers smaller thank. Hence,B0 of Kraichnan and
Iroshnikov theory should be replaced by an “effective mean magnetic field”. Using renormalization group
procedure Verma could construct this effective field, and showed thatB0 is scale dependent:

B0(k) ∝ k−1/3 .

By substituting the above expression in Eq. (97), Verma[179] obtained Kolmogorov’s spectrum for
MHD turbulence. The “effective” mean magnetic field is the same as “local” mean magnetic field of
Cho et al.[35].

4.2.6. Galtier et al.—weak turbulence andE(k⊥) ∝ k−2
⊥

Galtier et al.[63] showed that the three-wave interaction in weak MHD turbulence is not null, contrary
to theory of Sridhar and Goldreich[165]. Their careful field-theoretic calculation essentially modified
Eq. (102) to

� ∼ 1

k||B0
E+(kperp)E

−(kperp)k
4⊥ .
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Hence, Galtier et al. effectively replaced(kB0)
−1 of KID’s model with more appropriate expression for

Alfvén time-scale(k||B0)
−1. From the above equation, it can be immediately deduced that

E(k⊥) ∝ k−2
⊥ .

In Section 9.1 we will present Galtier et al.’s[63] analytic arguments.
In the later part of the paper we will compare the predictions of the above phenomenological theories

with the solar wind observations and numerical results. We find that Kolmogorov-like scaling models
MHD turbulence better than KID’s phenomenology. We will apply analytic techniques to understand the
dynamics of MHD turbulence.

As discussed in the earlier sections, apart from energy spectra, there are many other quantities of interest
in MHD turbulence. Some of them are cross helicity, magnetic helicity, kinetic helicity, enstrophy, etc.
The statistical properties of these quantities are quite interesting, and they are addressed using (a) absolute
equilibrium state, (b) selective decays, (c) dynamic alignment, which are discussed below.

4.3. Absolute equilibrium states

In fluid turbulence when viscosity is identically zero (inviscid limit), kinetic energy is conserved in
the incompressible limit. Now consider independent Fourier modes (transverse to wavenumbers) as state
variablesya(t). Lesieur[100] has shown that these variables move in a constant energy surface, and the
motion is area preserving like in Liouville’s theorem. Now we look for equilibrium probability-distribution
functionP({ya}) for these state variables. Once we assume ergodicity, the ideal incompressible fluid
turbulence can be mapped to equilibrium statistical mechanics[100].

By applying the usual arguments of equilibrium statistical mechanics we can deduce that at equilibrium,
the probability distribution function will be

P(y1, . . . , ym)= 1

Z
exp

(
−1

2
�

m∑
a=1

y2
a

)
,

where� is a positive constant. The parameter� corresponds to inverse temperature in the Boltzmann
distribution. Clearly

〈y2
a〉 =

∫
�i dyiy

2
aP ({yi})= 1

�
,

independent ofa. Hence energy spectrumC(k) is constant, and 1D spectrum will be proportional tokd−1

[100]. This is very different from Kolmogorov’s spectrum for largeReturbulence. Hence, the physics of
turbulence at� = 0 (inviscid) differs greatly from the physics at� → 0. This is not surprising because (a)
turbulence is a nonequilibrium process, and (b) Navier–Stokes equation is singular in� (Fig. 8).

The equilibrium properties of inviscid MHD equations too has been obtained by mapping it to statistical
equilibrium system[62,168]. Here additional complications arise due to the conservation of cross helicity
and magnetic helicity along with energy. Stribling and Matthaeus[168] provide us with the analytic and
numerical energy spectra for the inviscid MHD turbulence. The algebra is straightforward, but somewhat
involved. In Fig. 9 we illustrate their analytic prediction for the spectrum[168]. Clearly total energy
and cross helicity appear to cascade to larger wavenumbers, and magnetic helicity peaks at smaller
wavenumbers.
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Fig. 8. Spectrum of energy, cross helicity, and magnetic helicity of absolute equilibrium state. Adopted from
Stribling et al.[168].

Fig. 9. Cascade direction of energy�E and magnetic helicity�HM in MHD turbulence.

Even though nature of inviscid flow is very different from turbulent flow, Kraichnan and Chen[89]
suggested that the tendency of the energy cascade in turbulent flow could be anticipated from the absolute
equilibrium states. Suppose energy or helicity is injected in some intermediate range, and if the inviscid
spectrum peaks at high wavenumber, then one may expect a direct cascade. On the contrary, if the inviscid
spectrum peaks at smaller wavenumber, then we expect an inverse cascade. Frisch[62] and Stribling and
Matthaeus[168] have done detailed analysis, and shown that the energy and cross helicity may have
forward cascade, and magnetic helicity may have an inverse cascade.

Ting et al.[170] studied the absolute equilibrium states for 2D inviscid MHD. They concluded that
energy peaks at larger wavenumbers compared to cross helicity and mean-square vector potential. Hence,
energy is expected to have a forward cascade. This is a very interesting property because we can get
reasonable information about 3D energy spectra and fluxes by doing 2D numerical simulation, which are
much cheaper compared to 3D simulations.



272 M.K. Verma / Physics Reports 401 (2004) 229–380

4.4. Spectrum of magnetic helicity and cross helicity

As discussed in the previous subsection, absolute equilibrium states of MHD suggest a forward energy
cascade for energy and cross helicity, and an inverse cascade for magnetic helicity (3D) or mean-square
vector potential (2D). The forward energy cascade has already been discussed in Section 4.2. Here we
will discuss the phenomenologies for the inverse cascade regime.

The arguments are similar to the derivation of Kolmogorov’s spectrum for fluid turbulence (Section
4.1). We postulate a constant negative flux of magnetic helicity�HM at low wavenumbers (seeFig. 9).
Hence, the energy spectrum in this range will have the form

E(k) ∼ |�HM |�k� .

Simple dimensional matching yields� = 2
3 and� = −1. Hence

E(k) ∼ |�HM |2/3k−1 .

We will show later that the inverse cascade of magnetic helicity assists the growth of magnetic energy at
large scales, a process known as “dynamo”.

Using similar analysis for 2D MHD, Biskamp showed that

E(k) ∼ |�A2|2/3k−1/3 ,

where�A2 is the flux of mean-square vector potential. Note however that in 2D fluid turbulence, energy
has ainverse cascade, but enstrophy (� = ∫ |∇ × u|2/2) has aforward cascade[86], and the energy
spectrum is

E(k) ∼ �2/3k−5/3 k>kf ,

E(k) ∼ �2/3
� k−3 k?kf ,

wherekf is the forcing wavenumber, and�� is the enstrophy flux.

4.5. Dynamic alignment

In a decaying turbulence, energy decreases with time. Researchers found that the evolution of other
global quantities also have very interesting properties. Matthaeus et al.[113] studied the evolution of
normalized cross helicity 2Hc/E using numerical simulations and observed that it increases with time.
In other words, cross helicity decays slower than energy. Matthaeus et al. termed this phenomena as
dynamic alignmentbecause higher normalized cross helicity corresponds to a higher alignment of the
velocity and magnetic fields. Pouquet et al.[150] also observed a growth of normalized cross helicity in
their simulation. The argument of Matthaeus et al.[113] to explain this phenomena is as follows:

In KID’s model of MHD turbulence, the energy fluxes�+ and�− are equal (see Eq. (102)). Hence
bothE+ andE− will get depleted at the same rate. If initial condition were such thatE+>E−, then
E+/E− ratio will increase with time. Consequently�c = (E+ − E−)/(E+ + E−) will also increase
with time.

However, recent development in the field show that Kolmogorov-like phenomenology[109,69,165,179]
models the dynamics of MHD turbulence better than KID’s phenomenology. Keeping this in mind,
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we generalize the arguments of Matthaeus et al. The rate of change ofE+/E− is

d

dt

E+

E− = 1

(E−)2
[
E−Ė+ − E+Ė−

]
.

Clearly,E+/E− will increase with time if

Ė+

Ė− >
E+

E− or
ε+

ε−
<
E+

E− (113)

using−Ė± = ε±. If we assumeE+/E− ∼ E+(k)/E−(k), then Eq. (105) yields

E+

E− ∼ K+

K−

(
ε+

ε−

)2

.

WhenE+/E− is not much greater than 1,K+ andK− are probably very close. Hence,

E+

E− ∼
(

ε+

ε−

)2

>

(
ε+

ε−

)
.

Therefore, according to Eq. (113)E+/E− will increase with time in this limit. For the caseE+/E−?1,
Verma[184] showed that

ε+

ε−
≈ 1

0.4
.

SinceE+/E−?1, E+/E−> ε+/ε−. Hence, growth of normalized cross helicity�c is consistent with
Kolmogorov-like model of MHD turbulence.

The above arguments are not applicable when the initial�c vanishes. Numerically simulations show
that�c typically could deviate up to 0.1–0.15. Also, cross helicity is quite sensitive to phases of Fourier
modes; we will discuss this phenomena in Section 4.7. It would be interesting to study the evolution of
cross helicity in the language of symmetry-breaking and its possible generalization to nonequilibrium
situations.

4.6. Selective decay

We saw in the previous section that the cross helicity(E+−E−) decays slower than energy(E++E−).
Let us look at it from the decay equation of global quantities:

dE

dt
= d

dt

∫
d�

1

2
(u2 + b2)= −�

∫
d�|%× u|2 − �

∫
d�j2 ,

dHc

dt
= d

dt

∫
d�u · B= −(� + �)

∫
d�j ·%× u ,

dHM

dt
= d

dt

∫
d�

1

2
(A · B)= −1

2
�

∫
d�j · B .

where j represents the current density. Since the dissipation terms ofHM has lower power of spatial
derivatives as compared toE, HM will decay slower thanE. The decay rate ofHc is slower becauseHc
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can take both positive and negative values. Hence,Hc andHM decay slower thanE. This phenomena,
calledselective decay,was first proposed by Matthaeus and Montgomery[114].

Several researchers argued that turbulence may relax to a minimum energy state under the constraint
of constant magnetic helicityHM. This condition can be written as

�

(∫
d�

1

2
(u2 + b2)− �

∫
d�

1

2
(A · B)

)
= 0 .

Variation with respect toA yields

%× B− �B= 0 .

Variation with relative tou yieldsu=0. The above equation imply that currentj =%×B is parallel toB,
therefore forcej × B= 0. Hence, the minimum-energy state is a static force-free field. This result finds
application in reversed-field-pinch plasma.

Slow decay or growth due to inverse cascade could produce coherent structure. This process is referred
to as self-organization process. See Yanase et al.[194] for more detailed study of this phenomena.

4.7. “Phase” sensitivity of global quantities

Let us consider the complex Fourier modez±(k)=|z±(k)| exp(i�±). Clearly there are four independent
variables, of which|z+(k)| and |z−(k)| fix E+(k) andE−(k), respectively (Fig. 10). SinceER =
Re(z+(k) · z−∗(k)) ∝ (Eu − Eb), �+ − �− together with|z±(k)| fix Eu/Eb. Hence, three global
quantities(E±, ER) or (Eu,Eb,Hc) are fixed by|z±(k)| and�+ − �−, leaving the absolute value of
�+ free. Dar et al.[43] studied the evolution of global quantities by varying the absolute value of initial
phase�+ while keeping�+ − �− fixed. We term this as “phase”.

Dar et al.[43] performed DNS on 5122 grid. They performed one set of run (mhd) for random values
of �+ keeping�+ − �− fixed (by choosing appropriaterA). In the second run (mhd*) they changed�+
uniformly for all the modes by an amount�, and the third run (mhd**) the phase�+ were shifted by
a random amount. Dar et al. found that total energy and Alfvén ratio do not depend on the shift of�+,
however cross helicity depends quite sensitively on the shift, specially when�c is small. This result is
illustrated inFig. 10. Dar et al.’s result is very surprising, and its consequences have not been studied in
detail. This result raises the question on randomness of initial conditions, ergodicity, etc.

In this section we studied some of the basic phenomenological models of MHD turbulence. We will
compare their predictions with the numerical results and solar wind observations. These are the topics of
discussion of the next two sections.

5. Solar wind: a testbed for MHD turbulence

Analytical results are very rare in turbulence research because of complex nature of turbulence. There-
fore, experiments and numerical simulations play very important role in turbulence research. In fluid
turbulence, engineers have been able to obtain necessary information from experiments (e.g., wind tun-
nels), and successfully design complex machines like aeroplanes, spacecraft, etc. Unfortunately, terrestrial
experiments exhibiting MHD turbulence are typically impossible because of large value of resistivity and
viscosity of plasmas. For example, hydrogen plasma at temperature 104 K has resistivity approximately
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Fig. 10. Evolution of normalized cross helicity�c for initial �c = 0.1, rA = 0.5. The curves correspond to three different set of
“phases” . Adopted from Dar et al.[43].

Table 4
Typical observational data on the solar wind

Quantity Corona base 1 AU

Ion density 109 cm−3 3–20 cm−3

Mean velocity field 300–800 km/s 300–800 km/s
Velocity fluctuations ? 10–20 km/s
Mean magnetic field 10 G (3– 20)× 10−5 G
Magnetic field fluctuations ? (1– 3)× 10−5 G
Temperature 106 104– 106

105 cm2/s (seeTable 1). For a typical laboratory setup of size 10 cm and velocity scale of 10 cm/s,
magnetic Reynolds number will be 10−3, which is far from turbulent regime. On the other hand, astro-
physical plasmas have large length and velocity scales, and are typically turbulent. They are a natural
testbed for MHD turbulence theories. We have been able to make large set of measurements on nearest
astrophysical plasma, the solar wind, using spacecrafts. The data obtained from these measurements have
provided many interesting clues in understanding the physics of MHD turbulence. Direct or indirect
measurements on planetary and solar atmosphere, galaxies, etc. also provide us with useful data, and
MHD turbulence is applied to understand these astrophysical objects; due to lack of space, we will not
cover these astrophysical objects in our review.

The Sun (or any typical star) spews out plasma, called solar wind. This was first predicted by Parker
in 1958, and later observed by spacecrafts. The flow starts at the corona base and extends radially
outward beyond the planetary system, and terminates at around 100 AU (1 AU= Earth’s orbital radius≈
1.5× 108 km). Typical observational data for the solar wind and the corona base is given inTable 4 [14].
The density of the wind decreases approximately asr−2. The mean magnetic field is largely polar in
north–south direction, but spirals out in the equatorial plane. Typical Sound speed (Cs ≈ √

kBT/mp) is
of the order of several hundred km/s. The density fluctuation�	/	 ≈ (u/Cs)

2 ≈ 0.01, hence solar wind
can be treated as incompressible fluid.
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Fig. 11. (a)–(d) Energy spectraE±,u,b(k) of a typical solar wind stream is shown in the top of the figure. The straight line of
slope5

3 represents Kolmogorov’s spectrum. The normalized cross helicity�c and Alfvén ratiorA are also shown in the bottom
of the figure. Adopted from Tu and Marsch[173].

The solar wind data has been analyzed by many scientists. For details the reader is referred to reviews by
Goldstein et al.[70] and Tu and Marsch[174]. TheAlfvén ratiorA, which is the ratio of kinetic to magnetic
energy, is dependent on heliocentric distance and length scale. The average value ofrA in the inertial
range decreases from near 5 at 0.3AU to near 0.5 at 1AU and beyond[112,153,154]. The normalized
cross helicity�c, in general, decreases with increasing heliocentric distance, with asymptotic values near
+1 (purely outward propagating Alfvén waves) near 0.3AU, and near 0 by 8AU or so[112,153,154]. See
Fig. 11for an illustration.
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Now let is focus on energy spectrum and turbulent dissipation rates in the solar wind. Matthaeus and
Goldstein[110]computed the exponent of the total energy and magnetic energy. They found the exponents
to be 1.69±0.08 and 1.73±0.08 respectively, somewhat closer to5

3 than3
2. Similar results were obtained

by Marsch and Tu[110] for E±(k) andEu,b(k) at various heliocentric distances.Fig. 11illustrates the
energy spectraE±,u,b(k) of a typical solar wind stream. This is surprising becauseB0?

√
kE±(k) for

inertial range wavenumbers in the solar wind, and according to KID’s phenomenology, the exponent
should be3

2 (see Section 4.2). The phenomenological model of Matthaeus and Zhou, and Zhou and

Matthaeus[117,200]predicts that KID’s phenomenology should hold when
√
kE±(k)>B0(highk), and

Kolmogorov-like phenomenology should be to be applicable when
√
kE±(k)?B0(low k). We do not find

any such break from5
3 to 3

2 spectrum in the observed spectrum, thus ruling out phenomenological model
of Matthaeus and Zhou, and Zhou and Matthaeus[117,200].

The observational studies of Tu and Marsch[174] show that the spectral index for large cross helicity
is also close to5

3. This is in contradiction to Grappin et al.’s predictions�+/�− ≈ m+/m− = (3 −
m−)/(3 − m+) [72,73]. Hence the solar wind observations invalidate the phenomenology of Grappin
et al. as well. On the whole, the solar wind data appears to indicate that Kolmogorov-like model (5

3) is
applicable in MHD turbulence, even when the mean magnetic field is large as compared to the fluctuations.
In the later sections we will discuss numerical simulations and analytic arguments that support this
observation.

As discussed above, the Alfvén ratio (rA = Eu/Eb) is high (≈ 5) in the inner heliosphere, and it
decreases to near 0.5 at 1AU. Similar evolution is seen in numerical simulations as well. In Section 8.2
we will discuss a plausible argument why Alfvén ratio evolves toward 1 or lower in decaying turbulence.

Temperature of the solar wind decreases slower than adiabatic cooling, implying that solar wind is
heated as it evolves. Some of the studied mechanism for heating are turbulence, shocks, neutral ions, etc.
Tu [172], Verma et al.[190], Matthaeus et al.[116], Verma[184], and others have estimated the turbulent
dissipation rate in the solar wind from the observational data and modeling. They argued that turbulent
heating can contribute significantly to heating of the solar wind.

There are interesting studies on coherent structures, compressibility, density spectrum, etc. in the solar
wind. Due to lack of space, we will not discuss them here and refer the readers to excellent reviews on
solar wind[70,174].

6. Numerical investigation of MHD turbulence

Like experiments, numerical simulations help us test existing models and theories, and inspire new
one. In addition, numerical simulations can be performed for conditions which may be impossible in real
experiments, and all the field components can be probed everywhere, and at all times. Recent exponential
growth in computing power has fueled major growth in this area of research. Of course, numerical
simulations have limitations as well. Even the best computers of today cannot resolve all the scales in a
turbulent flow. We will investigate these issues in this section.

There are many numerical methods to simulate turbulence on a computer. Engineers have devised
many clever schemes to simulate flows in complex geometries; however, their attention is typically at
large scales. Physicists normally focus on intermediate and small scales in a simple geometry because
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these scales obey universal laws. Since nonlinear equations are generally quite sensitive, one needs to
compute both the spatial and temporal derivatives as accurately as possible. It has been shown that
spatial derivative could be computed “exactly” using Fourier transforms given enough resolutions[28].
Therefore, physicists typically choose spectral method to simulate turbulence. Note however that several
researchers (for example, Brandenburg[23]) have used higher-order finite-difference scheme and have
obtained comparable results.

6.1. Numerical solution of MHD equations using pseudo-spectral method

In this subsection we will briefly sketch the spectral method for 3D flows. For details refer to Canuto
et al.[28]. The MHD equations in Fourier space is written as

�z±(k, t)
�t

= ± i(B0 · k)z±(k, t)− ikp(k, t)− FT [z∓(k, t) · ∇z±(k, t)]
− �±k2z±(k, t)− �∓k2z∓(k, t)+ f±(k, t) ,

whereFT stands for Fourier transform, andf±(k, t) are the forcing functions. The flow is assumed to
be incompressible, i.e.,k · z±(k, t) = 0. For 3D simulation we assume periodic boundary condition
with real-space box size as(2�)× (2�)× (2�), and Fourier-space box size as(nx, ny, nz). The allowed
wavenumbers arek = (kx, ky, kz) with kx = (−nx/2 : nx/2), ky = (−ny/2 : ny/2), kz = (−nz/2 :
nz/2). The reality condition implies thatz±(−k) = z±∗(k), therefore, we need to consider only half
of the modes[28]. Typically we take(−nx/2 : nx/2,−ny/2 : ny/2,0 : nz/2), hence, we haveN =
nx ∗ ny ∗ (nz/2 + 1) coupled ordinary differential equations. The objective is to solve for the field
variables at a later time given initial conditions. The following important issues are involved in this
method:

1. The MHD equations are converted to nondimensionalized form, and then solved numerically. The
parameter� is inverse Reynold’s number. Hence, for turbulent flows,� is chosen to be quite small
(typically 10−3 or 10−4). In Section 4.1 we deduced using Kolmogorov’s phenomenology that the
number of active modes are

N ∼ �−9/4 .

If we choose a moderate Reynolds number�−1 = 104, N will be 109, which is a very large number
even for the most powerful supercomputers. To overcome this difficulty, researchers apply some tricks;
the most popular among them are introduction of hyperviscosity and hyperresistivity, and large-eddy
simulations. Hyperviscous (hyperresistive) terms are of the form(�j , �j )k

2jz±(k) with j � 2; these
terms become active only at large wavenumbers, and are expected not to affect the inertial range physics,
which is of interest to us. Because of this property, the usage of hyperviscosity and hyperresistivity has
become very popular in turbulence simulations. Large-eddy simulations will be discussed in Section
12 of this paper. Just to note, one of the highest resolution fluid turbulence simulation is by Gotoh[71]
on a 40963 grid; this simulation was done on Fujitsu VPP5000/56 with 32 processors with 8 Gigabytes
of RAM on each processor, and it took 500 h of computer time.

2. The computation of the nonlinear terms is the most expensive part of turbulence simulation. A naive
calculation involving convolution will take O(N2) floating point operations. It is instead efficiently



M.K. Verma / Physics Reports 401 (2004) 229–380 279

computed using Fast Fourier Transform (FFT) as follows:
(a) Computez±(x) from z±(k) using Inverse FFT.
(b) Computez∓i (x)z

±
j (x) in real space by multiplying the fields at each space points.

(c) ComputeFFT [z∓i (x)z±j (x)] using FFT.

(d) Compute ikjFFT [z∓i (x)z±j (x)] by multiplying by kj and summing over allj. This vector is
−FFT [z∓(k, t) · ∇z±(k, t)].
Since FFT takes O(N log N), the above method is quite efficient. The multiplication is done in real
space, therefore this method is called pseudo-spectral method instead of just spectral method.

3. The productsz∓i (x)z
±
j (x)produce modes with wavenumbers larger thankmax. On FFT, these modes get

aliased withk < kmax and will provide incorrect value for the convolution. To overcome this difficulty,
last 1

3 modes of fieldsz±i (k) are set to zero (zero padding), and then FFTs are performed. This scheme
is called2

3 rule. For details refer to Canuto et al.[28].
4. The pressure is computed by taking the dot product of MHD equation withk. Using incompressibility

condition one obtains

p(k, t)= ik
k2 · FT [z∓(k, t) · ∇z±(k, t)] .

To computep(k) we use already computed nonlinear term.
5. Once the right-hand side of the MHD equation has been computed, we could time advance the equation

using one of the standard techniques. The viscous terms are advanced using an implicit method called
Crank–Nicholson’s scheme. However, the nonlinear terms are advanced using Adam–Bashforth or
Runge–Kutta scheme. One uses either second- or third-order scheme. The choice of dt is determined
by CFL criteria(dt < (�x)/Urms). By repeated application of time-advancing, we can reach the desired
final time.

6. The MHD turbulence equations can be solved either usingz± or (u,b). The usage ofz± turns out to
be more efficient because they involve less number of FFT operations.

7. When forcingf± = 0, the total energy gets dissipated due to viscosity and resistivity. This is called
decaying simulation. On the contrary, forced simulation have nonzero forcing(f �= 0), which feed
energy into the system, and the system typically reaches a steady state in several eddy turnover time.
Forcing in astrophysical and terrestrial systems are typically at large-scale eddies (shocks, explosions,
etc.). Therefore, in forced MHD equationsf u is typically applied at small wavenumbers, which could
feed both kinetic energy and kinetic helicity. For details refer to Brandenburg[22].

Spectral method has several disadvantages as well. This method cannot be easily applied to nonperiodic
flows. That is the reason why engineers hardly use spectral method. Note however that even in aperiodic
flows with complex boundaries, the flows at small length scale can be quite homogeneous, and can be
simulated using spectral method. Spectral simulations are very popular among physicists who try to probe
universal features of small-scale turbulent flows. Since the MHD equations are solved directly (without
any modeling), this method is called direct numerical simulation (DNS).

Many researchers have done spectral simulation of MHD turbulence. In this section we will mention
some of the main results concerning energy spectra and cascade rates. Numerical results on dynamo and
intermittency will be discussed later in this paper. Some numerical results on the evolution of global
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quantities (e.g., dynamic alignment by Matthaeus et al.[113]) were discussed were discussed in Section
4, and they will not be repeated here.

6.2. Numerical results on energy spectra (3
2 or 5

3)

In Section 4 we discussed various MHD turbulence phenomenologies, which predict the exponents to
be 3

2, or 5
3, or mix of both. Grappin et al.[73] predicted the exponents to be cross helicity dependent; for

small�c, m+ ≈ m− ≈ 3
2, but for large�c, m+ → 3, andm− → 0. Many researchers tried to test these

predictions numerically.
One-dimensional energy spectrumE(k) is computed by summing over all the modes in the shell

(k − 1
2 : k + 1

2), i.e.,

EX(k)= 1

2

∑
k−1/2<|s|<k+1/2

|X̂(s)|2 ,

whereX = u,b, z±. The energy spectrum is computed for both decaying or forced simulations. In the
final state (after 2–10 eddy turnover time), Alfvén ratio is typically found to be close to 0.5. Most of the
MHD turbulence simulations have been done for zero cross helicity; for these cases, normalized cross
helicity typically fluctuates in the range of−0.1 to 0.1.

Most of the high-resolution simulations till early 1990s were done in 2D due to lack of computing
resources. Biskamp and Welter[18] performed numerical studies of 2D MHD turbulence on grid up to
10242 under small cross helicity limit. They reported the spectral index to be close to3

2 in agreement with
the models of Kraichnan, Iroshnikov, and Dobrowolny et al. (KID), with a caveat that the exponents may
be close to5

3 in transition states, in which turbulence is concentrated in regions of weak magnetic field.
In summary, the numerical simulations till early 1990s supported3

2 spectral index. Note that according
to absolute equilibrium theory, 2D and 3D are expected to have the same energy spectra. So we can test
the turbulence models in 2D as well.

Since 5
3 and 3

2 are very close, there is a practical difficulty in resolving the spectral index. They can
be resolved with certainty only in a high-resolution simulations. Verma[177], and Verma et al.[191]
approached this problem indirectly. They tested the energy cascade rates�± for nonzero cross helicity
in 5122 DNS. Recall that KID’s model (32) predicts�+ = �− (Eq. (102)) independent ofE+/E− ratio,
while Kolmogorov-like theories (53) predict (Eq. (105))

E−(k)
E+(k)

= K−

K+

(
�−

�+

)2

.

Verma[177] and Verma et al.[191] computed both energy spectra and cascade rates; their plots of the
energy spectra and fluxes are reproduced inFig. 12.

Regarding spectral indices, no particular claim could be made because the numerically computed
indices were within the error bars of both32 and 5

3. However, the study of energy fluxes showed that
underlying turbulent dynamics is closer to Kolmogorov-like. The energy flux of majority species (larger
ofE+andE−, here taken to beE+) was always greater that of minority species, even in situations where
z±rms>B0. When we look at the values of cascade rates more closely (seeTable 1of Verma et al.[191]),
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Fig. 12.E±(k)ka vs. k (left panel) and�±(k) vs. k (right panel) for 2D runs with (a)B0 = 0 and initial�c = 0.0, and (b)
B0 = 1.0 and initial�c = 0.9. In the left panel the solid(E+) and dashed line(E−) correspond toa = 5

3, and chained(E+)
and dotted(E−) correspond toa= 3

2. In the right panel solid and chained lines represent�± respectively, while the dashed and
dotted lines represent dissipation rate and the energy loss in the sphere of radiusk. The numerical results favor Kolmogorov’s
phenomenology over KID’s phenomenology. Adopted from Verma et al.[191].

we find that,

E−(k)
E+(k)

≈
(

�−

�+

)2

(114)

for initial �c = 0.25. However, for initial�c = 0.9, they were off by a factor of 10. Eq. (114) assumes
K+ = K−, which is not a valid assumption for large�c. Verma[184] has shown thatK± depend on
�c, and the factor ofK−/K+ is of the order of 4. With this input, the numerical results come closer to
the analytical results, but the agreement is still poor. This indicates that physics at large cross helicity
(Alfvénic turbulence) is still unresolved.

The above numerical results imply that the relevant time scale for MHD turbulence is nonlinear time-
scale(kz±k )

−1, not theAlfvén time-scale(kB0)
−1.Verma[177]andVerma et al.[191]provided one of the

first numerical evidence that Kolmogorov’s scaling is preferred over KID’s3
2 scaling in MHD turbulence.

High-resolution 3D simulations soon became possible due to availability of powerful computers. Müller
and Biskamp[132], and Biskamp and Müller[15] performed 5123 DNS with both normal and hyperdif-
fusive terms. They showed that the energy spectrum follows ak−5/3 law, steeper thank−3/2 as previously
thought (seeFig. 13).The runs with hyperdiffusivity had a bump at large wavenumbers.The Kolmogorov’s
constant was found to be 2.2. The range of5

3 powerlaw is close to 1 decade. Numerical results of Cho
[33], Cho et al.[36], and others are consistent with Kolmogorov’s scaling.

Biskamp and Müller also computed the intermittency exponents and showed that they are consistent
with Kolmogorov scaling and sheet-like dissipative structure. We will discuss these issues later in this
paper.

Biskamp and Schwarz[16] performed DNS on 2D MHD turbulence on grids of 20482 to 81922.
They claimed that the energy spectrum agrees with KID’s law (3

2), contrary to 3D case. They have
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Fig. 13. Plot of normalized energy spectrum compensated byk5/3for a 3D MHD simulation on 5123grid. Flatness of the plot
indicates that Kolmogorov’s53 index fits better than32 (dashed line). Adopted from Biskamp and Müller[15].

also computed the structure functions, and reported a strong anomalous bottleneck effect. Note that
Biskamp and Schwarz’s results contradicts Verma et al.’s[191] results, where the energy fluxes follow
Kolmogorov’s predictions. This issue needs a closer look. It is possible that the dynamics is Kolmogorov-
like, but they are strongly modified by intermittency effects. Refer to Verma et al.[188], Biskamp[13],
and Section 11 for further details.

6.3. Numerical results on anisotropic energy spectra

Shebalin et al.[160] performed DNS in 2D and studied the anisotropy resulting from the application
of a mean magnetic field. They quantified anisotropy using the angle�Q defined by

tan2 �Q =
∑
k2⊥|Q(k, t)|2∑
k2|||Q(k, t)|2

,

whereQ represents any one of the vector fields likeu,b,∇ × u, etc. They found turbulence to be
anisotropic. Later Oughton et al.[141]carried out the anisotropic studies in 3D.They found that with the in-
crease ofB0, anisotropy increases up toB0 ∼ 3, then it saturated.They also found that anisotropy increases
with increasing mechanical and magnetic Reynolds numbers, and also with increasing wavenumbers.B0
also tended to suppress energy cascade. Matthaeus et al.[115]numerically show that the anisotropy scales
linearly with the ratio of fluctuating to the total magnetic field strength.

Cho et al.[35,37]performed 3D DNS and studied anisotropic spectrum. They found that anisotropy of
eddies depended on their size: along “local” magnetic field lines, the smaller eddies are more elongated
than the larger ones. SeeFig. 14for an illustration of numerically computed velocity correlation function.
The numerical value matched quite closely with the predictions of Goldreich and Sridhar[69]. Their result
was also consistent with the scaling lawk|| ∼ k

2/3
⊥ proposed by Goldreich and Sridhar[69]. Herek|| and

k⊥ are the wavenumbers measured relative to the local magnetic field direction. The “local” magnetic
field is in the same spirit as the “effective” mean magnetic field of Verma[179].
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Fig. 14. Cho et al.[35] compared the velocity correlation function from simulation (top panel) with the predictions of Goldreich
and Sridhar’s theory (bottom panel). The results are in very good agreement with each other. Adopted from Cho et al.[35].

Maron and Goldreich[108] performed a detailed DNS of MHD turbulence. Their grid size ranged
from (642 × 256) to (2562 × 512). They numerical results are in general agreement with the Goldreich
and Sridhar predictionk|| ∼ k

2/3
⊥ . However, their 1D spectral index was closer to3

2 than 5
3, contrary to

Cho et al.’s[35,37]numerical results thatE(k⊥) ∝ k
−5/3
⊥ .

After a review of energy spectra in MHD turbulence, we now turn to studies on energy fluxes in MHD
turbulence.

6.4. Numerical results on energy fluxes

Computation of energy fluxes using DNS has done by Verma et al.[191], Dar et al.[45], Ishizawa
and Hattori[78,79] (using wavelet basis), and Debliquy et al.[46]. For 2D MHD turbulence, Verma
et al.[191]numerically computed�±, and Dar et al.[45], Ishizawa and Hattori[78,79]computed various
fluxes�X<

Y> (X, Y = u, b). For 3D MHD turbulence, Debliquy et al.[46] computed�X<
Y> (X, Y = u, b).

Debliquy et al.[46] performed flux computation for 3D decaying MHD turbulence in 5123 grid. The
initial Alfvén ratio was 1.0; it decreased and saturated at 0.4. Here we illustrate the flux computation with
an example. The flux�u<

b>(k0), which is the energy flux from the inside of theu-sphere of radiusk0, to
the outside of theb-sphere of radiusk0, is

�u<
b>(k0)=

∑
|k ′|>k0

∑
|p|<k0

I([k ′ · b(q)][b(k ′) · u(p)]) . (115)



284 M.K. Verma / Physics Reports 401 (2004) 229–380

Two “truncated” variablesu< andb> are defined as

u<(p)=
{
u(p) if |p|<k0 ,

0 if |p|>k0
(116)

and

b>(k)=
{

0 if |k|<k0 ,

b(k) if |k|>k0 .
(117)

Eq. (115) written in terms ofu< andb> reads as

�u<
b>(k0)= I


∑

k

kjb
>
i (k)

∑
p

bj (k − p)u<i (p)


 . (118)

Thep summation in the above equation is a convolution, which is computed using FFT. After FFT,k
sum is performed, which is the desired flux. Ishizawa and Hattori[78,79]used Meyor wavelets as basis
vectors and have computed the energy fluxes.

Debliquy et al.[46] computed various energy fluxes of MHD turbulence at various times (t∗=t/teddy=0
to 1.74).Fig. 15illustrates various energy fluxes at the final whenrA = 0.4. Debliquy et al. normalized
the fluxes by the total flux. A small range of wavenumbers neark = 10–20 where the energy fluxes are
somewhat flat was identify as the inertial range. Debliquy et al. computed Kolmogorov’s constants of
MHD turbulence by substituting the energy spectra and the total flux in Eq. (106) and obtainedK = 2.8.
Note that there is significant error in numerical simulations, identification of inertial range, computation
of energy spectra and fluxes. Therefore, the above values are only approximate, and errors could be
quite high (around 20%). Debliquy et al.’s estimation of Kolmogorov’s constant is somewhat close to
Muller and Biskamp’s[15,132]value(K = 2.2) and approximately double of Verma’s[184] theoretical
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Fig. 15. Plots of various energy fluxes (normalized withmax(�tot) vs.k for rA ≈ 0.40). The fluxes shown are�tot (solid),�u<
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from Debliquy et al.[46].
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/� (diamond) vs.rA. The straight lines are good fit to the above data. The lines of best

fit arey1 = 0.56(rA − 0.63) andy2 = 0.57(rA − 0.37), respectively.

predictions.Fig. 16illustrated the evolution of the normalized inertial-range fluxes with time. Debliquy
et al.’s conclusions regarding the energy fluxes are as follows:

1. Fig. 16 shows that all the normalized inertial-range fluxes except�u<
b</� are approximately con-

stant under the variation ofrA. The quantity�u<
b</� decreases from 0.22 atrA near 1 to≈ −0.12

near rA = 0.4. The decrease of�u<
b</� is rather slow nearrA = 0.4. The plot�u<

b</� vs. rA
(Fig. 17) shows approximate linear relationship between�u<

b</� and rA. A linear fit to the data
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shows that

�u<
b<

�
= 0.56(rA − 0.63) . (119)

This result indicates that forrA >0.63, large-scale kinetic energy is transferred to large-scale magnetic
energy. However, the direction of transfer is reversed forrA <0.63 (more magnetically dominated
regime).

2. The fluxes�u<
u>,�u<

b>,�b<
u>, and�b<

b> are forward, that is from smaller wavenumbers to larger wavenum-
bers. Also�b>

u> >0.
3. The net transfer from kinetic energy to magnetic energy is

�u
b = �u<

b< + �u<
b> + �u>

b< + �u>
b> . (120)

Note that�u
b = �u<

b<(kmax). From the plot�u
b vs.rA (Fig. 17) Debliquy et al. concluded that

�u
b

�
=
{

0.57(rA − 0.37) for rA >0.37 ,
0 for rA � 0.37 .

(121)

It implies that a net kinetic-to-magnetic energy transfer takes place untilrA reaches around 0.4. For
rA = 0.4 and above, a net energy transfer from kinetic to magnetic is almost zero.

4. The value of�u<
u>/� is quite small, henceu-to-u transfer is insignificant in MHD turbulence when

rA <1.

Note that the above results are for Alfvén ratio less than 1. We expect the properties of some of the fluxes
to change whenrA >1. The numerical studies of fluxes forrA?1 could provide us important insights
into dynamo problem.

Dar et al.[45] performed numerical DNS on a 5122 grid with random kinetic forcing over a wavenumber
annulus 4� k � 5. Theoretically, the magnetic energy in 2D MHD decays in the long run even with
steady kinetic energy forcing[197]. However, they found that the magnetic energy remains steady for
sufficiently long time before it starts to decay. They computed the energy fluxes in this quasi-steady
state where the Alfvén ratio fluctuated between 0.4 and 0.56, and the normalized Cross helicity�c was
approximately equal to 0.1.

The energy fluxes as a function of wavenumber spheres for 2D MHD turbulence are similar to that for
3D MHD, however, some of them change sign.Fig. 18is a schematic illustration of the numerical values
of fluxes for 2D MHD turbulence atk = 20, a wavenumber within the inertial range.

The fluxes�u<
b>,�

b<
b>,�

b>
u> in 2D are qualitatively similar to the corresponding fluxes in 3D. The fluxes

�u<
u>,�

b<
u> however have different signs. The negative sign of�u<

u> is consistent with the inverse cascade
of kinetic energy in 2D. The sign of�u<

b< is positive, but that may be because of forcing. Ideally, we
should compare the flux results of 2D decaying simulations with the 3D decaying simulations. The flux
results of Debliquy et al. and Dar et al. are in general agreement with the EDQNM calculation[78,147]
and[78]. Ishizawa and Hattori[78,79]obtained very similar results in their DNS using wavelet basis.

Haugen et al.[75] have computed the dissipation rates of kinetic and magnetic energies. They find that
for Eb/Eu ≈ 0.5, εu/� = (�u<

u> + �b<
u> + �b>

u>)/� ≈ 0.3, andεb/� = (�u<
b> + �b<

b> − �b>
u>)/� ≈ 0.7

(seeFigs. 11and12 of Haugen et al.[75]). The corresponding numbers in Debliquy et al.[46] are 0.42
and 0.61, respectively. Note that Haugen et al.’s schematics of energy fluxes are missing�b<

u>, �u<
b>,

and�b>
u>.
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Fig. 18. A schematic illustration of the numerically evaluated values of the fluxes for 2D MHD turbulence. The values shown
here are for wavenumbers within the inertial range. Taken from Dar et al.[45].

In Section 8 we will compare 3D numerical results with their analytical counterparts. Unfortunately,
we do not have analytical results for 2D MHD turbulence.

The energy fluxes give us information about the overall energy transfer from the inside/outside of
theu/b-sphere to the inside/outside of theu/b-sphere. To obtain a more detailed account of the energy
transfer, Dar et al.[45] and Debliquy et al.[46] studied energy exchange between the wavenumber shells;
Ishizawa and Hattori[78,79]performed the same studies using wavelet basis.

6.5. Shell-to-shell energy transfer-rates in MHD turbulence

Debliquy et al.[46] partitioned thek-space into shells with boundaries at wavenumberskn (n =
1,2,3, . . .) = 0,2,4,8,9.514,11.324, . . . ,2(n+14)/4, . . . ,90.51,107.63,256, and computed the shell-
to-shell energy transfer ratesT uunm, T

bb
nm, T

bu
nm defined by Eq. (86). They found the 4th to 9th shells in the

inertial range. The numerical data showed that the energy transfers between these shells to be self-similar,
that is, energy transfers from the shell 4 to the shell 7 is the same as that from the shell 5 to the shell 8,
or from the shellm to the shellm + 3. ForrA = 0.41, the plotsT uunm/�, T

bb
nm/�, T

bu
nm/� vs.n − m for

variousms are shown inFigs. 19–21, respectively.
SinceT bunm=−T ubmn, the transfer rate fromb-to-uT ubmn is inversion ofT bunm/� around the origin. Debliquy

et al. deduced the following properties of shell-to-shell energy transfers:

1. As discussed above the shell-to-shell energy transfers are self-similar, that is,T YXnm /� is function of
n−m only.

2. The inertial-range shell-to-shell energy transfers are always from smaller-wavenumber shells to larger-
wavenumber shells. This property is called “forward” transfer.

3. The most dominantu-to-u andb-to-b transfers are to the neighboring shell (fromm to m + 1), after
which it decreases quite rapidly. The property is referred to as “local” transfer.
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Fig. 19. Plots ofu-to-u normalized shell-to-shell energy transferT uunm/� vs.n − m for m = 4 − 9. The plots collapse on each
other indicating self-similarity.
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Fig. 20. Plots ofb-to-b normalized shell-to-shell energy transferT bbnm/� vs.n−m for m= 4 − 9.

4. The most dominantb-to-u transfer is to the same wavenumber shell (from themth b-shell to themth
u-shell). That is, the in the same shell, magnetic energy gets converted to kinetic energy. This property
holds forrA <1 considered in the paper. ForrA >1, theb-to-u transfer for the same shell has not been
investigated.

Dar et al.[45] performed similar analysis for 2D MHD turbulence. Their results are shown inFig. 22.
The nature ofT YXnm in 2D is roughly the same as that in 3D. All the transfers are forward and local,
exceptT uunm. As shown in the figureT uunm is forward for the first three nearest shells but becomes negative
for n>m + 3, which may contribute to the inverse cascade of kinetic energy. This result is consistent
with analytic results on 2D shell-to-shell energy transfers in fluid turbulence (see Appendix D). There
are significant energy transfers from inertial wavenumbers to small wavenumbers (nonlocal), which will
also contribute to the inverse cascade of energy.
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Fig. 21. Plots ofu-to-b normalized shell-to-shell energy transferT bunm/� vs.n−m for m= 4 − 9.

Fig. 22. Shell-to-shell energy transferT YXnm for Dar et al.’s 5122 run. They are schematically illustrated in the last diagram.
Adopted from Dar et al.[45].
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T bu1m is positive implying that the firstb-shell gains energy from the inertial rangeu-shells through
a nonlocal transfer.T bun1 is positive implying that the firstu-shell loses energy to the inertial rangeb-
shells through a nonlocal transfer. All the above results are schematically illustrated inFig. 22(d). These
results on shell-to-shell energy transfers provide us with important insights into the dynamics of MHD
turbulence.

In this section we described the methodology of spectral method and some important results on energy
spectra, fluxes, and shell-to-shell transfers. In Section 12 we will present large-eddy simulation (LES),
which enables us to perform turbulence simulations on smaller grids. In the next three sections we will
describe the field-theoretic calculation of renormalized viscosity and resistivity, energy fluxes, and shell-
to-shell energy transfer rates.

7. Renormalization group analysis of MHD turbulence

In Section 4 we discussed various existing MHD turbulence models. Till early 1990s, KID’s model
(3

2 spectral index) used be the accepted model of MHD turbulence. However, solar wind observations
and numerical results in the last decade are in better agreement with the predictions of Kolmogorov-
like models (53 spectral index). In this and the next two sections we will present computation of energy
spectrum and energy cascade rates starting from the MHD equations using field-theoretic techniques. In
this section we will present some of the important renormalization group calculations applied to MHD
turbulence. Most recent RG calculations favor5

3 spectral index for energy spectrum.
Field theory is well developed, and has been applied to many areas of physics, e.g., Quantum Elec-

trodynamics, Condensed Matter Physics, etc. In this theory, the equations are expanded perturbatively in
terms of nonlinear term, which are considered small. In fluid turbulence the nonlinear term is not small;
the ratio of nonlinear to linear (viscous) term is Reynolds numbers, which is large in turbulence regime.
However in MHD turbulence, whenB0?z±, the nonlinear term is small compared to the linear (Alfvén
propagation termB0 ·∇z±) term. This is the weak turbulence limit, and the perturbative expansion makes
sense here. On the other hand whenz±?B0 (the strong turbulence limit), the nonlinear term is not small,
and the perturbative expansion is questionable. This problem appears in many areas of physics including
Quantum Chromodynamics (QCD), Strongly Correlated Systems, Quantum Gravity, etc., and is largely
unsolved. Several interesting methods, Direct InteractionApproximation, Renormalization Groups (RG),
Eddy-damped quasi-normal Markovian approximations, have been attempted in turbulence. We discuss
some of them below.

A simple-minded calculation of Green’s function shows divergence at small wavenumbers (infrared
divergence). One way to solve problem is by introducing an infrared cutoff for the integral. The reader
is referred to Leslie[101] for details. RG technique, to be described below, is a systematic procedure to
cure this problem.

7.1. Renormalization groups in turbulence

Renormalization group theory (RG) is a technique which is applied to complex problems involving
many length scales. Many researchers have applied RG to fluid and MHD turbulence. Over the years,
several different RG applications for turbulence has been devised. Broadly speaking, they fall in three
different categories:
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7.1.1. Yakhot–Orszag (YO) perturbative approach
Yakhot and Orszag’s[193] work, motivated by Forster et al.[54] and Fournier and Frisch[56], is the

first comprehensive application of RG to turbulence. It is based on Wilson’s shell-elimination procedure.
Also refer to Smith and Woodruff[163] for details. Here the renormalized parameter is function of forcing
noise spectrumD(k)=D0k

−y . It is shown that the local Reynolds number�̄ is

�̄ = �2
0D0

�3(�)�ε ,

where�0 is the expansion parameter,� is the cutoff wavenumber, andε=4+y−d [193]. It is found that
�(�) increases as� decreases, therefore,�̄ remains small (may not be less that one though) compared to
Re as the wavenumber shells are eliminated. Hence, the “effective” expansion parameter is small even
when the Reynolds number may be large.

The RG analysis of Yakhot and Orszag[193] yielded Kolmogorov’s constantKK0 = 1.617, turbulent
Prandtl number for high-Reynolds-number heat transferPt =0.7179, Batchelor constantBa=1.161, etc.
These numbers are quite close to the experimental results. Hence, Yakhot and Orszag’s method appears
to be highly successful. However there are several criticisms to the YO scheme. Kolmogorov’s spectrum
results in the YO scheme forε = 4, far away fromε = 0, hence epsilon-expansion is questionable. YO
proposed that higher order nonlinearities are “irrelevant” in the RG sense forε = 0, and are marginal
whenε = 4. Eyink [51] objected to this claim and demonstrated that the higher-order nonlinearities are
marginal regardless ofε. Kraichnan[88] compared YO’s procedure with Kraichnan’s Direct Interaction
Approximation[84] and raised certain objections regarding distant-interaction inYO scheme. For details
refer to Zhou et al.[201] and Smith and Woodruff[163].

There are several RG calculations applied to MHD turbulence based on YO procedure. These calcula-
tions will be described in Section 7.5.

7.1.2. Self-consistent approach of McComb and Zhou
This is one of the nonperturbative method, which is often used in Quantum Field theory. In this method,

a self-consistent equation of the full propagator is written in terms of itself and the proper vertex part.
The equation may contain many (possibly infinite) terms, but it is truncated at some order. Then the
equation is solved iteratively. McComb[119], Zhou and coworkers[203] have applied this scheme to
fluid turbulence, and have calculated renormalized viscosity and Kolmogorov’s constant successfully.
Direct Interaction Approximation of Kraichnan is quite similar to self-consistent theory[163].

The difficulty with this method is that it is not rigorous. In McComb and Zhou’s procedures, the vertex
correction is not taken into account. Verma[179–181]has applied the self-consistent theory to MHD
turbulence.

7.1.3. Callan–Symanzik equation for turbulence
DeDominicis and Martin[47] and Teodorovich[169] obtained the RG equation using functional in-

tegral. Teodorovich obtainedKK0 = 2.447, which is not in very good agreement with the experimental
data, though it is not too far away.

It has been shown that Wilson’s shell renormalization and RG through Callan–Symanzik equation
are equivalent procedure. However, careful comparison of RG schemes in turbulence is not completely
worked out.
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The renormalization of viscosity, resistivity, and “mean magnetic field” will be discussed below. The
self-consistent approach will be discussed at somewhat greater length because it is one of the most recent
and exhaustive work.After renormalization, in Section 8 we will discuss the computation of energy fluxes
in MHD turbulence. These calculations are done using self-consistent field theory, a scheme very similar
to DIA. At the end we will describe Eddy-damped quasi-normal Markovian approximation, which is very
similar to the energy flux calculation.

7.2. Physical meaning of renormalization in turbulence

The field theorists have been using renormalization techniques since 1940s. However, the physical
meaning of renormalization became clear after the path-breaking work of Wilson[192]. Here renor-
malization is a variation of parameters as we go from one length scale to the next. Following Wilson,
the renormalized viscosity and resistivity can also be interpreted as scale-dependent parameters. We
coarse-grain the physical space and look for an effective theory at a larger scale. In this method, we
sum up all the interactions at smaller scales, and as a outcome we obtain terms that can be treated as
a correction to viscosity and resistivity. The corrected viscosity and resistivity are called “effective” or
renormalized dissipative parameters. This procedure of coarse graining is also called shell elimination
in wavenumber space. We carry on with this averaging process till we reach inertial range. In the in-
ertial range the “effective” or renormalized parameters follow a universal powerlaw, e.g., renormalized
viscosity�(l) ∝ l4/3. This is the renormalization procedure in turbulence. Note that the renormalized
parameters are independent of microscopic viscosity or resistivity.

In viscosity and resistivity renormalization the large wavenumber shells are eliminated, and the in-
teraction involving these shells are summed. Hence, we move from larger wavenumbers to smaller
wavenumbers. However, it is also possible to go from smaller wavenumbers to larger wavenumbers
by summing the smaller wavenumber shells. This process is not coarse-graining, but it is a perfectly
valid RG procedure, and it is useful when the small wavenumber modes (large length scales) are linear.
This scheme is followed in Quantum Electrodynamics (QED), where the electromagnetic field is negli-
gible at a large distance (small wavenumbers) from a charge particle, while the field becomes nonzero at
short distances (large wavenumber). In QED, the charge of a particle gets renormalized when we come
closer to the charge particle, i.e., from smaller wavenumbers to larger wavenumbers. In MHD too, the
large-scale Alfvén modes are linear, hence we can apply RG procedure from smaller wavenumbers to
larger wavenumbers. Verma[179]has precisely done this to compute the “effective or renormalized mean
magnetic field” in MHD turbulence. SeeFig. 23for an illustration of wavenumber shells to be averaged.

7.3. “Mean magnetic field” renormalization in MHD turbulence

In this subsection we describe the self-consistent RG procedure of Verma[179], which is similar to that
used by McComb[118], McComb and Shanmugsundaram[123], McComb and Watt[124], and Zhou
et al. [203] for fluid turbulence. However, one major difference between the two is that Verma[179]
integrates the small wavenumber modes instead of integrating the large wavenumber modes, as done by
earlier authors. At small wavenumbers the MHD equations are linear inB0, the mean magnetic field.
Verma applied RG procedure to compute the renormalized mean magnetic field.

The basic idea of the calculation is that the effective mean magnetic field is the magnetic field of the
next-largest eddy (local field), contrary to the KID’s phenomenology where the effective mean magnetic
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(a)

(b)

Fig. 23. The wavenumber shells to be averaged during renormalization procedure. (a) In “mean magnetic field” renormalization,
averaging starts from small wavenumber, first shell being(k0, k1). (b) In viscosity and resistivity, averaging starts from large
wavenumbers.

field at any scale is a constant. This argument is based on a physical intuition that the scattering of the
Alfvén waves at a wavenumberk is effected by the magnetic field of the next-largest eddy, rather than
the external magnetic field. The mean magnetic field at the largest scale will simply convect the waves,
whereas the local inhomogeneities contribute to the scattering of waves which leads to turbulence (note
that in WKB method, the local inhomogeneity of the medium determines the amplitude and the phase
evolution). The calculation shows thatE(k) ∝ k−5/3, and the mean magnetic fieldB0(k) ∝ k−1/3 are
the self-consistent solutions of the RG equations. ThusB0 appearing in KID’s phenomenology should be
k-dependent.

Verma[179] made one drastic assumption that the mean magnetic field at large scales are randomly
oriented. This assumption simplifies the calculation tremendously because the problem remains isotropic.
Physically, the above assumption may be approximately valid several scales below the largest length scale.
Now, Verma’s procedure follows.

The MHD equations in the Fourier space is (see Eq. (32))

(−i ∓ i(B0 · k))z±i (k̂)= −iMijm(k)
∫

dp̂z∓j (p̂)z
±
m(k̂ − p̂) , (122)

where

Mijm(k)= kjPim(k); Pim(k)= �im − kikm

k2 , (123)

andk̂ = (k,). We ignore the viscous terms because they are effective at large wavenumbers. We take
the mean magnetic fieldB0 to be random. Hence,(

−i + �̂(0)
) [z+i (k̂)

z−i (k̂)

]
= −iMijm(k)

∫
dk̂

[
z−j (p̂)z+m(k̂ − p̂)

z+j (p̂)z−m(k̂ − p̂)

]

with the self-energy matrix̂�(0) given by

�̂(0) =
[−ikB0 0

0 ikB0

]
.

We logarithmically divide the wavenumber range(k0, kN) into N shells. Thenth shell is(kn−1, kn)

wherekn = snko(s >1). The modes in the first few shells will be the energy containing eddies that will
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force the turbulence. For keeping our calculation procedure simple, we assume that the external forcing
maintains the energy of the first few shells to the initial values. The modes in the first few shells are
assumed to be random with a gaussian distribution with zero mean (see Items 3 and 4 below).

First we eliminate the first shell(k0, k1), and then obtain the modified the MHD equations. Subsequently
higher wavenumber shells are eliminated, and a general expression for the modified MHD equations after
elimination ofnth shell is obtained. The details of each step are as follows:

1. We decompose the modes into the modes to be eliminated(k<) and the modes to be retained(k>). In
the first iteration(k0, k1)= k< and(k1, kN)= k>. Note thatB0(k) is the mean magnetic field before
the elimination of the first shell.

2. We rewrite the Eq. (32) fork< andk>. The equations forz±>i (k̂) modes are

(−i ∓ i(B0k))z
±>
i (k̂)= − iMijm(k)

∫
dk̂
[
z∓>j (p̂)z±>m (k̂ − p̂)

]
+
[
z∓>j (p̂)z±<m (k̂ − p̂)+ z∓<j (p̂)z±>m (k̂ − p̂)

]
+
[
z∓<j (p̂)z±<m (k̂ − p̂)

]
, (124)

while the equation forz±<i (k, t) modes can be obtained by interchanging< and> in the above
equation.

3. The terms given in the second and third brackets on the RHS of Eq. (124) are calculated perturbatively.
The details of the perturbation expansion is given in Appendix B. We perform ensemble average over
the first shell, which is to be eliminated. We assume thatz±<i (k̂) has a gaussian distribution with zero
mean. Hence,

〈z±<i (k̂)〉 = 0 ,

〈z±>i (k̂)〉 = z±>i (k̂) , (125)

and

〈za<s (p̂)zb<m (q̂)〉 = Psm(p)Cab(p̂)�(p̂ + q̂) , (126)

wherea, b = ± or ∓. Also, the triple order correlations〈za,b<s (k̂)z
a,b<
s (p̂)z

a,b<
s (q̂)〉 are zero due

to the Gaussian nature of the fluctuations. The experiments show that gaussian approximation for
z±<i (k̂) is not quite correct, however it is a good approximation (refer to Sections 11). A popular
method called EDQNM calculation also makes this assumption (see Sections 8.3).

4. As shown in Appendix B, to first order in perturbation, the second bracketed term of Eq. (124)
vanishes except the terms of the type〈za,b>s (k̂)z

a,b>
s (p̂)z

a,b>
s (k̂)〉 (called triple nonlinearity). Verma

ignored this term. The effects of triple nonlinearity can be included using the procedure of Zhou and
Vahala[203], but they are expected to be of higher order. For averaging, we also hypothesize that

〈z>z<z<〉 = z>〈z<z<〉 ,
which cannot be strictly correct. This is one of the major assumption of RG procedure[201]. After
performing the perturbation we find that the third bracketed term of Eq. (124) is nonzero, and yields
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corrections��̂(0) to the self energŷ�(0):

(−i + �̂(0) + ˆ��(0))

[
z+>i (k̂)

z−>i (k̂)

]
= −iMijm(k)

∫
dk̂

[
z−>j (p̂)z+>m (k̂ − p̂)

z+>j (p̂)z−>m (k̂ − p̂)

]

with

��++
(0) =

∫ �

p̂+q̂=k̂
dp̂[S1(k, p, q)G

++
(0) (p̂)C

−−
(0) (q̂)+ S2(k, p, q)G

+−
(0) (p̂)C

−−
(0) (q̂)

+ S3(k, p, q)G
−+
(0) (p̂)C

+−
(0) (q̂)+ S4(k, p, q)G

−−
(0) (p̂)C

+−
(0) (q̂)] , (127)

��+−
(0) =

∫ �

p̂+q̂=k̂
dp̂[S1(k, p, q)G

+−
(0) (p̂)C

−+
(0) (q̂)+ S2(k, p, q)G

++
(0) (p̂)C

−+
(0) (q̂)

+ S3(k, p, q)G
−−
(0) (p̂)C

++
(0) (q̂)+ S4(k, p, q)G

−+
(0) (p̂)C

++
(0) (q̂)] , (128)

where the integral is to performed over the first shell(k0, k1), denoted by region�, andSi(k, p, q)
are given in Appendix B. The equations for the other two terms�−−and�−+ can be obtained by
interchanging+ and− signs. Note that[

�++
(0) �+−

(0)

�−+
(0) �−−

(0)

]
=
[−ikB++

(0) −ikB+−
(0)

ikB−+
(0) ikB−−

(0)

]

with B± ∓
(0) = 0.

5. The full-fledged calculation of�’s are quite involved. Therefore, Verma[179] simplified the calcula-
tion by solving the equations in the limitC±∓=CR=Cuu(k)−Cbb(k)=0 andE+(k)=E−(k). Under
this approximation we have+− symmetry in our problem, henceB++

(0) =B−−
(0) andB+−

(0) =B−+
(0) . In

the first iteration,B+−
(0) = B−+

(0) = 0, but they become nonzero after the first iteration, hence we will

keep the expressionsB+−
(0) intact.

6. The expressions for��’s involve Green’s functions and correlation functions, which are themselves
functions of�’s. We need to solve for�’s andG’s self-consistently. Green’s function after first
iteration is

Ĝ−1
(0)(k,)=

[−i − ikB++
(0) −ikB+−

(0)

ikB−+
(0) −i + ikB−−

(0)

]
, (129)

which implies that

G±±
(0) (k, t − t ′)= X(0)(k)+ B++

(0) (k)

2X(0)(k)
exp(±ikX(0)(k)(t − t ′)) ,

G±∓
(0) (k, t − t ′)= B+−

(0)

2X(0)(k)
exp(±ikX(0)(k)(t − t ′)) ,

whereX(0)(k) =
√
B++2
(0) − B+−2

(0) . The frequency dependence of correlation function are taken as

Ĉ(k,)= 2R[Ĝ(k,)]Ĉ(k), which is one of the generalizations of fluctuation-dissipation theorem
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to nonequilibrium systems. In terms of time difference,Ĉ(k, t − t ′)= Ĝ(k, t − t ′)C(k, t, t), which
yields

Ĉ(k, t − t ′)= R


 X(0)(k)+B++

(0) (k)

2X(0)(k)
C(k)exp i�

B+−
(0)

2X(0)(k)
C(k)exp i�

B+−
(0)

2X(0)(k)
C(k)exp(−i�)

X(0)(k)+B++
(0) (k)

2X(0)(k)
C(k)exp(−i�)


 ,

where� = kX(0)(k)(t − t ′). To derive the above, we use the fact thatCR = Cuu(k) − Cbb(k) = 0,
andC++(k) = C−−(k) = C(k). While doing the integral, the choice of the pole is dictated by the
direction of the waves.

7. Above Green’s functions and correlation functions are substituted in Eqs. (127, 128) and the frequency
integral is performed. These operations yield

k�B++
(0) = 1

d − 1

∫
dp

(2�)d
C(q)

[
−S1(k, p, q)

X(0)(p)+ B++
(0) (p)

2X(0)(p)
− S2(k, p, q)

B+−
(0) (p)

2X(0)(p)

+S3(k, p, q)
B+−(p)
2X(0)(p)

− S4(k, p, q)
X(0)(p)− B++

(0) (p)

2X(0)(p)

]/
denr , (130)

k�B+−
0 = 1

d − 1

∫
dp

(2�)d
C(q)

[
−S1(k, p, q)

B++
(0) (p)

2X(0)(p)
− S2(k, p, q)

X(0)(p)− B++
(0) (p)

2X(0)(p)

+ S3(k, p, q)
X(0)(p)+ B++

(0) (p)

2X(0)(p)
+ S4(k, p, q)

B+−
(0) (p)

2X(0)(p)

]/
denr , (131)

with

denr = [−kX(0)(k)+ pX(0)(p)− qX(0)(q)] .
The frequency integral in the above are done using contour integral. It is also possible to obtain the
above usingt ′ integral[101]. Also note that±

k = ∓kB±±
0 (k), which is equivalent to using = kz.

8. Let us denoteB̂(1)(k) as the effective mean magnetic field after the elimination of the first shell.
Therefore,

Bab
(1)(k)= Bab

(0)(k)+ �Bab
(0)(k) . (132)

Recall thata, b=±1. We keep eliminating the shells one after the other by the above procedure, and
obtain the following recurrence relation aftern+ 1 iterations:

Bab
(n+1)(k)= Bab

(n)(k)+ �Bab
(n)(k) , (133)

where the equations for�B±±
(n) (k) and�B±∓

(n) (k) are the same as Eqs. (130, 131) except that the terms

Bab
(0)(k) andXab

(0)(k) are to be replaced byBab
(n)(k) andXab

(n)(k), respectively. ClearlyB(n+1)(k) is the
effective mean magnetic field after the elimination of the(n+ 1)th shell. The set of RG equations to
be solved are Eqs. (130, 131) withB(0) replaced byB(n)s, and Eq. (133).



M.K. Verma / Physics Reports 401 (2004) 229–380 297

9. InYO’s perturbative RG calculation, the correlation function depends of the noise (forcing) spectrum.
In the self-consistent procedure, we assume that we are in the inertial range, and the energy spectrum
is proportional to Kolmogorov’s53 power law, i.e.,

C(k)= 2(2�)d

Sd(d − 1)
k(d−1)E(k) ,

where

E(k)=K�2/3k−5/3 . (134)

Here,Sd is the surface area ofd-dimensional unit sphere,� is the total energy cascade rate, andK

is Kolmogorov’s constant. Note that�+ = �− = � due to symmetry. We substitute the following
form ofB(n)(k) in the modified equations (130, 131)

Bab
(n)(knk

′)=K1/2�1/3k
−1/3
n B∗ab

(n) (k
′) (135)

with k = k(n+1)k
′ (k′>1). We expectB∗ab

(n) (k
′) to be a universal function for largen. After the

substitution we obtain the equations forB∗ab
(n) (k

′) that are

�B++∗
n (k′)= 1

d − 1

∫
dp′ 2

Sd(d − 1)

E(q ′)
q ′d−1

[
−S1(k

′, p′, q ′)
X(0)(sp

′)+ B++
(0) (sp

′)
2X(0)(sp′)

− S2(k
′, p′, q ′)

B+−
(0) (sp

′)
2X(0)(sp′)

+ S3(k
′, p′, q ′) B

+−(sp′)
2X(0)(sp′)

−S4(k
′, p′, q ′)

X(0)(sp
′)− B++

(0) (sp
′)

2X(0)(sp′)

]/
denr ′ , (136)

�B+−∗
n (k′)= 1

d − 1

∫
dp′ 2

Sd(d − 1)

E(q ′)
q ′d−1

[
−S1(k

′, p′, q ′)
B++
(0) (sp

′)
2X(0)(sp′)

− S2(k
′, p′, q ′)

X(0)(sp
′)− B++

(0) (sp
′)

2X(0)(sp′)
+ S4(k

′, p′, q ′)
B+−
(0) (sp

′)
2X(0)(sp′)

+S3(k
′, p′, q ′)

X(0)(sp
′)+ B++

(0) (sp
′)

2X(0)(sp′)

]/
denr ′ , (137)

where

denr ′ = [−k′X(0)(sk
′)+ p′X(0)(sp

′)− q ′X(0)(sq
′)] .

The integrals in Eqs. (136, 137) are performed over a region 1/s � p′, q ′ � 1 with the constraint
thatp′ + q′ = k ′. The recurrence relation forB(n) is

B∗ab
(n+1)(k

′)= s1/3B∗ab
(n) (sk

′)+ s−1/3�B∗ab
(n) (k

′) . (138)

10. Now we need to solve the above three equations iteratively. Here we take the space dimensionality
d = 3. We use Monte Carlo technique to solve the integrals. Since the integrals are identically zero
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Fig. 24.B∗
n(k

′) for n= 0..3. The line of best isk′−1/3.

for k′>2, the initialB∗
(0)(k

′
i) = B∗initial

(0) for k′
i <2 andB∗

(0)(k
′
i) = B∗initial

(0) ∗ (k′
i/2)

−1/3 for k′
i >2.

We takeB+−
(0) = 0. Eqs. (136)–(138) are solved iteratively. We continue iterating the equations till

B∗
(n+1)(k

′) ≈ B∗
(n)(k

′), that is, till the solution converges. TheB∗
(n)s for variousn ranging from 0..3 is

shown inFig. 24. Here the convergence is very fast, and aftern= 3− 4 iterationsB∗
(n)(k) converges

to an universal function

f (k′)= 1.24∗ B∗initial
(0) k′−0.32 ≈ B∗initial

(0) (k′/2)−1/3 .

The other parameterB∗+−
(n) (k′) remains close to zero. SinceB∗

(n)(k
′) converges, the universal function

is an stable solution in the RG sense. The substitution of the functionB∗
(n)(k

′) in Eq. (135) yields and

B(n+1)(k)=K1/2�1/2B∗initial
(0) (k/2)−1/3 = B0

(
k

2k0

)−1/3

,

for k > kn+1 whenn is large (stable RG solution). Hence we see thatBn(k) ∝ k−1/3 in our self-
consistent scheme.

To summarize, we have shown that the mean magnetic fieldB0 gets renormalized due to the nonlinear
term. As a consequence, the energy spectrum is Kolmogorov-like, notk−3/2 as predicted by KID’s
phenomenology, i.e.,

E(k)=K�2/3k−5/3 .

Since,B0 is corrected by renormalization, we can claim that KID’s phenomenology is not valid for MHD
turbulence.

The physical idea behind our argument is that scattering of the Alfvén waves at a wavenumberk is
caused by the “effective or renormalized magnetic field”, rather than the mean magnetic field effective
at the largest scale. The effective field turns out to bek-dependent or local field, and can be interpreted
as the field due to the next largest eddy. The above theoretical result can be put in perspective with
the numerical results of Cho et al.[35] where they show that turbulent dynamics is determined by the
“local” mean magnetic field. Note that KID take�A ≈ (kB0)

−1 to be the effective time-scale for the
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nonlinear interactions that givesE(k) ∝ k−3/2. However the time-scale�
B(n)
NL , which is of the same order

as the nonlinear time-scales ofz±k , �±
NL ≈ (kz±k )

−1, yieldsE(k) ∝ k−5/3. The quantity�
B(n)
NL can possibly

be obtained numerically from the time evolution of the Fourier components; this test will validate the
theoretical assumptions made in the above calculation.

The above calculation shows that Kolmogorov-like energy spectrum is one of the solution of RG
equation. However, we cannot claim this to be the unique solution. Further investigation in this direction
is required. Also, the above RG calculation was done forE+ = E− andrA = 1 for simplicity of the
calculation. The generalization to arbitrary field configuration is not yet done. The mean magnetic field is
assumed to be isotropic, which is unrealistic. In addition, self-consistent RG scheme has other fundamental
problems, as described in Section 7.1.

In the above RG scheme, averaging of wavenumber has been performed for small wavenumbers in
contrast to the earlier RG analysis of turbulence in which higher wavenumbers were averaged out. Here
a self-consistent power-law energy spectrum was obtained for smaller length scales, and the spectrum
was shown to be independent of the small wavenumber forcing states. This is in agreement with the
Kolmogorov’s hypothesis which states that the energy spectrum of the intermediate scale is independent
of the large-scale forcing. Any extension of this scheme to fluid turbulence in the presence of large-scale
shear, etc. will yield interesting insights into the connection of energy spectrum with large-scale forcing.

After the discussion on the renormalization of mean magnetic field, we move to renormalization of
dissipative parameters.

7.4. Renormalization of viscosity and resistivity using self-consistent procedure

In this subsection we compute renormalized viscosity and resistivity using self-consistent procedure.
This work was done by Verma[180,183], and Chang and Lin[32]. Here the mean magnetic field is
assumed to be zero, and renormalization of viscosity and resistivity is performedfrom large wavenumber
to smaller wavenumbers. This is the major difference between the calculation of Section 7.3 and the
present calculation. The RG calculation for arbitrary cross helicity, Alfvén ratio, magnetic helicity, and
kinetic helicities is very complex, therefore Verma performed the calculation in the following three
limiting cases: (1) Nonhelical nonAlfvénic MHD (HM =HK =Hc = 0), (2) Nonhelical Alfvénic MHD
(HM =HK = 0, �c → 1), and (3) Helical nonAlfvénic MHD (HM �= 0, HK �= 0, Hc = 0). These generic
cases provide us with many useful insights into the dynamics of MHD turbulence.

7.4.1. Nonhelical nonAlfvénic MHD (HM =HK =Hc = 0)
In this case, the RG calculations are done in terms ofu andb variables because the matrix of Green’s

function becomes diagonal in these variables. We take the following form of Kolmogorov’s spectrum for
kinetic energy[Eu(k)] and magnetic energy[Eb(k)]

Eu(k)=Ku�2/3k−5/3 , (139)

Eb(k)= Eu(k)/rA , (140)

whereKu is Kolmogorov’s constant for MHD turbulence, and� is the total energy flux. In the limit�c=0,
we haveE+ = E− and�+ = �− = � [cf. Eq. (105)]. Therefore,Etotal(k)= E+(K)= Eu(k)+ Eb(k)
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and

K+ =Ku(1 + r−1
A ) . (141)

With these preliminaries we start our RG calculation. The incompressible MHD equations in the Fourier
space are

(−i + �k2)ui(k̂)= − i

2
P+
ijm(k)

∫
p̂+q̂=k̂

dp̂[uj (p̂)um(q̂)− bj (p̂)bm(q̂)] , (142)

(−i + �k2)bi(k̂)= −iP−
ijm(k)

∫
p̂+q̂=k̂

dp̂[uj (p̂)bm(q̂)] , (143)

where

P+
ijm(k)= kjPim(k)+ kmPij (k) , (144)

P−
ijm(k)= kj�im − km�ij . (145)

Here� and� are the viscosity and the resistivity respectively, andd is the space dimensionality.
In our RG procedure the wavenumber range(kN, k0) is divided logarithmically intoN shells. Thenth

shell is(kn, kn−1) wherekn = hnk0 (h<1). In the following discussion, we carry out the elimination of
the first shell(k1, k0) and obtain the modified MHD equations. We then proceed iteratively to eliminate
higher shells and get a general expression for the modified MHD equations. The renormalization group
procedure is as follows:

1. We divide the spectral space into two parts: 1. the shell(k1, k0) = k>, which is to be eliminated; 2.
(kN, k1)= k<, set of modes to be retained. Note that�(0) and�(0) denote the viscosity and resistivity
before the elimination of the first shell.

2. We rewrite Eqs. (142, 143) fork< andk>. The equations foru<i (k̂) andb<i (k̂) modes are

(−i + �uu(0)(k))u
<
i (k̂)+ �ub(0)(k)b

<
i (k̂)= − i

2
P+
ijm(k)

∫
dp̂([u<j (p̂)u<m(k̂ − p̂)]

+ 2[u<j (p̂)u>m(k̂ − p̂)] + [u>j (p̂)u>m(k̂ − p̂)]
− similar terms forb) , (146)

(−i + �bb(0)(k))b
<
i (k̂)+ �bu(0)(k)u

<
i (k̂)= − iP−

ijm(k)
∫

dp̂([u<j (p̂)b<m(k̂ − p̂)]
+ [u<j (p̂)b>m(k̂ − p̂)+ u>j (p̂)b

<
m(k̂ − p̂)]

+ [u>j (p̂)b>m(k̂ − p̂)]) . (147)

The�’s appearing in the equations are usually called the “self-energy” in quantum field theory lan-
guage. In the first iteration,�uu(0) = �(0)k2 and�bb(0) = �(0)k

2, while the other two�’s are zero. The

equation foru>i (k̂) modes can be obtained by interchanging< and> in the above equations.
3. The terms given in the second and third brackets on the right-hand side of Eqs. (146, 147) are calculated

perturbatively. Since we are interested in the statistical properties ofuandbfluctuations, we perform the
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usual ensemble average of system[193]. We assume thatu>(k̂) andb>(k̂) have gaussian distributions
with zero mean, whileu<(k̂) andb<(k̂) are unaffected by the averaging process. Hence,

〈u>i (k̂)〉 = 0 , (148)

〈b>i (k̂)〉 = 0 , (149)

〈u<i (k̂)〉 = u<i (k̂) , (150)

〈b<i (k̂)〉 = b<i (k̂) , (151)

and

〈u>i (p̂)u>j (q̂)〉 = Pij (p)Cuu(p̂)�(p̂ + q̂) , (152)

〈b>i (p̂)b>j (q̂)〉 = Pij (p)Cbb(p̂)�(p̂ + q̂) , (153)

〈u>i (p̂)b>j (q̂)〉 = Pij (p)Cub(p̂)�(p̂ + q̂) . (154)

The triple order correlations〈X>
i (k̂)X

>
j (p̂)X

>
m(q̂)〉 are zero due to the gaussian nature of the fluctua-

tions. Here,X stands foruorb. In addition, we also neglect the contribution from the triple nonlinearity
〈X<(k̂)X<

j (p̂)X
<
m(q̂)〉, as done in many of the turbulence RG calculations[119,193]. The effects of

triple nonlinearity can be included following the scheme of Zhou and Vahala[203].
4. To the first order, the second bracketed terms of Eqs. (146, 147) vanish, but the nonvanishing third

bracketed terms yield corrections to�’s. Refer to Appendix C for details. Eqs. (146, 147) can now be
approximated by

(−i + �uu(0) + ��uu(0))u
<
i (k̂)+ (�ub(0) + ��ub(0))b

<
i (k̂)= − i

2
P+
ijm(k)

∫
dp̂[u<j (p̂)u<m(k̂ − p̂)

− b<j (p̂)b
<
m(k̂ − p̂)] , (155)

(−i + �bb(0) + ��bb(0))b
<
i (k̂)+ (�bu(0) + ��bu(0))u

<
i (k̂)= −iP−

ijm(k)
∫

dp̂[u<j (p̂)b<m(k̂ − p̂)]
(156)

with

��uu(0)(k)= 1

(d − 1)

∫ �

p̂+q̂=k̂
dp̂[S(k, p, q)Guu(p̂)Cuu(q̂)− S6(k, p, q)G

bb(p̂)Cbb(q̂)

+ S6(k, p, q)G
ub(p̂)Cub(q̂)− S(k, p, q)Gbu(p̂)Cub(q̂)] , (157)

��ub(0)(k)= 1

(d − 1)

∫ �

p̂+q̂=k̂
dp̂[−S(k, p, q)Guu(p̂)Cub(q̂)+ S5(k, p, q)G

ub(p̂)Cuu(q̂)

+ S(k, p, q)Gbu(p̂)Cbb(q̂)− S5(k, p, q)G
bb(p̂)Cub(q̂)] , (158)

��bu(0)(k)= 1

(d − 1)

∫ �

p̂+q̂=k̂
dp̂[S8(k, p, q)G

uu(p̂)Cub(q̂)+ S10(k, p, q)G
bb(p̂)Cub(q̂)

+ S12(k, p, q)G
ub(p̂)Cbb(q̂)− S7(k, p, q)G

bu(p̂)Cuu(q̂)] , (159)
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��bb(0)(k)= 1

(d − 1)

∫ �

p̂+q̂=k̂
dp̂[−S8(k, p, q)G

uu(p̂)Cbb(q̂)+ S9(k, p, q)G
bb(p̂)Cuu(q̂)

+ S11(k, p, q)G
ub(p̂)Cub(q̂)− S9(k, p, q)G

bu(p̂)Cub(q̂)] . (160)

The quantitiesSi(k, p, q) are given in the Appendix C. The integral� is to be done over the first shell.
5. The full-fledge calculation of�’s is quite involved. Therefore, we take two special cases: (1) Non-

Alfvénic: Cub =0 or�c =0; and (2) Alfvénic:Cub ≈ Cuu ≈ Cbb or �c → 1. In this subsubsection we
will discuss only the case�c = 0. The other case will be taken up in the next subsubsection. A word of
caution is in order here. In our calculation the parameters used�c(k)= 2Cub(k)/(Cuu(k)+ Cbb(k))

andrA(k)= Eu(k)/Eb(k) are taken to be constants, even though they could be a function ofk. Also
note that these parameters could differ from the global�c andrA, yet we assume that they are probably
closer to the global value.
When�c=0, an inspection of the self-energy diagrams shows that�ub=�bu=0, andGub=Gbu=0.
Clearly, the equations become much simpler because of the diagonal nature of matricesG and�, and
the two quantities of interest��uu(0) and��bb(0) are given by

��uu(0)(k̂)= 1

d − 1

∫ �

p̂+q̂=k̂
dp̂(S(k, p, q)Guu(p)Cuu(q)− S6(k, p, q)G

bb(p)Cbb(q)) , (161)

��bb(0)(k̂)= 1

d − 1

∫ �

p̂+q̂=k̂
dp̂(−S8(k, p, q)G

uu(p)Cbb(q)

+ S9(k, p, q)G
bb(p)Cuu(q)) . (162)

6. The frequency dependence of the correlation function are taken as:Cuu(k,)=2Cuu(k)R(Guu(k,))
andCbb(k,)=2Cbb(k)R(Gbb(k,)). In other words, the relaxation time-scale of correlation function
is assumed to be the same as that of corresponding Green’s function. Since we are interested in the
large time-scale behavior of turbulence, we take the limit going to zero. Under these assumptions,
the frequency integration of the above equations yield

��(0)(k)= 1

(d − 1)k2

∫ �

p+q=k
dp

(2�)d

×
[

S(k, p, q)Cuu(q)

�(0)(p)p2 + �(0)(q)q2 − S6(k, p, q)C
bb(q)

�(0)(p)p
2 + �(0)(q)q

2

]
, (163)

��(0)(k)= 1

(d − 1)k2

∫ �

p+q=k
dp

(2�)d

×
[
− S8(k, p, q)C

bb(q)

�(0)(p)p2 + �(0)(q)q
2 + S9(k, p, q)C

uu(q)

�(0)(p)p
2 + �(0)(q)q2

]
. (164)

Note that�(k)= �uu(k)/k2 and�(k)= �bb(k)/k2. There are some important points to remember in
the above step. The frequency integral in the above is done using contour integral. It can be shown
that the integrals are nonzero only when both the components appearing the denominator are of the
same sign. For example, first term of Eq. (164) is nonzero only when both�(0)(p) and�(0)(q) are of
the same sign.
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7. Let us denote�(1)(k) and�(1)(k) as the renormalized viscosity and resistivity respectively after the
first step of wavenumber elimination. Hence,

�(1)(k)= �(0)(k)+ ��(0)(k) , (165)

�(1)(k)= �(0)(k)+ ��(0)(k) . (166)

We keep eliminating the shells one after the other by the above procedure. Aftern + 1 iterations we
obtain

�(n+1)(k)= �(n)(k)+ ��(n)(k) , (167)

�(n+1)(k)= �(n)(k)+ ��(n)(k) , (168)

where the equations for��(n)(k) and��(n)(k) are the same as the Eqs. (163, 164) except that�(0)(k)
and�(0)(k) appearing in the equations are to be replaced by�(n)(k) and�(n)(k), respectively. Clearly
�(n+1)(k) and �(n+1)(k) are the renormalized viscosity and resistivity after the elimination of the
(n+ 1)th shell.

8. We need to compute��(n) and��(n) for variousn. These computations, however, require�(n) and�(n).
In our scheme we solve these equations iteratively. In Eqs. (163, 164) we substituteC(k) by 1D energy
spectrumE(k)

C(uu,bb)(k)= 2(2�)d

Sd(d − 1)
k−(d−1)E(u,b)(k) ,

whereSd is the surface area ofd-dimensional spheres. We assume thatEu(k) andEb(k) follow Eqs.
(139, 140) respectively. Regarding�(n) and�(n), we attempt the following form of solution:

(�, �)(n)(knk
′)= (Ku)1/2�1/3k

−4/3
n (�∗, �∗)(n)(k′)

with k = kn+1k
′ (k′<1). We expect�∗

(n)(k
′) and�∗

(n)(k
′) to be a universal functions for largen. The

substitution ofCuu(k), Cbb(k), �(n)(k), and�(n)(k) yields the following equations:

��∗
(n)(k

′)= 1

(d − 1)

∫
p′+q′=k ′

dq′ 2

(d − 1)Sd

Eu(q ′)
q ′d−1

[
S(k′, p′, q ′) 1

�∗
(n)(hp

′)p′2 + �∗
(n)(hq

′)q ′2

−S6(k
′, p′, q ′)

r−1
A

�∗
(n)(hp

′)p′2 + �∗
(n)(hq

′)q ′2

]
, (169)

��∗
(n)(k

′)= 1

(d − 1)

∫
p′+q′=k ′

dq′ 2

(d − 1)Sd

Eu(q ′)
q ′d−1

×
[
−S8(k

′, p′, q ′) 1

�∗
(n)(hp

′)p′2 + �∗
(n)(hq

′)q ′2

+S9(k
′, p′, q ′)

r−1
A

�∗
(n)(hp

′)p′2 + �∗
(n)(hq

′)q ′2

]
, (170)
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�∗
(n+1)(k

′)= h4/3�∗
(n)(hk

′)+ h−4/3��∗
(n)(k

′) , (171)

�∗
(n+1)(k

′)= h4/3�∗
(n)(hk

′)+ h−4/3��∗
(n)(hk

′) , (172)

where the integrals in the above equations are performed iteratively over a region 1� p′, q ′ � 1/h
with the constraint thatp′ + q′ = k ′. Fournier and Frisch[55] showed the above volume integral ind
dimension to be∫

p′+q′=k ′
dp′ = Sd−1

∫
dp′ dq ′

(
p′q ′

k′

)d−2

(sin �)d−3 , (173)

where� is the angle between vectorsp′ andq′.
9. Now we solve the above four equations self-consistently for variousrA’s. We have takenh = 0.7.

This value is about middle of the range (0.55–0.75) estimated to be the reasonable values ofh by
Zhou et al.[201]. We start with constant values of�∗

(0) and�∗
(0), and compute the integrals using Gauss

quadrature technique. Once��∗
(0) and��∗

(0) have been computed, we can calculate�∗
(1) and�∗

(1). We
iterate this process till�∗

(m+1)(k
′) ≈ �∗

(m)(k
′) and�∗

(m+1)(k
′) ≈ �∗

(m)(k
′), that is, till they converge. We

have reported the limiting�∗ and�∗ whenever the solution converges. The criterion for convergence
is that the error must be less than 1%. This criterion is usually achieved byn= 10 or so. The result of
our RG analysis is given below.

Verma carried out the RG analysis for various space dimensions and found that the solution converged
for all d >dc ≈ 2.2. Hence, the RG fixed-point for MHD turbulence is stable ford � dc. For illustration
of convergent solution, see the plot of�∗

(n)(k
′) and�∗

(n)(k
′) for d=3, rA =1 in Fig. 25. The RG fixed point

for d <dc is unstable. Refer toFig. 26for d = 2, rA = 1 as an example of an unstable solution. From this
observation we can claim that Kolmogorov’s powerlaw is a consistent solution of MHD RG equations
at least ford � dc. Verma also computed the contribution to renormalized viscosity and resistivity from
each of the four termsu · ∇u,−b · ∇b,−u · ∇b,b · ∇u. These quantities are denoted by�uu, �ub, �bu,
and�bb, respectively. The values of asymptotic (k′ → 0 limit) �∗,�∗, �uu, �ub, �bu, and�bb for variousd
andrA = 1 are displayed inTable 5. The MHD equations can be written in terms of these renormalized
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Fig. 25. The plots of�∗(k′) (solid) and�∗(k′) (dashed) vs.k′ for d = 3 and�c = 0, rA = 1. The values converge. Adopted from
Verma[180].
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Fig. 26. The plots of�∗(k′) (solid) and�∗(k′) (dashed) vs.k′ for d = 2 and�c = 0, rA = 1. There is no convergence. Adopted
from Verma[180].

Table 5
The values of�∗, �∗, �uu∗, �ub∗, �bu∗, �bb∗ for various space dimensionsd with rA = 1 and�c = 0

d �∗ �∗ Pr �uu∗ �ub∗ �bu∗ �bb∗

2.1 ... ... ... ... ... ... ...
2.2 1.9 0.32 6.0 −0.041 1.96 -0.44 0.76
2.5 1.2 0.57 2.1 0.089 1.15 −0.15 0.72
3.0 1.00 0.69 1.4 0.20 0.80 0.078 0.61
4.0 0.83 0.70 1.2 0.27 0.56 0.21 0.49

10.0 0.51 0.50 1.0 0.23 0.28 0.22 0.28
50.0 0.23 0.23 1.0 0.11 0.12 0.11 0.12

100.0 0.14 0.14 1.0 0.065 0.069 0.066 0.069

parameters as(
�

�t
+ �uuk2 + �ubk2

)
u<i (k, t)= − i

2
P+
ijm(k)

∫
dp

(2�)d
[u<j (p, t)u<m(k − p, t)

− b<j (p, t)b
<
m(k − p, t)] ,(

�

�t
+ �buk2 + �bbk2

)
b<i (k, t)= −P−

ijm(k)
∫

dp

(2�)d
[u<j (p, t)b<m(k − p, t)] .

We multiply the above equations byu<∗
i (k, t)andb<∗

i (k, t) respectively and obtain the energy equation.
When we integrate the terms up to the last wavenumberskN , the terms on the RHS vanish because of
“detailed conservation of energy in a triad interaction” (see Section 3.4). Therefore from the definition,
we deduce that the energy cascade rate from inside of theX sphere (X<) to outside of theY sphere
(Y >) is

�X<
Y> =

∫ kN

0
2�XY (k)k2EX(k)dk , (174)
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MHD

Fluid

d

0.1

1

1 10 100

Fig. 27. The plot of asymptotic�∗ (square) and�∗ (diamond) vs.d for �c = 0 andrA = 1. The fluid�∗ (triangle) is also plotted
for reference. For larged, these values fit quite well with predictedd−1/2 curve. Adopted from Verma[180].

whereX, Y denoteu or b. FromTable 5, we see that the sign of�uu changes from positive to negative
at d = 2.2; this result is consistent with the conclusions of Fournier and Frisch[55], where they predict
the reversal of the sign of eddy viscosity atd = 2.208. Even though Verma’s RG calculation could not be
extended tod = 2 (because of instability of the fixed point), it is reasonable to expect that ford = 2, �uu

will be negative, and�u<
u> will be negative consistent with the EDQNM results of Pouquet et al.[147],

Ishizawa and Hattori[78], and numerical results of Dar et al.[45].
For larged , �∗ = �∗, and it decreases asd−1/2 (seeFig. 27); �∗ for pure fluid turbulence also decreases

asd−1/2, as shown in the same figure. This is evident from Eqs. (169, 170) using the following arguments
of Fournier et al.[57]. For larged

∫
dp′ dq ′

(
p′q ′

k′

)d−2

(sin �)d−3... ∼ d−1/2 , (175)

Sd−1

(d − 1)2Sd
∼ 1

d2

(
d

2�

)1/2

,

S,−S6,−S8, S9(k
′, p′, q ′)= kpd(z+ xy) , (176)

which leads to

�∗��∗ ∝ 1

d2

(
d

2�

)1/2

d−1/2d

hence�∗ ∝ d−1/2. Also, from Eq. (176) it can be deduced that�uu∗ = �ub∗ = �bu∗ = �bb∗ for larged, as
is seen fromTable 5.

Verma[180] also observed that the stability of RG fixed point in a given space dimension depends
on Alfvén ratio and normalized cross helicity. For example, ford = 2.2 the RG fixed point is stable for
rA � 1, but unstable forrA <1. A detailed study of stability of the RG fixed point is required to ascertain
the boundary of stability.
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Table 6
The values of�∗, �∗, �uu∗, �ub∗, �bu∗, �bb∗ for variousrA with d = 3 and�c = 0

rA �∗ �∗ Pr �uu∗ �ub∗ �bu∗ �bb∗

∞ 0.38 ... ... 0.38 ... ... ...
5000 0.36 0.85 0.42 0.36 1.4 × 10−4 −0.023 0.87
100 0.36 0.85 0.42 0.36 7.3 × 10−3 −0.022 0.87
5 0.47 0.82 0.57 0.32 0.15 4.7 × 10−4 0.82
2 0.65 0.78 0.83 0.27 0.38 0.031 0.75
1 1.00 0.69 1.40 0.20 0.80 0.078 0.61
0.5 2.1 0.50 4.2 0.11 2.00 0.15 0.35
0.3 11.0 0.14 78 0.022 11.0 0.082 0.053
0.2 ... ... ... ... ... ... ...

The values of renormalized parameters ford = 3 and variousrA are shown inTable 6. For largerA
(fluid dominated regime),�∗ is close to the renormalized viscosity of fluid turbulence (rA = ∞), but�∗ is
also finite. AsrA is decreased,�∗ decreases but�∗ increases, or the Prandtl numberPr = �/� increases.
This trend is seen tillrA ≈ 0.25 when the RG fixed point with nonzero�∗ and�∗ becomes unstable, and
the trivial RG fixed point with�∗ = �∗ = 0 becomes stable. This result suggests an absence of turbulence
for rA below 0.25 (approximately). Note that in therA → 0 (fully magnetic) limit, the MHD equations
become linear, hence there is no turbulence. Surprisingly, our RG calculation suggests that turbulence
disappear nearrA = 0.25 itself.

Using the flux interpretation of renormalized parameters (Eq. (174)), and from the values of renormal-
ized parameters inTable 6, we can deduce that energy fluxes from kinetic to kinetic, magnetic to magnetic,
and kinetic to magnetic energies are always positive. The energy fluxes from magnetic energy to kinetic
energy is positive for 0.3<rA <2, but changes sign on further increase ofrA. The negative value of�bu∗
indicates that the kinetic energy at large wavenumbers are transferred to the magnetic energy at smaller
wavenumbers (inverse transfer).

Verma found that the final�∗(k′) and�∗(k′) are constant for smallk′ but shifts toward zero for largerk′
(seeFig. 25). Similar behavior has been seen by McComb and coworkers[124] for fluid turbulence, and
is attributed to the neglect of triple nonlinearity. Triple nonlinearity for fluid turbulence was first included
in the RG calculation by Zhou and Vahala[202]; similar calculation for MHD turbulence is yet to done.

Pouquet[147]and Ishizawa and Hattori[78] calculated�uu, �ub,�bu,�bb for d=2 using EDQNM (eddy-
damped quasi-normal Markovian) approximation. Pouquet argued that�bb is negative, while Ishizawa
found it to be positive. Unfortunately Verma’s procedure cannot be extended tod = 2. However, Verma
claimed that the magnetic energy cascade rate (�b<

b>) is positive for alld >dc because�bb >0.
In the following subsection we present Verma’s calculation of renormalized viscosity and resistivity

for �c → 1 limit [180].

7.4.2. Nonhelical Alfvénic MHD(HM =HK ; �c → 1)
Alfvénic MHD has highu–b correlation or〈|z+|2〉?〈|z−|2〉. For this case it is best to work with

Elsässer variablesz± = u± b. These types of fluctuations have been observed in the solar wind near the
Sun. However, by the time the solar wind approaches the Earth, the normalized cross helicity is normally
close to zero. In this section we will briefly discuss the RG treatment for the above case. For the following
discussion we will denote〈|z−|2〉/〈|z+|2〉 = r = (1 − �c)/(1 + �c). Clearlyr>1.
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MHD equations in terms of Elsässer variables are

(−i + �(0)±±k2)z±i (k̂)+ �(0)±∓k2z∓i (k̂)= −iMijm(k)
∫

dk̂z∓j (p̂)z
±
m(k̂ − p̂) .

Note that the above equations contain four dissipative coefficients�±± and�±∓ instead of usual two
constants�± = (� ± �)/2. The+− symmetry is broken whenr �= 1. RG generates the other two
constants. We carry out the same procedure as outlined in the previous RG calculation. Aftern+ 1 steps
of the RG calculation, the above equations become

[−i + (�(n)±±(k)+ ��(n)±±(k))k2]z±<i (k̂)+ (�(n)±∓(k)+ ��(n)±∓(k))k2z∓<i (k̂)

= −iMijm(k)
∫

dp̂z∓<j (p̂)z±<m (k̂ − p̂) (177)

with

��(n)++(k)= 1

(d − 1)k2

∫ �

p̂+q̂=k̂
dp̂[S1(k, p, q)G

++
(n) (p̂)C

−−(q̂)+ S2(k, p, q)G
+−
(n) (p̂)C

−−(q̂)

+ S3(k, p, q)G
−+
(n) (p̂)C

+−(q̂)+ S4(k, p, q)G
−−
(n) (p̂)C

+−(q̂)] , (178)

��(n)+−(k)= 1

(d − 1)k2

∫ �

p̂+q̂=k̂
dp̂[S1(k, p, q)G

+−
(n) (p̂)C

−+(q̂)+ S2(k, p, q)G
++
(n) (p̂)C

−+(q̂)

+ S3(k, p, q)G
−−
(n) (p̂)C

++(q̂)+ S4(k, p, q)G
−+
(n) (p̂)C

++(q̂)] , (179)

where the integral is performed over the(n + 1)th shell (kn+1, kn). The equations for the other two
��’s can be obtained by interchanging+ and− signs. Now we assume that the Alfvén ratio is one, i.e.,
C+− = Eu − Eb = 0. Under this condition, the above equations reduce to

��(n)++(k)= 1

(d − 1)k2

∫ �

p̂+q̂=k̂
dp̂[S1(k, p, q)G

++
(n) (p̂)+ S2(k, p, q)G

+−
(n) (p̂)]C−−(q̂) , (180)

��(n)+−(k)= 1

(d − 1)k2

∫ �

p̂+q̂=k̂
dp̂[S3(k, p, q)G

−−
(n) (p̂)+ S4(k, p, q)G

−+
(n) (p̂)]C++(q̂) , (181)

��(n)−+(k)= 1

(d − 1)k2

∫ �

p̂+q̂=k̂
dp̂[S3(k, p, q)G

++
(n) (p̂)+ S4(k, p, q)G

+−
(n) (p̂)]C−−(q̂) , (182)

��(n)−−(k)= 1

(d − 1)k2

∫ �

p̂+q̂=k̂
dp̂[S1(k, p, q)G

−−
(n) (p̂)+ S2(k, p, q)G

−+
(n) (p̂)]C++(q̂) . (183)

The inspection of Eqs. (180)–(183) reveal that�++ and�−+ are of the order ofr. Hence, we take thê�
matrix to be of the form

�̂(k,)=
(
r� �
r� �

)
. (184)
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It is convenient to transform the frequency integrals in Eqs. (180)–(183) into temporal integrals, which
yields

��(n)++(k)= 1

(d − 1)k2

∫ �

p+q=k
dp

(2�)d

∫ t

−∞
dt ′[S1(k, p, q)G

++
(n) (p, t − t ′)

+ S2(k, p, q)G
+−
(n) (p, t − t ′)]C−−(q, t − t ′) (185)

and similar forms for equations for other�’s. Green’s functionĜ(k, t − t ′)= exp−[�̂k2(t − t ′)] can be
easily evaluated by diagonalizing the matrix�̂. The final form ofĜ(k, t − t ′) to leading order inr is

Ĝ(k, t − t ′)

=

1 − r��

�2 (1 − exp(−�(t − t ′))) −
{

�

�
+ r�

�

(
�

�
− 2��

�2

)}
(1 − exp(−�(t − t ′)))

−r�

�
(1 − exp(−�(t − t ′))) exp(−�(t − t ′))+ r��

�2 (1 − exp(−�(t − t ′)))


 .

The correlation matrix̂C(k, t − t ′) is given by(
C++(k, t − t ′) C+−(k, t − t ′)
C−+(k, t − t ′) C−−(k, t − t ′)

)
= Ĝ(k, t − t ′)

(
C++(k) C+−(k)
C−+(k) C−−(k)

)
. (186)

The substitution of correlation functions and Green’s functions yield the following expressions for the
elements of��̂:

��(n)(k)= 1

(d − 1)k2

∫ � dp

(2�)d
C+(q)

{
S1(k, p, q)

1

�(n)(q)q
2

+ S2(k, p, q)
�(n)(p)

�(n)(p)

(
1

�(n)(p)p
2 + �(n)(q)q

2 − 1

�(n)(q)q
2

)

−S3(k, p, q)
�(n)(q)

�(n)(q)

(
1

�(n)(p)p
2 + �(n)(q)q

2 − 1

�(n)(p)p
2

)}
, (187)

��(n)(k)= 1

(d − 1)k2

∫ � dp

(2�)d
S3(k, p, q)

C+(q)
�(n)(p)p

2 , (188)

��(n)(k)= 1

(d − 1)k2

∫ � dp

(2�)d
C+(q)

{
S3(k, p, q)

1

�(n)(q)q
2

+ S2(k, p, q)
�(n)(q)

�(n)(q)

(
1

�(n)(p)p
2 + �(n)(q)q

2 − 1

�(n)(p)p
2

)

+S4(k, p, q)
�(n)(p)

�(n)(p)

1

�(n)(q)q
2

}
, (189)

��(n)(k)= 1

(d − 1)k2

∫ � dp

(2�)d
S1(k, p, q)

C+(q)
�(n)(p)p

2 . (190)
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Note that��, ��, ��, ��, and hence�, �, �,�, are all independent ofr. To solve the above equations we
substitute the following 1D energy spectra in the above equations:

E+(k)=K+ (�+)4/3

(�−)2/3
k−5/3 , (191)

E−(k)= rE+(k) . (192)

For the elements of̂� we substitute

Z(n)(k)= Z∗
(n)

√
K+ (�

+)2/3

(�−)1/3
k−4/3 , (193)

whereZ stands for�, �,�, �. The renormalizedZ∗’s are calculated using the procedure outlined in the
previous section. For largen their values ford = 3 are

Ẑ∗ =
(

0.86r 0.14
0.16r 0.84

)
, (194)

and ford = 2 they are

Ẑ∗ =
(

0.95r 0.54
1.10r 0.54

)
. (195)

Note that the solution converges for bothd = 2 and 3.
As discussed in the earlier section, the cascade rates�± can be calculated from the renormalized

parameters discussed above. Using the energy equations we can easily derive the equations for the
cascade rates, which are

�+ =
∫ kN

0
2r�k2E+(k)+

∫ kN

0
2�k2(Eu(k)− Eb(k)) , (196)

�− =
∫ kN

0
2�k2E−(k)+

∫ kN

0
2r�k2(Eu(k)− Eb(k)) . (197)

Under the assumption thatrA = 1, the parts of�± proportional to(Eu(k) − Eb(k)) vanish. Hence, the
total cascade rate will be

� = 1

2
(�+ + �−) (198)

= r

∫ kN

0
(� + �)k2E+(k) . (199)

Since� and� are independent ofr, the total cascade rate is proportional tor (for r small). Clearly the
cascade rate� vanishes whenr = 0 or �c = 1. This result is consistent with the fact that the nonlinear
interactions vanishes for pure Alfvén waves (z+ or z−). The detailed calculation of the cascade rates�±
and the constantsK± is presented in Section 8.1.2.

Now we will present the renormalization group analysis for helical MHD.
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7.4.3. Helical nonAlfvénic MHD (HM �= 0;HK �= 0; �c = 0)
Helical MHD is defined for space dimensiond=3. Verma[183] performed the RG analysis for helical

MHD. His method moves along the same lines as that applied for nonhelical MHD (Section 7.4.1). All
the steps are the same except Eqs. (152, 153) are replaced by

〈u>i (p̂)u>j (q̂)〉 =
[
Pij (p)Cuu(p̂)− iεij l

pl

p2HK(p̂)

]
(2�)4�(p̂ + q̂) , (200)

〈b>i (p̂)b>j (q̂)〉 = [Pij (p)Cbb(p̂)− iεij lplHM(p̂)](2�)4�(p̂ + q̂) . (201)

Note thatu–b correlation has been taken to be zero in our calculation. Because of helicities, the equations
for the change in renormalized self-energy (163, 164) get altered to

��(0)(k)= 1

(d − 1)k2

∫ �

p+q=k
dp

(2�)d

[
S(k, p, q)Cuu(q)+ S′(k, p, q)HK(q)

�(0)(p)p2 + �(0)(q)q2

−S6(k, p, q)C
bb(q)+ S′

6(k, p, q)HM(q)

�(0)(p)p
2 + �(0)(q)q

2

]
,

��(0)(k)= 1

(d − 1)k2

∫ �

p+q=k
dp

(2�)d

[
−S8(k, p, q)C

bb(q)+ S′
8(k, p, q)HM(q)

�(0)(p)p2 + �(0)(q)q
2

+S9(k, p, q)C
uu(q)+ S′

9(k, p, q)HK(q)

�(0)(p)p
2 + �(0)(q)q2

]
,

whereS′
i defined below can be shown to be zero.

S′(k, p, q)= P+
bjm(k)P

+
mab(p)εjalql = 0 ,

S′
6(k, p, q)= P+

ajm(k)P
−
mba(p)εjalql = 0 ,

S′
8(k, p, q)= P−

ijm(k)P
+
jab(p)εmalqlPib(k)= 0 ,

S′
9(k, p, q)= P−

ijm(k)P
−
mab(p)εjalqlPib(k)= 0 .

The argument for the vanishing ofS′ is follows. Since�� and�� are proper scalars, andHM,K are pseudo-
scalars,S′

i(k, p, q) will be pseudo-scalars. In addition,S′
i(k, p, q) are also linear ink, p andq. This

implies thatS′
i(k, p, q)must be proportional toq · (k ×p), which will be zero becausek =p+q. Hence

all S′
i(k, p, q) turn out to be zero.Hence, helicities do not alter the already calculated�(�, �)(n)(k) in

Section7.4.1. Zhou[198] arrived at a similar conclusion while calculating the renormalized viscosity for
helical fluid turbulence.

7.5. RG calculations of MHD turbulence using YO’s perturbative scheme

In YO’s perturbative scheme for fluid turbulence, corrections to the viscosity, vertex, and noise are
computed on shell elimination. After that recurrence relations are written for these quantities, and fixed
points are sought. The nontrivial fixed point provides us with spectral exponents etc.
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In MHD turbulence there are more variables than fluid turbulence. If cross helicity is zero, we can
manage with corrections to (1) viscosity and resistivity, (2) three vertices corresponding to(u · ∇)u,
(b · ∇)b, and (u · ∇)b − (b · ∇)u, and (3) two noise parameters corresponding to the velocity and
magnetic fields respectively[58]. In terms of Elsässer variables, we get similar terms. These calculations
have been performed by Lee[98], Fournier et al.[58], Camargo and Tasso[27], Liang and Diamond
[102], Berera and Hochberg[9], Longcope and Sudan[105], and Basu[4]. Note that in 1965 itself Lee
[98] had written all the Feynman diagrams for dressed Green’s functions, noise, and vertex, but could not
compute the dressed Green’s function or correlation function.

A brief comments on all the above work are as follows. In almost all the following work, cross helicity
is taken to be zero.

7.5.1. Fournier, Sulem, and Pouquet
Fournier et al.[58] were the first to perform RG calculation for MHD turbulence in 1982. Different

regimes were obtained depending on space dimension, external driving (noise), and fluid characteristics
like Prandtl number. The trivial and kinetic regimes exist in any space dimension. Here, the dissipative
coefficients, viscosity and resistivity, are renormalized, and they have the same scaling.Turbulent magnetic
Prandtl number depends on space dimension only and tends to 1 whend → ∞.

The magnetic regime is found only ford >dc ≈ 2.8. The effect of the small-scales kinetic energy
on the large scales is negligible, and the renormalization of the coupling is only due to the small scales
magnetic energy. The turbulent magnetic Prandtl number is infinite fordc<d <d ′

c ≈ 4.7, while for
d >d ′

c, it has a finite value which tends to 1 asd → ∞.
No magnetic regime can be computed by the RG ford <dc. Also, in d <3, the contribution of the

magnetic small scales to the turbulent diffusivity is negative and tends to destabilize the magnetic large
scales. Ind = 2 or close to 2, the electromagnetic force produces unbounded nonlinear effects on large
scales, making RG inapplicable.

7.5.2. Camargo and Tasso
Camargo and Tasso[27] performed RG analysis usingz± variables. They derived flow equations for

the Prandtl number. They showed that effective resistivity could be negative, but effective viscosity is
always positive.

7.5.3. Liang and Diamond
Liang and Diamond[102] applied RG for 2D fluid and MHD turbulence. They found that no RG fixed

point exists for both these systems. They attributed this phenomena to dual-cascade.

7.5.4. Berera and Hochberg
Berera and Hochberg’s[9] RG analysis showed that Kolmogorov-like5

3, KID’s 3
2, or any other energy

spectra can be obtained by a suitable choice of the spectrum of the injected noise. They also report forward
cascade for both energy and magnetic helicity.

7.5.5. Longcope and Sudan
Longcope and Sudan[105] applied RG analysis to Reduced Magnetohydrodynamics (RMHD) and

obtained effective values of the viscosity and resistivity at large scales.
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7.6. Callan–Symanzik equation for MHD turbulence

This scheme is equivalent to Wilson’s RG scheme of shell elimination. For details of this scheme, refer
to the book by Adzhemyan[1]. Hnatich et al.[76] performed RG analysis based on two parameters: space
dimension and noise spectral index. They showed that the kinetic fixed point is stable ford � 2, but
the magnetic fixed point is stable only ford >dc ≈ 2.46. Adzhemyan et al.[2] applied quantum-field
approach to MHD turbulence and performed a detailed RG analysis.

7.7. Other analytic techniques in MHD turbulence

Direct Interaction Approximation[84] is very popular in fluid turbulence. In fact, some researchers
(e.g.,[87]) argue in favor of DIA over RG. One problem of DIA is that the integral for Green’s function
diverges (infrared divergence), and one needs to introduce a infrared cutoff[101]. In any case, there are
only a few DIA calculations for MHD turbulence.Verma and Bhattacharjee[187]applied DIA to compute
Kolmogorov’s constant in MHD turbulence assuming5

3 energy spectrum. Note however that their self-
energy matrix is not quite correct, and should be replaced by that given in Section 7.4.2. Nakayama[135]
performed one such calculation based on KID’s scaling for Green’s function and correlation functions.

There are some interesting work by Montgomery and Hatori[130], and Montgomery and Chen
[128,129]using scale separation. They computed the effects of small scales on the large-scale magnetic
field, and found that helicity could enhance the magnetic field. They have also computed the corrections
to the transport parameters due to small-scale fields. Note that RG schemes are superior to these schemes
because they include all the interaction terms. For details, the reader is referred to the original papers.

Now let us compare the various results discussed above. One common conclusion is that the magnetic
(dominated) fixed point neard = 2 is unstable, however, authors report different critical dimensiondc.
Both Fournier et al.[58] and Verma find that magneticPr = 1 asd → ∞. For 2D fluid turbulence,
Liang and Diamond’s[102] argued that RG fixed point is unstable. This result is in disagreement with
our self-consistent RG (see Appendix D). To sum up, RG calculations for MHD turbulence appears to be
quite involved, and there are many unresolved issues.

In fluid turbulence, there are some other interesting variations of field-theoretic calculations by DeDo-
minicis and Martin[47], Bhattacharjee[10], Carati[29] and others. In MHD turbulence, however, these
types of calculations are less.

In the next section we will compute energy fluxes for MHD turbulence using field-theoretic techniques.

8. Field-theoretic calculation of energy fluxes and shell-to-shell energy transfer

In this section we present the calculation of energy fluxes in MHD turbulence. The computation was
carried out byVerma[181,183,184]for theinertial-range wavenumbersusing perturbative self-consistent
field-theoretic technique. He assumed the turbulence to be homogeneous and isotropic. Even though the
real-world turbulence do not satisfy these properties, many conclusions drawn using these assumption
provide us with important insights into the energy transfer mechanisms at small scales. Verma assumed
that the mean magnetic field is absent; this assumption was made to ensure that the turbulence is isotropic.
The field-theoretic procedure requires Fourier space integrations of functions involving products of energy
spectrum and the Greens functions. Since there is a general agreement on Kolmogorov-like spectrum for
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MHD turbulence, Verma tookE(k) ∝ k−5/3 for all the energy spectra. For the Greens function, he
substituted the “renormalized” or “dressed” Greens function computed by Verma[180] (see Section 7.4).

8.1. Field-theoretic calculation of energy fluxes

The field-theoretic calculation for arbitrary cross helicity, Alfvén ratio, magnetic helicity, and kinetic
helicities is quite intractable, therefore Verma performed the calculation in the following three limiting
cases: (1) Nonhelical nonAlfvénic MHD (HM = HK = Hc = 0), (2) Nonhelical Alfvénic MHD (HM =
HK =0, �c → 1), and (3) Helical nonAlfvénic MHD (HM �= 0, HK �= 0, Hc=0). Energy flux calculation
for each of these cases is described below.

8.1.1. Nonhelical nonAlfvénic MHD (HM =HK =Hc = 0)
As described in Section 3.6 the energy flux from the inside region ofX-sphere of radiusk0 to the

outside region ofY -sphere of the same radius is

�X<
Y>(k0)= 1

(2�)d�(k ′ + p+ q)

∫
k′>k0

dk ′

(2�)d

∫
p<k0

dp

(2�)d
〈S(k ′|p|q)〉 , (202)

whereX andY stand foru or b. Verma assumed that the kinetic energy is forced at small wavenumbers.
Verma[184] analytically calculated the above energy fluxes in the inertial range to leading order in

perturbation series. It was assumed thatu(k) is quasi-gaussian as in EDQNM approximation. Under this
approximation, the triple correlation〈XXX〉 is zero to zeroth order, but nonzero to first oder. To first
order〈XXX〉 is written in terms of〈XXXX〉, which is replaced by its gaussian value, a sum of products
of second-order moment. Consequently, the ensemble average ofSYX, 〈SYX〉, is zero to the zeroth order,
but is nonzero to the first order. The first-order terms for〈SYX(k|p|q)〉 in terms of Feynman diagrams
are given in Appendix C. They are given below in terms of Green’s functions and correlation functions:

〈Suu(k|p|q)〉 =
∫ t

−∞
dt ′(2�)d [T1(k, p, q)G

uu(k, t − t ′)Cuu(p, t, t ′)Cuu(q, t, t ′)

+ T5(k, p, q)G
uu(p, t − t ′)Cuu(k, t, t ′)Cuu(q, t, t ′)

+ T9(k, p, q)G
uu(q, t − t ′)Cuu(k, t, t ′)Cuu(p, t, t ′)]�(k ′ + p+ q) , (203)

〈Sub(k|p|q)〉 = −
∫ t

−∞
dt ′(2�)d [T2(k, p, q)G

uu(k, t − t ′)Cbb(p, t, t ′)Cbb(q, t, t ′)

+ T7(k, p, q)G
bb(p, t − t ′)Cuu(k, t, t ′)Cbb(q, t, t ′)

+ T11(k, p, q)G
uu(q, t − t ′)Cuu(k, t, t ′)Cbb(p, t, t ′)]�(k ′ + p+ q) , (204)

〈Sbu(k|p|q)〉 = −
∫ t

−∞
dt ′(2�)d [T3(k, p, q)G

bb(k, t − t ′)Cuu(p, t, t ′)Cbb(q, t, t ′)

+ T6(k, p, q)G
uu(p, t − t ′)Cbb(k, t, t ′)Cbb(q, t, t ′)

+ T12(k, p, q)G
bb(q, t − t ′)Cbb(k, t, t ′)Cuu(p, t, t ′)]�(k ′ + p+ q) , (205)
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〈Sbb(k|p|q)〉 =
∫ t

−∞
dt ′(2�)d [T4(k, p, q)G

bb(k, t − t ′)Cbb(p, t, t ′)Cuu(q, t, t ′)

+ T8(k, p, q)G
bb(p, t − t ′)Cbb(k, t, t ′)Cuu(q, t, t ′)

+ T10(k, p, q)G
uu(q, t − t ′)Cbb(k, t, t ′)Cbb(p, t, t ′)]�(k ′ + p+ q) , (206)

whereTi(k, p, q) are functions of wavevectorsk, p, andq given in Appendix C.
The Greens functions can be written in terms of “effective” or “renormalized” viscosity�(k) and

resistivity�(k) computed in Section 7.4.1

Guu,bb(k, t − t ′)= �(t − t ′)exp(−[�(k), �(k)]k2(t − t ′)) .

The relaxation time forCuu(k, t, t ′) [Cbb(k, t, t ′)] is assumed to be the same as that ofGuu(k, t, t ′)
[Gbb(k, t, t ′)]. Therefore the time dependence of the unequal-time correlation functions will be

Cuu,bb(k, t, t ′)= �(t − t ′)exp(−[�(k), �(k)]k2(t − t ′))Cuu,bb(k, t, t) .

The above forms of Green’s and correlation functions are substituted in the expression of〈SYX〉, and the
t ′ integral is performed. Now Eq. (202) yields the following flux formula for�u<

u>(k0):

�u<
u>(k0)=

∫
k>k0

dk

(2�)d

∫
p<k0

dp

(2�)d
1

�(k)k2 + �(p)p2 + �(q)q2 × [T1(k, p, q)C
uu(p)Cuu(q)

+ T5(k, p, q)C
uu(k)Cuu(q)+ T9(k, p, q)C

uu(k)Cuu(p)] . (207)

The expressions for the other fluxes can be obtained similarly.
The equal-time correlation functionsCuu(k, t, t) andCbb(k, t, t) at the steady state can be written in

terms of 1D energy spectrum as

Cuu,bb(k, t, t)= 2(2�)d

Sd(d − 1)
k−(d−1)Eu,b(k) ,

whereSd is the surface area ofd-dimensional unit spheres. We are interested in the fluxes in the inertial
range. Therefore, Verma substituted Kolmogorov’s spectrum [Eqs. (139, 140)] for the energy spectrum.
The effective viscosity and resistivity are proportional tok−4/3, i.e.,

[�, �](k)= (Ku)1/2�1/3k−4/3[�∗, �∗] ,
and the parameters�∗ and�∗ were calculated in Section 7.4.1.

Verma nondmensionalized Eq. (207) by substituting[101]

k = k0

u
, p = k0

u
v, q = k0

u
w . (208)

Application of Eq. (173) yields

�X<
Y> = (Ku)3/2�

[
4Sd−1

(d − 1)2Sd

∫ 1

0
dv ln(1/v)

∫ 1+v

1−v
dw(vw)d−2(sin �)d−3FX<

Y> (v,w)

]
, (209)
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where the integralsFX<
Y> (v,w) are

Fu<
u> = 1

�∗(1 + v2/3 + w2/3)

[
t1(v,w)(vw)

−d− 2
3 + t5(v,w)w

−d− 2
3 + t9(v,w)v

−d− 2
3

]
, (210)

Fb<
u> = − 1

�∗ + �∗(v2/3 + w2/3)

[
t2(v,w)(vw)

−d− 2
3 r−2

A

+t7(v,w)w−d− 2
3 r−1

A + t11(v,w)v
−d− 2

3 r−1
A

]
, (211)

Fu<
b> = − 1

�∗v2/3 + �∗(1 + w2/3)

[
t3(v,w)(vw)

−d− 2
3 r−1

A

+t6(v,w)w−d− 2
3 r−2

A + t12(v,w)v
−d− 2

3 r−1
A

]
, (212)

Fb<
b> = 1

�∗w2/3 + �∗(1 + v2/3)

[
t4(v,w)(vw)

−d− 2
3 r−1

A

+t8(v,w)w−d− 2
3 r−1

A + t10(v,w)v
−d− 2

3 r−2
A

]
. (213)

Hereti(v, w)=Ti(k, kv, kw)/k
2. Note that the energy fluxes are constant, consistent with Kolmogorov’s

picture. Verma computed the bracketed terms (denoted byIX<Y> ) numerically using gaussian-quadrature
method, and found all of them to be convergent. Let us denoteI = Iu<u> + I b<u> + Iu<b> + I b<b> . Using the
fact that the total flux� is

� = �u<
u> + �b<

u> + �u<
b> + �b<

b> , (214)

constantKu can be calculated as

Ku = (I )−2/3 . (215)

The energy flux ratios can be computed using�X<
Y>/�=IX<Y> /I . The value of constantK can be computed

using Eq. (141). The flux ratios and Kolmogorov’s constant ford= 3 and variousrA are listed inTable 7.

Table 7
The computed values of energy fluxes in MHD turbulence for variousrA whend = 3 and�c = 0

�/rA 5000 100 5 1 0.5 0.3 Trend

�u<
u>/� 1 0.97 0.60 0.12 0.037 0.011 Decreases

�u<
b>
/� 3.4×10−4 1.7×10−2 0.25 0.40 0.33 0.36 Increases then saturates

�b<
u>/� −1.1×10−4 −5.1×10−3 −0.05 0.12 0.33 0.42 Increases then saturates

�b<
b>
/� 2.7×10−4 1.3×10−2 0.20 0.35 0.30 0.21 Increases then dips

K+ 1.53 1.51 1.55 1.50 1.65 3.26 Approx. const tillrA ≈ 0.5
Ku 1.53 1.50 1.29 0.75 0.55 0.75 Decrease
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The following trends can be inferred by studyingTable 7. We find that ford = 3,�u<
u>/� starts from 1

for largerA and decreases nearly to zero nearrA = 0.3. All other fluxes start from zero or small negative
values, and increase up to some saturated values. NearrA ≈ 1, all the energy fluxes become significant.All
the fluxes are positive except for�b<

u>, which is negative forrA greater than 3 (kinetic energy dominated
state). Hence, both kinetic and magnetic energies flow from large length scale to small length scale.
However, in kinetic energy dominated situations, there is an energy transfer from small-scale kinetic
energy to large-scale magnetic field (Inverse energy cascade). Negative�b<

u> for rA >3 is consistent with
negative value of�bu∗ computed in Section 7.4.1.

The quantity of special interest is�b<
b>, which is positive indicating that magnetic energy cascades from

large length scale to small length scale. The Kolmogorov constantK for d = 3 is listed inTable 7. For
all rA greater than 0.5,K is approximately constant and is close to 1.6, same as that for fluid turbulence
(rA = ∞).

Verma’s method mentioned above cannot be used to compute energy transfer�u<
b< from the large-scale

kinetic energy to the large-scale magnetic energy because the forcing wavenumbers (large scales) do not
obey Kolmogorov’s powerlaw. Verma[184] attempted to compute these using steady-state assumption

�u<
b< = �b<

b> + �b<
u> .

Unfortunately, shell-to-shell energy transfer studies (Section 8.2) reveal that in kinetic regime (rA >1),
u-shells lose energy tob-shells; while in magnetically dominated situations (rA <1),b-shells lose energy
tou-shells. Hence, steady-state MHD is not possible except nearrA =1. Therefore, Verma’s prediction of
�u<
b< based on steady-state assumption is incorrect. However,�b<

b> +�b<
u> can still be used as an estimate

for �u<
b<.

We compute total kinetic energy flux�u=�u<
u>+�u<

b>, and total magnetic energy flux�b=�b<
b>+�b<

u>.
We find thatEu ∝ (�u)2/3 andEb ∝ (�b)2/3 for all rA. Hence,

Eu,b =K1,2(�u,b)2/3k−5/3 , (216)

where the constantsK1,2 are somewhat independent ofrA unlikeKu.
Now let us compare the theoretical values with their numerical counterparts reported in Section 6.4.

Debliquy et al.[46] computed the energy fluxes for the decaying MHD using DNS data for various values
of Alfvén ratio. InTable 8we compare the numerical and theoretical values for variousrA’s.

We find that the numerical and theoretical values are in qualitative agreement. The differences in the
values are the largest for�u<

b> and�b<
u>. The numerical values of Kolmogorov’s constant is close to

2.8–3.0 (±20%), which is somewhat close to Muller and Biskamp’s[15] numerical value (K = 2.2), but
double of Verma’s[184] theoretical prediction. The reason for the difference is not quite clear, but it may
be due to various assumptions (e.g., Kolmorogorov’s spectrum, steady state, etc.) made in the theoretical
calculation.

Using numerical data Haugen et al.[75] reported that forEb/Eu ≈ 0.5, �u ≈ 0.3 and�b ≈ 0.7.
These numbers are somewhat close to Debliquy et al.’s values (≈ 0.42 and 0.61, respectively). Note that
�u = �u<

u> + �b<
u> + �b>

u> and�b = �b<
b> + �u<

b> − �b>
u>. Since we cannot theoretically compute�u>

b>,
Haugen et al.’s[75] numerical values cannot be compared with the theoretical values.

The values of energy flux-ratios and Kolmogorov’s constant for various space dimensions (whenrA =1)
are listed inTable 9. In Section 7.4.1 it has been shown that ford <2.2, the RG fixed point is unstable,
and the renormalized parameters could not be determined. Due to that reason we have calculated fluxes
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Table 8
The numerical (sim) and theoretical (th) values of energy fluxes in MHD turbulence for variousrA whend=3 and�c =0. Taken
from Debliquy et al.[46]

�/rA 0.75 (sim) 0.75 (th) 0.6 (sim) 0.6 (th) 0.4 (sim) 0.4 (th)

�u<
u>/� 0.075 0.078 0.073 0.024 0.066 0.024

�u<
b>
/� 0.49 0.38 0.49 0.31 0.49 0.31

�b<
u>/� 0.12 0.20 0.13 0.40 0.13 0.40

�b<
b>
/� 0.37 0.34 0.36 0.27 0.34 0.27

�u<
b<
/� 0.22 — −0.024 — −0.12 —

�u>
b>
/� 0.24 — 0.22 — 0.22 —

K+ 2.8 1.53 3.02 1.51 3.0 1.51

Ku 1.1 0.65 1.2 1.50 1.1 1.50
�∗ — 1.3 — 3.07 — 3.07
�∗ — 0.63 — 0.40 — 0.40

Table 9
The computed values of energy fluxes in MHD turbulence for various space dimensionsd whenrA = 1 and�c = 0

�/d 2.1 2.2 2.5 3 4 10 100

�u<
u>/� — 0.02 0.068 0.12 0.17 0.23 0.25

�u<
b>
/� — 0.61 0.49 0.40 0.34 0.27 0.25

�b<
u>/� — −0.027 0.048 0.12 0.18 0.23 0.25

�b<
b>
/� — 0.40 0.39 0.35 0.31 0.27 0.25

K+ — 1.4 1.4 1.5 1.57 1.90 3.46

Ku — 0.69 0.72 0.75 0.79 0.95 1.73

and Kolmogorov’s constant ford � 2.2 only. For larged it is observed that all the flux ratios are
equal, and Kolmogorov’s constant is proportional tod1/3. It can be explained by observing that for
larged

∫
dp′ dq ′

(
p′q ′

k′

)d−2

(sin�)d−3... ∼ d−1/2 , (217)

Sd−1

(d − 1)2Sd
∼ 1

d2

(
d

2�

)1/2

,

�∗ = �∗ ∼ d−1/2 (218)
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t1 = −t3 = −t5 = t7 = kpd(z+ xy) , (219)

andt9 = t11 = 0. Using Eq. (219) it can be shown that allFX<
Y> are equal for larged, which implies that

all the flux ratios will be equal. By matching the dimensions, it can be shown thatK ∝ d−1/3. This result
is a generalization of theoretical analysis of Fournier et al.[55] for fluid turbulence.

In this subsection we calculated the cascade rates for�c = 0. In the next subsection we take the other
limit �c → 1.

8.1.2. Nonhelical Alfvénic MHD (HM =HK = 0, �c → 1)
In z± variables, there are only two types of fluxes�±, one for thez+ cascade and the other forz−

cascade. These energy fluxes�± can be computed using

�±(k0)= 1

(2�)d�(k ′ + p+ q)

∫
k′>k0

dk ′

(2�)d

∫
p<k0

dp

(2�)d
〈S±(k ′|p|q)〉 . (220)

Verma[184]calculated the above fluxes to the leading order in perturbation series. The Feynman diagrams
are given in Appendix B. To first order,〈S±(k ′|p|q)〉 are

〈S±(k ′|p|q)〉 =
∫ t

−∞
dt ′(2�)d [T13(k, p, q)G

±±(k, t − t ′)C±∓(p, t, t ′)C∓±(q, t, t ′)

+ T14(k, p, q)G
±±(k, t − t ′)C±±(p, t, t ′)C∓∓(q, t, t ′)

+ T15(k, p, q)G
±∓(k, t − t ′)C±±(p, t, t ′)C∓∓(q, t, t ′)

+ T16(k, p, q)G
±∓(k, t − t ′)C±∓(p, t, t ′)C∓±(q, t, t ′)

+ T17(k, p, q)G
±±(p, t − t ′)C±∓(k, t, t ′)C∓±(q, t, t ′)

+ T18(k, p, q)G
±±(p, t − t ′)C±±(k, t, t ′)C∓∓(q, t, t ′)

+ T19(k, p, q)G
±∓(p, t − t ′)C±±(k, t, t ′)C∓∓(q, t, t ′)

+ T20(k, p, q)G
±∓(p, t − t ′)C±±(k, t, t ′)C∓∓(q, t, t ′)

+ T21(k, p, q)G
∓±(q, t − t ′)C±∓(k, t, t ′)C±±(p, t, t ′)

+ T22(k, p, q)G
∓±(q, t − t ′)C±±(k, t, t ′)C±∓(p, t, t ′)

+ T23(k, p, q)G
∓∓(q, t − t ′)C±±(k, t, t ′)C±∓(p, t, t ′)

+ T24(k, p, q)G
∓∓(q, t − t ′)C±∓(k, t, t ′)C±±(p, t, t ′)]�(k ′ + p+ q) , (221)

whereTi(k, p, q) are given in Appendix A.
Verma considered the case whenr=E−(k)/E+(k) is small. In terms of renormalized�̂ matrix, Green’s

function and correlation functions calculated in Section 7.4.2, we obtain the following expression for�±
to leading order inr:

�± = r
(�+)2

�− (K+)3/2
[

4Sd−1

(d − 1)2Sd

∫ 1

0
dv ln(1/v)

∫ 1+v

1−v
dw(vw)d−2(sin �)d−3F±(v,w)

]
,

(222)
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Table 10
The computed values of Kolmogorov’s constants for�c → 1 andrA = 1 limit for variousr = E−/E+ (d = 2,3)

d r K+ K−

0.2 0.72 3.1
0.17 1.4 1.4

3 0.10 2.1 1.2
0.07 2.7 1.07
10−3 45 0.26
0.1 1.2 2.4
0.07 1.5 2.2

2 0.047 1.9 1.9
10−3 25 0.52
10−6 2480 0.052

where the integrandF± are

F+ = t13(v,w)(vw)
−d−2/3 1

�∗w2/3 + t14(v,w)(vw)
−d−2/3 �∗

�∗
{

1

�∗(1 + w2/3)
− 1

�∗w2/3

}

+ t15(v,w)w
−d−2/3 1

�∗w2/3 + t16(v,w)w
−d−2/3 �∗

�∗
{

1

�∗(v2/3 + w2/3)
− 1

�∗w2/3

}

+ t17(v,w)v
−d−2/3 �∗

�∗
{

1

�∗(v2/3 + w2/3)
− 1

�∗w2/3

}

+ t18(v,w)v
−d−2/3 �∗

�∗
{

1

�∗(1 + w2/3)
− 1

�∗w2/3

}
, (223)

F− = t13(v,w)(vw)
−d−2/3 1

�∗(1 + v2/3)
+ t15(v,w)w

−d−2/3 1

�∗(1 + v2/3)
, (224)

whereti(v, w)= Ti(k, kv, kw)/k
2. Here we assumed thatrA = 1. We find that some of the terms of Eq.

(221) are of higher order, and they have been neglected.
The bracketed term of Eq. (222), denoted byI±, are computed numerically. The integrals are finite

for d = 2 and 3. Also note thatI± are independent ofr. Now the constantK± of Eq. (222) is computed
in terms ofI±; they are listed inTable 10. The constantsK± depend very sensitively onr. Also, there
is a change of behavior nearr = (I−/I+)2 = rc; K−<K+ for r < rc, whereas inequality reverses forr
beyondrc.

Many important relationships can be deduced from the equations derived above. For example

�−

�+ = I−

I+ . (225)

SinceI± are independent ofr, we can immediately conclude that the ratio�−/�+ is alsoindependent
of r. This is an important conclusion derivable from the above calculation. From the above equations one
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can also derive

K+ = 1

r2/3

(I−)2/3

(I+)4/3
, (226)

K− = r1/3(I
+)2/3

(I−)4/3
, (227)

K−

K+ = r

(
I+

I−

)2

. (228)

The total energy cascade rate can be written in terms ofE+(k) as

� = 1

2
(�+ + �−)= r

2
(I+ + I−)(E+(k))3/2k5/2 . (229)

SinceI± are independent ofr,� is a linear function ofr.As expected the energy flux vanishes whenr = 0.
In this section, we have dealt with strong turbulence. For weak turbulence, Lithwick and Goldreich

[104] have solved Alfvénic MHD equations using kinetic theory.

8.1.3. Helical nonAlfvénic MHD (HM �= 0, HK �= 0, Hc = 0)
Now we present computation of cascade rates of energy and magnetic helicity for helical MHD(HM �=

0, HK �= 0) [183]. Hered=3.To simplify the equation, we consider only nonAlfvénic fluctuations (�c=0).
We start with the flux formulas of energy (Eq. (202)) and magnetic helicity

�HM (k0)= 1

(2�)d�(k ′ + p+ q)

∫
k′>k0

dk ′

(2�)3

∫
p<k0

dp

(2�)3
〈SHM (k ′|p|q)〉 . (230)

The calculation procedure is identical to that of nonhelical nonAlfvénic MHD. The only difference is
that additional terms appear in〈SYX(k ′|p|q)〉 (Eqs. (203)–(206)) because terms〈ui(k, t)uj (k, t ′)〉 and
〈bi(k, t)bj (k, t ′)〉 contain helicities in addition to correlation functions:

〈ui(p, t)uj (q, t ′)〉 = [Pij (p)Cuu(p, t, t ′)− iεij lklHM(k, t, t
′)]�(p+ q)(2�)3 ,

〈bi(p, t)bj (q, t ′)〉 =
[
Pij (p) Cbb(p, t, t ′)− iεij lkl

HM(k, t, t
′)

k2

]
�(p+ q)(2�)3 .

Substitutions of these functions in perturbative series yield

〈Suu(k′|p|q)〉 =
∫ t

−∞
dt ′(2�)3

[
T1(k, p, q)G

uu(k, t − t ′)Cu(p, t, t ′)Cu(q, t, t ′)

+ T ′
1(k, p, q)G

uu(k, t − t ′)HK(p, t, t
′)

p2

HK(q, t, t
′)

q2

+ T5(k, p, q)G
uu(p, t − t ′)Cu(k, t, t ′)Cu(q, t, t ′)

+ T ′
5(k, p, q)G

uu(p, t − t ′)HK(k, t, t
′)

k2

HK(q, t, t
′)

q2

+ T9(k, p, q)G
uu(q, t − t ′)Cu(k, t, t ′)Cu(p, t, t ′)

+T ′
9(k, p, q)G

uu(q, t − t ′)HK(k, t, t
′)

k2

HK(p, t, t
′)

p2

]
�(k ′ + p+ q) , (231)
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〈Sub(k′|p|q)〉 = −
∫ t

−∞
dt ′(2�)3

[
T2(k, p, q)G

uu(k, t − t ′)Cb(p, t, t ′)Cb(q, t, t ′)

+ T ′
2(k, p, q)G

uu(k, t − t ′)HM(p, t, t
′)HM(q, t, t

′)
+ T7(k, p, q)G

bb(p, t − t ′)Cu(k, t, t ′)Cb(q, t, t ′)

+ T ′
7(k, p, q)G

bb(p, t − t ′)HK(k, t, t
′)

k2 HM(q, t, t
′)

+ T11(k, p, q)G
uu(q, t − t ′)Cu(k, t, t ′)Cb(p, t, t ′)

+T ′
11(k, p, q)G

uu(q, t − t ′)HK(k, t, t
′)

k2 HM(p, t, t
′)
]

�(k ′ + p+ q) , (232)

〈Sbu(k′|p|q)〉 = −
∫ t

−∞
dt ′(2�)3

[
T3(k, p, q)G

bb(k, t − t ′)Cu(p, t, t ′)Cb(q, t, t ′)

+ T ′
3(k, p, q)G

bb(k, t − t ′)HK(p, t, t
′)

p2 HM(q, t, t
′)

+ T6(k, p, q)G
uu(p, t − t ′)Cb(k, t, t ′)Cb(q, t, t ′)

+ T ′
6(k, p, q)G

uu(p, t − t ′)HM(k, t, t
′)HM(q, t, t

′)
+ T12(k, p, q)G

bb(q, t − t ′)Cb(k, t, t ′)Cu(p, t, t ′)

+T ′
12(k, p, q)G

bb(q, t − t ′)HM(k, t, t
′)HK(p, t, t

′)
p2

]
�(k ′ + p+ q) , (233)

〈Sbb(k′|p|q)〉 =
∫ t

−∞
dt ′(2�)3

[
T4(k, p, q)G

bb(k, t − t ′)Cb(p, t, t ′)Cu(q, t, t ′)

+ T ′
4(k, p, q)G

bb(k, t − t ′)HM(p, t, t
′)HK(q, t, t

′)
q2

+ T8(k, p, q)G
bb(p, t − t ′)Cb(k, t, t ′)Cu(q, t, t ′)

+ T ′
8(k, p, q)G

bb(p, t − t ′)HM(k, t, t
′)HK(q, t, t

′)
q2

+ T10(k, p, q)G
uu(q, t − t ′)Cb(k, t, t ′)Cb(p, t, t ′)

+T ′
10(k, p, q)G

uu(q, t − t ′)HM(k, t, t
′)HM(p, t, t

′)
]

�(k ′ + p+ q) . (234)

The functionsTi(k, p, q) andT ′
i (k, p, q) are given inAppendix C. Note thatT ′

i (k, p, q) are the additional
terms as compared to nonhelical flux (see Eqs. (203)–(206)).

The quantity〈SHM (k ′|p|q)〉 of Eq. (85) simplifies to

〈SHM (k ′|p|q)〉 = 1

2
R

[
εijm〈bi(k′)uj (p)bm(q)〉 − εj lm

kikl

k2 〈ui(q)bm(k′)bj (p)〉

+ εj lm
kikl

k2 〈bi(q)bm(k′)uj (p)〉
]
, (235)
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which is computed perturbatively to the first order. The corresponding Feynman diagrams are given in
Appendix C. The resulting expression for〈SHM (k ′|p|q)〉 is

〈SHM (k ′|p|q)〉 =
∫ t

−∞
dt ′(2�)3

[
T31(k, p, q)G

bb(k, t − t ′) HK(p, t − t ′)
p2 Cb(q, t − t ′)

+ T32(k, p, q)G
bb(k, t − t ′)Cuu(p, t − t ′)HM(q, t − t ′)

+ T33(k, p, q)G
uu(p, t − t ′)HM(k, t − t ′)Cbb(q, t − t ′)

+ T34(k, p, q)G
uu(p, t − t ′)Cbb(k, t − t ′)HM(q, t − t ′)

+ T35(k, p, q)G
bb(q, t − t ′)HM(k, t − t ′)Cuu(p, t − t ′)

+ T36(k, p, q)G
bb(q, t − t ′)Cbb(k, t − t ′)HK(p, t − t ′)

p2

+ T37(k, p, q)G
bb(k, t − t ′)HM(p, t − t ′)Cuu(q, t − t ′)

+ T38(k, p, q)G
bb(k, t − t ′)Cbb(p, t − t ′)HK(q, t − t ′)

q2

+ T39(k, p, q)G
bb(p, t − t ′)HM(k, t − t ′)Cuu(q, t − t ′)

+ T40(k, p, q)G
bb(p, t − t ′)Cbb(k, t − t ′)HK(q, t − t ′)

q2

+ T41(k, p, q)G
uu(q, t − t ′)HM(k, t − t ′)Cbb(p, t − t ′)

+ T42(k, p, q)G
uu(q, t − t ′)Cbb(k, t − t ′)HM(p, t − t ′)}

+ T43(k, p, q)G
bb(k, t − t ′)HK(p, t − t ′)

p2 Cbb(q, t − t ′)

+ T44(k, p, q)G
bb(k, t − t ′)Cuu(p, t − t ′)HM(q, t − t ′)}

+ T45(k, p, q)G
uu(p, t − t ′)HM(k, t − t ′)Cbb(q, t − t ′)

+ T46(k, p, q)G
uu(p, t − t ′)Cbb(k, t − t ′)HM(q, t − t ′)

+ T47(k, p, q)G
bb(q, t − t ′)HM(k, t − t ′)Cuu(p, t − t ′)

+T48(k, p, q)G
bb(q, t − t ′)Cbb(k, t − t ′)HK(p, t − t ′)

p2

]
× �(k ′ + p+ q) . (236)

For Greens’ functions and correlation functions the same substitutions were made as in nonhelical case.
For helicities, the following assumptions were made: the relaxation time-scales forHK(k, t, t

′) and
HM(k, t, t

′) are(�(k)k2)−1and(�(k)k2)−1 respectively, i.e.,

HK,M(k, t, t
′)=HK,M(k, t, t)�(t − t ′)exp{−[�, �]k2(t − t ′)} .

The spectra of helicities are tricky. In the presence of magnetic helicity, the calculations based on abso-
lute equilibrium theories suggest that the energy cascades forward, and the magnetic helicity cascades
backward[62]. Verma did not consider the inverse cascade region of magnetic helicity, and computed
energy fluxes for the forward energy cascade region (5

3 powerlaw).
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The helicities were written in terms of energy spectra as

HK(k)= rKkE
u(k) , (237)

HM(k)= rM
Eb(k)

k
. (238)

The ratiosrA, rM, andrK were treated as constants. In pure fluid turbulence, kinetic helicity spectrum is
proportional tok−5/3, contrary to the assumption made here. The cascade picture of magnetic helicity is
also not quite clear. Therefore, Verma[183] performed the calculations for the simplest spectra assumed
above.

The above form of correlation and Green’s functions were substituted in the expressions for
〈SYX(k′|p|q)〉 and〈SHM (k′|p|q)〉. TheseS’s were then substituted in the flux formulas (Eqs. (202, 230)).
After performing the following change of variable:

k = k0

u
, p = k0

u
v, q = k0

u
w (239)

one obtains the following nondimensional form of the equation in the5
3 region

�X<
Y>(k0)

|�(k0)| = (Ku)3/2
[

1

2

∫ 1

0
dv ln(1/v)

∫ 1+v

1−v
dw(vw) sin�FX<

Y>

]
, (240)

�HM (k0)

|�(k0)| = 1

k0
(Ku)3/2

[
1

2

∫ 1

0
dv(1 − v)

∫ 1+v

1−v
dw(vw) sin�FHM

]
, (241)

where the integrands(FX<
Y> , FHM ) are function ofv, w, �∗, �∗, rA, rK andrM [184].

Verma[183] computed the terms in the square brackets,IX<Y> , using gaussian-quadrature method. The
constantKu was calculated using the fact that the total energy flux� is sum of all�X<

Y> . For parameters
(rA = 5000, rK = 0.1, rM = −0.1), Ku = 1.53, while for (rA = 1, rK = 0.1, rM = −0.1), Ku = 0.78.
After that the energy flux ratios�X<

Y>/� could be calculated.Table 11contains these values forrA = 1
andrA = 5000. These ratios for some of the specific values ofrA, rK andrM are listed inTable 12. The
energy flux has been split into two parts: nonhelical (independent of helicity, the first term of the bracket)
and helical (dependent onrK and/orrM, the second term of the bracket).

Table 11
The values ofIX

Y
= (�X

Y
/�)/(Ku)1.5 calculated using Eqs. (240, 241) forrA = 1 and 5000

rA = 1 rA = 5000

Iu<u> 0.19− 0.10r2
K 0.53− 0.28r2

K

Iu<
b>

0.62+ 0.3r2
M + 0.095rK rM 1.9 × 10−4 + 1.4 × 10−9r2

M + 2.1 × 10−5rK rM

Ib<u> 0.18− 2.04r2
M + 1.93rK rM −5.6 × 10−5 − 1.1 × 10−7r2

M + 5.4 × 10−4rK rM

Ib<
b>

0.54− 1.9r2
M + 2.02rK rM 1.4 × 10−4 − 1.02× 10−7r2

M + 5.4 × 10−4rK rM

IHM −25rM + 0.35rK −4.1 × 10−3rM + 8.1 × 10−5rK

Ku 0.78 1.53
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Table 12
The values of energy ratios�X

Y
/� for various values ofrA , rK andrM for k−5/3 region

(rA , rK , rM ) �u<
u>/� �u<

b>
/� �b<

u>/� �b<
b>
/�

(1,0.1,−0.1) (0.13,−6.9 × 10−4) (0.43,−4.4 × 10−4) (0.13,−0.027) (0.37,−0.027)
(1,0.1,0.1) (0.12,−6.5 × 10−4) (0.40,8.1 × 10−4) (0.12,−7.7 × 10−4) (0.35,8.3 × 10−4)

(1,1,−1) (0.029,−0.015) (0.095,−9.9 × 10−3) (0.028,−0.61) (0.083,−0.60)
(1,1,1) (0.12,−0.064) (0.39,0.079) (0.12,−0.075) (0.34,0.081)
(1,0,1) (0.081,0) (0.26,0.013) (0.078,−0.86) (0.23,−0.8)
(5000,0.1,−0.1) (1.0,−5.3 × 10−3) (3.2 × 10−4,−3.7 × 10−7) (−9.7 × 10−5,−9.0 × 10−6) (2.5 × 10−4,−9.4 × 10−4)

(5000,0.1,0.1) (1.0,−5.3 × 10−3) (3.2 × 10−4,3.7 × 10−7) (−9.7 × 10−5,9.0 × 10−6) (2.5 × 10−4,9.4 × 10−6)

The first and second entries are the nonhelical and helical contributions, respectively.

An observation of the results shows some interesting patterns. The values of nonhelical part of all
the flux-ratios are quite similar to those discussed in Section 8.1.1. All the fluxes except�b<

u>nonhelical
(�b<

u>nonhelical<0 for rA >3 ) are always positive. As a consequence, in nonhelical channel, magnetic
energy cascades from large scales to small scales forrA <3.

The sign of�u<
u>helical is always negative, i.e., kinetic helicity reduces the kinetic energy flux. But the

sign of helical component of other energy fluxes depends quite crucially on the sign of helicities. From
the entries ofTable 11, we see that

�b<
(b>,u>)helical = −ar2

M + brMrK , (242)

wherea andb are positive constants. IfrMrK <0, the large-scale magnetic field will get positive contri-
bution from both the terms in the right-hand side of the above equation. The EDQNM work of Pouquet et
al. [149]and numerical simulations of Brandenburg[22] with forcing (kinetic energy and kinetic helicity)
typically haverKrM <0. Hence, we can claim that helicity typically induces an inverse energy cascade
via �b<

b> and�b<
u>. These fluxes will enhance the large-scale magnetic field.

The helical and nonhelical contributions to the fluxes forrA = 5000, rK = 0.1, rM = −0.1 is shown in
Table 12. The flux ratios shown in the table do not change appreciably as long asrA >100 or so. The three
fluxes responsible for the growth of large-scale magnetic energy are nonhelical(�u<

b< ≈ �b<
b>+�b<

u>)/� ≈
2.6 × 10−4, and helical�b<

b>helical/� ≈ −10−5 and�b<
u>helical/� ≈ −10−5. The ratio of nonhelical to

helical contribution is of the order of 10. Hence, for the large-scale magnetic energy growth, the nonhelical
contribution is comparable to the helical contribution. Note that in the earlier papers on dynamo, the helical
part is strongly emphasized, and nonhelical component is typically ignored.

From the entries ofTable 12we can infer that the for small and moderaterK andrM, the inverse energy
cascade into the large-scale magnetic field is less than the forward nonhelical energy flux�b<

b>. While for
helical MHD (rK , rM → 1), the inverse helical cascade dominates the nonhelical magnetic-to-magnetic
energy cascade.

The flux ratio�HM/� of Eqs. (241) can be computed using the same procedure. The numerical values
of the integrals are shown inTables 11and12. Clearly,

�HM (k0)= 1

k0
(−drM + erK) , (243)
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whered ande are positive constants. In53 regime, the magnetic helicity is not constant, and is inversely
proportional tok0. The contribution fromHM dominates that fromHK and is of opposite sign. For
positiveHM, the magnetic helicity cascade is backward. This result is in agreement with Frisch et al.’s
[62] prediction of an inverse cascade of magnetic helicity using absolute equilibrium theory. Verma’s
theoretical result on inverse cascade ofHM is in agreement with the results derived using EDQNM
calculation[149] and numerical simulations[151]. Reader is also referred to Oughton and Prandi[140]
for the effects of kinetic helicity on the decay of magnetic energy.

When the system is forced with positive kinetic helicity (rK >0), Eq. (243) indicates a forward cascade
of magnetic helicity. This effect could be the reason for the observed production of positive magnetic
helicity at small scales by Brandenburg[22]. Because of magnetic helicity conservation, he also finds
negative magnetic helicity at large scales. Now, positive kinetic helicity and negative magnetic helicity
at large scales may yield an inverse cascade of magnetic energy (see Eq. (242)). This could be one of the
main reason for the growth of magnetic energy in the simulations of Brandenburg[22].

After completing the discussion on energy fluxes for MHD turbulence, we now move on to theoretical
computation of shell-to-shell energy transfer.

8.2. Field-theoretic calculation of shell-to-shell energy transfer

Energy transfers between wavenumber shells provide us with important insights into the dynamics
of MHD turbulence. Kolmogorov’s fluid turbulence model is based on local energy transfer between
wavenumber shells. There are several quantitative theories in fluid turbulence about the amount of energy
transfer between neighboring wavenumber shells. For examples, Kraichnan[86] showed that 35% of the
energy transfer comes from wavenumber triads where the smallest wavenumber is greater than one-half of
the middle wavenumber. In MHD turbulence, Pouquet et al.[149]estimated the contributions of local and
nonlocal interactions using EDQNM calculation. They argued that large-scale magnetic energy brings
about equipartition of kinetic and magnetic excitations by the Alfvén effect. The small-scale “residual
helicity” (HK −HM) induces growth of large-scale magnetic energy. These results will be compared with
our field-theoretic results described below.

In this subsection we will compute the shell-to-shell energy transfer in MHD turbulence using field-
theoretic method[186]. The procedure is identical to the one described for MHD fluxes. We will limit
ourselves to nonAlfvénic MHD (both nonhelical and helical). Recall that the energy transfer rates from
themth shell of fieldX to thenth shell of fieldY is

T YXnm =
∑
k ′∈n

∑
p∈m

SYX(k ′|p|q) .

Thep-sum is over themth shell, and thek ′-sum is over thenth shell (Section 3). The terms ofSYX ’s
remain the same as in flux calculation, however, the limits of the integrals are different. The shells are
binned logarithmically with thenth shell being(k0s

n−1, k0s
n). We nondimensionalize the equations using

the transformation[101]

k = a

u
, p = a

u
v, q = a

u
w , (244)
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wherea = k0s
n−1. The resulting equation is

T YXnm

�
=K

3/2
u

4Sd−1

(d − 1)2Sd

∫ 1

s−1

du

u

∫ usm−n+1

usm−n
dv
∫ 1+v

|1−v|
dw(vw)d−2(sin�)d−3FYX(v,w) , (245)

whereFYX(v,w) was computed for helical nonAlfvénic MHD flows (see Eq. (240)). It includes both
nonhelicalFYX

nonhelical(v,w) and helicalFYX
helical(v,w) components. The renormalized parameters�∗, �∗

and Kolmogorov’s constantKu required to computeT YXnm /� are taken from the previous calculations.
From Eq. (245) we can draw the following inferences:

1. The shell-to-shell energy transfer rate is a function ofn − m, that is,�nm = �(n−i)(m−i). Hence, the
turbulent energy transfer rates in the inertial range are all self-similar. Of course, this is true only in
the inertial range.

2. T ubnm/� = −T bumn/�. HenceT bunm/� can be obtained fromT ubmn/� by inversion at the origin.

3. �X<
Y> =∑∞

n=m+1(n−m)T YXnm .
4. The net energy gained by au-shell from theu-to-u transfer is zero because of self similarity. However,

a u-shell can gain or lose a net energy due to imbalance betweenu-to-b andb-to-u energy transfers.
By definition, we can show that the net energy gained by an inertialu-shell is∑

m

(T ubnm − T bunm)+ T ubnn . (246)

Similarly, net energy gained by ab-shell fromb-to-b transfer is zero. However, the net energy gained
by an inertialb-shell due tou-to-b andb-to-u transfers is∑

m

(T bunm − T ubnm)+ T bunn . (247)

We compute the integral of Eq. (245). We describe the results in two separate parts: (1) nonhelical
contributions, (2) helical contributions.

8.2.1. Nonhelical contributions
We compute nonhelical contributions by turning off kinetic and magnetic helicities inFYX. We have

chosens = 21/4. This study has been done for various values of Alfvén ratios.Fig. 28contains plots of
T YXnm /� vs.n − m for four typical values ofrA = 0.5,1,5,100. The numbers represent energy transfer
rates from shellm to shellsm+ 1,m+ 2, . . . in the right, and to shellsm− 1,m− 2, . . . in the left. All
the plots are to same scale. ForrA = 0.5, maxima ofT ubnm/� andT bunm/� occurs atm= n, and its values
are±1.40 respectively. The corresponding values forrA = 5 are∓0.78. By observing the plots we find
the following interesting patterns:

1. T uunm/� is positive forn>m, and negative forn<m. Hence, au-shell gains energy from smaller
wavenumberu-shells, and loses energy to higher wavenumberu-shells, implying that energy cascade
is forward. Also, the absolute maximum occurs forn=m± 1, hence the energy transfer is local. For
kinetic dominated regime,s = 21/2 yieldsT uunm/� ≈ 34%, similar to Kraichnan’s Test Mean Field
model (TFM) predictions[86].
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Fig. 28. Theoretically calculated values ofT YXnm /� vs. n − m for zero helicities(�c = rK = rM = 0) and Alfvén ratios
rA = 0.5,1,4,100.

(a)

(b)

Fig. 29. Schematic illustration of nonhelicalT YXnm /� in the inertial range for (a) kinetic-energy-dominated regime, and (b)
magnetic-energy-dominated regime. In (a)T bunm/� is positive forn � m − 1, and negative otherwise, while in (b)T ubnm/� is
positive forn � m− 1, and negative otherwise.T uunm andT bbnm are forward and local.

2. T bbnm/� is positive forn>m, and negative forn<m, and maximum forn=m± 1. Hence magnetic
to magnetic energy transfer is forward and local. This result is consistent with the forward magnetic-
to-magnetic cascade(�b<

b> >0) discussed in Section 8.1.1.
3. For rA >1 (kinetic energy dominated), kinetic to magnetic energy transfer rateT bunm/� is positive

for n � m − 1, and negative otherwise. These transfers have been illustrated inFig. 29(a). Using
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Eq. (247)we find there is a net energy transfer from kinetic to magnetic, and the net energy transfer
rate decreases as we go towardrA = 1. Here, eachu-shell loses net energy tob-shells, hence the
turbulence is not steady. This phenomena is seen for allrA >1.

4. For rA = 0.5 (magnetically dominated), magnetic to kinetic energy transfer rateT ubnm/� is positive
for n � m − 1, and negative otherwise (seeFig. 28). There is a net energy transfer from magnetic
to kinetic energy; its magnitude decreases asrA → 1. In addition, using Eq. (246) we find that each
b-shell is losing net energy tou-shells, hence the turbulence cannot be steady. This phenomena is seen
for all rA <1.

5. The observations of (3) and (4) indicate that kinetic to magnetic or the reverse energy transfer rate
almost vanishes nearrA = 1. We believe that MHD turbulence evolves towardrA ≈ 1 due to above
reasons.For rA �= 1, MHD turbulence is not steady. This result is same as the prediction of equipar-
tition of kinetic and magnetic energy due to Pouquet et al.’s using EDQNM calculation[149]. Note
however that the steady-state value ofrA in numerical simulations and solar wind is around 0.5–0.6.
The difference is probably because realistic flows have more interactions than discussed above, e.g.,
nonlocal coupling with forcing wavenumbers. Careful numerical simulations are required to clarify
this issue.

6. WhenrA is not close to 1 (rA � 0.5 orrA >5),u-to-bshell-to-shell transfer involves many neighboring
shells (seeFig. 28). This observation implies thatu−b energy transfer is somewhat nonlocal as
predicted by Pouquet et al.[149].

7. We compute energy fluxes usingT YXnm , and find them to be the same as that computed in Section 8.1.1.
Hence both the results are consistent with each other.

The theoretical results presented above are in qualitative agreement with the numerical values reported
in Section 6. The reason for the differences is not quite clear. It may be because of various assumptions
made in the theoretical calculations.

After the above discussion on nonhelical MHD, we move to helical MHD.

8.2.2. Helical contributions
Now we present computation of shell-to-shell energy transfer for helical MHD(HM �= 0, HK �= 0)

[183]. To simplify the equation, we consider only nonAlfvénic fluctuations (�c = 0). In order to compare
the helical contributions with nonlocal ones, we have chosenrA =1, rK =0.1, rM =−0.1. These are also
the typical parameters chosen in numerical simulations. For these parameters, Kolmogorov’s constant
Ku=0.78 (Section 8.1.3). InFig. 30we have plottedT uunm/� vs.n−m. Our results of helical shell-to-shell
transfers are given below:

1. Comparison ofFig. 30with Fig. 28(rA =1) shows that helical transfers are order-of-magnitude lower
than nonhelical ones for the parameters chosen here (rA =1, rK =0.1, rM =−0.1). When the helicities
are large(rK → 1, rM → −1), then the helical and nonhelical values become comparable.

2. All the helical contributions are negative forn>m, and positive forn<m. Hence, helical transfers
are from larger wavenumbers to smaller wavenumbers. This is consistent with the inverse cascade of
energy due to helical contributions, as discussed in 8.1.3.

3. We find thatT ubnm−helicalandT bbnm−helical is significant positive values for−50<n−m � 0. This signals
a nonlocalb-to-u andb-to-b inverse energy transfers. Hence, helicity induces nonlocal energy transfer
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Fig. 30. Theoretically calculated values ofhelical contributions to T YXnm /� vs. n − m in helical MHD with
rA = 1, rK = 0.1, rM = −0.1 and�c = 0.

between wavenumber shells. This is in agreement with Pouquet et al.’s result[149] that “residual
helicity” induces growth of large-scale magnetic field by nonlocal interactions.

With this we conclude our discussion on shell-to-shell energy transfer rates in MHD turbulence.

8.3. EDQNM calculation of MHD turbulence

Eddy-damped quasi-normal Markovian (EDQNM) calculation of turbulence is very similar to the
field-theoretic calculation of energy evolution. This scheme was first invented by Orszag[139] for fluid
turbulence. Pouquet et al.[149] were the first to apply EDQNM scheme to MHD turbulence. Grappin et
al. [72,73], Pouquet[147], Ishizawa and Hattori[78] and others have performed further analysis in this
area. In the following discussion we will describe some of the key results.

In 1976 Pouquet et al.[149] constructed a scheme to compute evolution of MHD turbulence. See
Pouquet et al.[149] for details. Here Navier–Stokes or the MHD equations are symbolically written as

(
d

dt
+ �k2

)
X(k, t)=

∑
p+q=k

X(p, t)X(q, t) ,

whereX stands for the fieldsu or b, X(p, t)X(q, t) represents all the nonlinear terms, and� is the
dissipation coefficient(� or �). The evolution of second and third moment would be

(
d

dt
+ 2�k2

)
〈X(k, t)X(−k, t)〉 =

∑
p+q=k

〈X(−k, t)X(p, t)X(q, t)〉
(

d

dt
+ �(k2 + p2 + q2)

)
〈X(−k, t)X(p, t)X(q, t)〉

=
∑

p+q+r+s=0
〈X(q, t)X(p, t)X(r , t)X(s, t)〉 .
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If X were gaussian, third-order moment would vanish. However, quasi-normal approximation gives
nonzero triple correlation; here we replace〈XXXX〉 by its gaussian value, which is a sum of prod-
ucts of second-order moments. Hence,

〈X(−k, t)X(p, t)X(q, t)〉 =
∫ t

0
d� exp

[−�(k2 + p2 + q2)(t − �)
]

×
∑

p+q=k
[〈X(q, �)X(−q, �)〉 〈X(p, �)X(p, �)〉 + · · ·] ,

where. . . refers to other products of second-order moments. The substitution of the above in Eq. (248)
yields a closed-form equation for second-order correlation functions. Orszag[139] discovered that the
solution of the above equation was plagued by problems like negative energy. To cure this problem, a
suitable linear relaxation operator of the triple correlation (denoted by
) was introduced (eddy-damped
approximation). In addition, it was assumed that the characteristic evolution time of〈XX〉 〈XX〉 is larger
than

(

kpq + �(k2 + p2 + q2)

)−1
(Markovian approximation). As a result Pouquet et al. obtained the

following kind of energy evolution equation:

(
d

dt
+ 2�k2

)
〈X(k, t)X(−k, t)〉

=
∫

dp�kpq(t)
∑

p+q=k
[〈X(q, t)X(−q, t)〉〈X(p, t)X(−p, t)〉 + · · ·] , (248)

where

�kpq(t)= (1 − exp[−(
k + 
p + 
q)t])/(
k + 
p + 
q)

with


k = (� + �) k2 + Cs

(∫ k

0
dq
(
Eu(q)+ Eb(q)

)
q2
)1/2

+ 1√
3
k

(
2
∫ k

0
dqEb(q)

)1/2

. (249)

The first, second, and third terms represent viscous and resistive dissipation rate, nonlinear eddy-distortion
rate, and Alfvén effect respectively. Pouquet et al.[149] also wrote the equations for kinetic and mag-
netic helicities, then they evolved the equations for appropriate initial spectra and forcing. Note that
homogeneity and isotropy are assumed in EDQNM analysis too.

The right-hand side of Eq. (248) is very similar to the perturbative expansion ofS(k|p|q) (under
t → ∞). The term
k of Eq. (249) is nothing but the renormalized dissipative parameters. Thus, field-
theoretic techniques for turbulence is quite similar to EDQNM calculation. There is a bit of difference
however. In field theory, we typically compute asymptotic energy fluxes in the inertial range. On the
contrary, energy is numerically evolved in EDQNM calculations.

To obtain insights into the dynamics of turbulence, Pouquet et al.[149] computed the contributions of
local and nonlocal mode interactions. In their convention local meant triads whose largest wavenumber
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is less than double of the smallest wavenumber. In a triad(k, p, q) with k � p � q, a locality parameter
a is defined using inequalitiesk � p/a andq � ap. Also note that Pouquet et al.’s flow is nonAlfvénic
(�c = 0).

The main results of Pouquet et al.’s[149] are as follows:

8.3.1. Pouquet et al. on nonhelical flows (HM =HK = 0)
In these flows an inertial-range develops with a cascade of energy to small scales. To the lowest order,

the energy spectra was−3
2 powerlaw with an equipartition of kinetic and magnetic energy. There was a

slight excess of magnetic energy with spectral index equals to−2.
Pouquet et al. studied the local and nonlocal interactions carefully. Local interactions cause the energy

cascade, but the nonlocal ones lead to an equipartition of kinetic and magnetic energies. They obtained
the following evolution equations for energies:

�tE
K
k |nl = −k�k(EK

k − EM
k ), �tE

M
k |nl = k�k(E

K
k − EM

k ) ,

where�k ∼ (EM)1/2 ∼ CA. Herenl stands for nonlocal effect. The above equations clearly indicate that
kinetic and magnetic energy get equipartitioned.

Note that equipartition of kinetic and magnetic energy is also borne out in our field-theoretic calculation
(based on shell-to-shell energy transfer). However, field-theoretic calculation shows that nonhelical MHD
has predominantly local energy transfer.

8.3.2. Pouquet et al. on helical flows
When kinetic helicity is injected, an inverse cascade of magnetic helicity is obtained leading to the

appearance of magnetic energy and helicity at larger scales. At smaller wavenumbers magnetic helicity
converges to a quasi-stationary spectrum with spectral index of−2. Pouquet et al. derived the following
evolution equations:

�tE
M
k |nl = �R

k k
2HM

k , �tH
M
k |nl = �R

k E
M
k ,

with

�R
k = −4

3

∫ ∞

k/a

�kpq(H
K
q − q2HM

q )dq .

�R is called residual helicity. Pouquet et al. provide the following argument for magnetic energy growth at
smaller wavenumbers. They argue that the inverse-cascade process results from the competition between
helicity and Alfvén effect. The residual helicity in the energy range (sayk ∼ kE) induces a growth of
magnetic energy and helicity at smaller wavenumber, say atk ∼ kE/2, due to helicity effect. However,
growth of helicity nearkE/2 tends to reduce residual helicity due to Alfvén effect. As a combined effect,
the inverse cascade advances further to smaller wavenumbers.

Our field-theoretic calculation predicts inverse magnetic-energy cascade due to helicity. The depen-
dence of growth rate of magnetic energy onHK,M are qualitatively similar, however, there are quantitative
differences (see Eq. (242)). Our field-theory calculation shownonlocalenergy transfer for helical MHD
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similar to those obtained in EDQNM calculations. However, the present field-theoretic calculation cannot
take into account helicities with both signs (e.g., positive at large scale and negative at small scales); this
feature needs further examination.

Brandenburg[22] studied the above process using direct numerical simulation. His results are in
qualitative agreement with the EDQNM calculations.

8.3.3. Grappin et al. on Alfvénic MHD flows
Grappin et al.[72,73] applied EDQNM scheme to Alfvénic MHD (�c �= 0). They claimed that the

spectral exponents deviate strongly from KID’s3
2 exponent for strongly correlated flows (m+ → 3 and

m− → 0). Also refer to Section 4.2.3 for some of the phenomenological arguments of Grappin et al.
Let us compare Grappin et al.’s energy evolution equation (Table 2of [72]) with our field-theoretic

analysis of Alfvénic MHD (see Eq. (221)). Clearly, Grappin et al.’s relaxation time-scale is much more
simplified, and all the terms of expansion are not included. Also, choice of KID’s3

2 powerlaw for energy
spectrum is erroneous. These assumptions lead to inconsistent conclusions, which do not appear to agree
with the numerical results and the solar wind observations.

8.3.4. EDQNM for 2D MHD flows
Pouquet[147] applied EDQNM scheme to 2D MHD turbulence. She found a forward energy cascade

to small scales, but an inverse cascade of squared magnetic potential. She also claimed that small-scale
magnetic field acts like a negative eddy viscosity on large-scale magnetic field.

Ishizawa and Hattori[78] also performed EDQNM calculation on 2D MHD and deduced that the
eddy diffusive parameters�uu <0, �ub >0, and�bu <0 (see Section 7.4.1 for definition). However,�bb is
positive ifEb(p) decays faster thanp−1 for largep, which would be the case for Kolmogorov-like flows.
The above results are consistent with Dar et al.’s[45] numerical findings for 2D MHD. Thus Ishizawa and
Hattori’s[78] and Dar et al.[45] results that�bb >0 are inconsistent with the Pouquet´s above conclusions.

Here we close our discussion on EDQNM and energy fluxes. In the next section we will discuss spectral
properties of anisotropic MHD turbulence.

9. Field theory of anisotropic MHD turbulence

In Section 4 we had a preliminary discussion on anisotropy in MHD turbulence. In this subsection,
we will apply field-theoretic techniques to anisotropic turbulence. The main results in this area are (1)
Galtier et al.’s weak turbulence analysis whereE(k) ∝ k−2, and (2) Goldreich and Sridhar’s theory of
strong turbulence where

E(k⊥, k||) ∼ �2/3k
−10/3
⊥ g(k||/k2/3

⊥ ) .

Here we will describe their work. For consistency and saving space, we have reworked their calculation
in our notation. In fluid turbulence, Carati and Brenig[30] applied renormalization-group method for
anisotropic flows.
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9.1. Galtier et al.’s weak turbulence analysis

We start with Eq. (220). To first order〈S±(k ′|p|q)〉 has many terms (see Eq. (221)). However, we take
〈|z+|2〉 = 〈|z−|2〉 and〈z+(k) · z−(k)〉 = 0, which yields the following two nonzero terms:

〈
S+(k ′|p|q)〉= − I

∫ t

∞
dt ′
∫

dp′dq′

×
[
k′
i(−iMjab(k ′))G++(k′, t − t ′)〈z−i (q, t)z−a (q′, t ′)〉〈z+j (p, t)z+b (p′, t ′)〉

+ k′
i(−iMjab(p))G++(p, t − t ′)∗

×〈z−i (q, t)z−a (q′, t ′)〉〈z+j (k ′, t)z+b (p
′, t ′)〉

]
. (250)

Note thatk ′ = −k, and〈S+(k ′|p|q)〉 = 〈S−(k ′|p|q)〉.
Because of Alfvénic nature of fluctuations, the time dependence of Green’s function and correlation

function will be

G±±(k, t − t ′)= �(t − t ′)exp[±ik · B0(t − t ′)] ,
〈z±i (k, t)z±j (k ′, t ′)〉 = �(t − t ′)C±±

ij (k, t, t)exp[±ik · B0(t − t ′)] .
The anisotropic correlation correlationsC±±

ij (k, t, t) is written as

C±±
ij (k, t, t)= (2�)d�(k + k ′)[Pij (k)C1(k)+ P ′

ij (k
′,n)C2(k)] (251)

with

P ′
ij (k,n)=

(
ni − n · k

k2 ki

)(
nj − n · k

k2 kj

)
. (252)

Heren is the unit vector along the mean magnetic field.Alongt1 andt2 of Fig. 1, the correlation functions
areC11 = C1(k) + C2(k)sin2 � andC22 = C1(k) respectively. These functions are also called poloidal
and toroidal correlations respectively, and they correspond to Galtier et al.’s functions� and�. The
substitutions of the above expressions in Eq. (250) yields〈S+(k ′|p|q)〉 in terms ofC1,2(k).

The dt ′ integral of Eq. (250) is∫ t

−∞
dt ′�(t − t ′)exp[i(−k + p− q) · B0(t − t ′)] = 1 − exp i(−q||B0 + iε)t

i(−2q||B0 + iε)

= iPr
1

2q||B0
+ ��(2q||B0) , (253)

wherePr stand for principal value, andε>0. In the above calculation we have takent → ∞ limit. Note
that the above integral makes sense only whenε is nonzero. When dt ′ integral is substituted in Eq. (250),
〈S+(k ′|p|q)〉 will be nonzero through��(2q||B0) of Eq. (253). The term�(q||) in 〈S+(k ′|p|q)〉 indicates
that the energy transfer in weak MHD takes place in a plane formed byp⊥ andk⊥, as seen inFig. 7.
Energy transfer across the planes are not allowed in weak MHD turbulence.

Galtier et al.[63] correct KID phenomenological model, and Sridhar and Goldreich’s argument
discussed in Section 4. The dt ′ integral provides inverse of the effective time-scale for the nonlinear
interaction. KID’s model assumes it to be(kB0)

−1, differing from the corrected expression�(q||B0) of



M.K. Verma / Physics Reports 401 (2004) 229–380 335

Galtier et al. If we wrongly setε to zero in Eq. (253), the dt ′ integral will be zero, and from Eq. (250)
〈S+(k ′|p|q)〉 will become zero; this was the basic argument of Sridhar and Goldreich’s[165]claim that the
triad interaction is absent in weak MHD turbulence. Galtier et al.[63] modified Sridhar and Goldreich’s
argument by correctly performing the dt ′ integral.

Galtier et al.[63] also observed that since the energy transfer is in a plane perpendicular to the mean
magnetic field, the perpendicular components of interacting wavenumbers are much larger than their
corresponding parallel component. Geometrically, the wavenumber space is pancake-like with a spread
alongk⊥ (k||/k⊥ → 0). This simplifies Eq. (252) to

P ′
ij (n, k)= ninj ,

and yields

〈S+(k ′|p|q)〉 = ��(q||)
2B0

k2⊥(1 − y2)[1 + z2 + C2(p)/C1(q)]C1(q)[C1(p⊥)− C1(k⊥)] . (254)

Now we substitute the above expression in Eq. (220) and obtain the following expression for the flux:

� ∼
∫

dk
∫

dq
��(q||)
2B0

k2⊥(1 − y2)[1 + z2 + C2(p)/C1(q)]C1(q)[C1(p)− C1(k)]

= k||
{∫

dk⊥
∫

dq⊥dq||
��(q||)
2B0

k2⊥(1−y2)[1+z2+C2(p)/C1(q)]C1(q)[C1(p)−C1(k)]
}
.

The above energy transfer process has cylindrical symmetry, and the term within the curly bracket
represents the energy flux passing through circles in the perpendicular planes (seeFig. 7). Under steady
state, the energy flux passing through any circle should be independent of its radius. This immediately
implies that

� ∼ k||k6⊥C2
1(k)/B0 .

The correlation functionsC1,2(k) is essentially cylindrical, henceC1,2(k⊥, k||) = E1,2(k⊥)/(2�k⊥k||).
Therefore,

E1,2(k⊥) ∼ (�B0)
1/2k

1/2
|| k−2

⊥ . (255)

This was how Galtier et al.[63] obtained thek−2
⊥ energy spectrum for weak turbulence. The above

derivation differs from Galtier et al. on one count. Here we have used constancy of flux rather than
applying Zakharov transform. Both these conditions ensure steady-state turbulence.

Now let us look at the dynamical equation once more. In one Alfvén time-scale, the fractional change
in zk⊥ induced by collision is[69]

� ∼ �zk⊥
zk⊥

∼ k⊥zk⊥
k||B0

. (256)

When� is small (or�zk⊥ is small), we have weak turbulence theory. However, when�zk⊥ � zk⊥(� � 1),
the fluctuations become important; this is called strong turbulence limit, which will be discussed in the
next subsection.
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9.2. Goldreich and Sridhar’s theory for strong anisotropic MHD turbulence

Goldreich and Sridhar (GS)[69] have studied MHD turbulence under strong turbulence limit. From
Eq. (255) we can derive thatzk⊥ ∼ k

−1/2
⊥ . Therefore, according to GS theory,� will become order 1 for

large enoughk⊥. However, when the energy cascades to higherk⊥ (�?1), k|| also tends to increase from
its initial small value ofL−1 because of a “nonlinear renormalization of frequencies”[69]. Hence, the
parameter� approaches unity from both sides withk⊥zk⊥ ∼ k||B0; this was termed as “critical balanced
state”.

For strong turbulence, Goldreich and Sridhar[69] included a damping term with the following eddy
damping rate:

�(k)= �0k
2⊥[k||E(k, t)]1/2 ,

where�0 is a dimensionless constant of order unity. Then they attempted the following anisotropic energy
spectrum for the kinetic equation

C(k)= Ak
−(
+�)
⊥ f (k||/�k�

⊥) .

Here we state Goldreich and Sridhar’s result[69] in terms of energy flux,

�(k0) ∼
∫

dk ′
∫

dpI
[
(−i)k2⊥ti(v, w)C(q)(C(p)− C(k))

1

−i(k)+ �(k)

]

∼
∫ ∫

dk⊥dk||dp⊥dp||k3⊥p⊥C(q)(C(p)− C(k))
1



(�(k)/(k))

1 + (�(k)/(k))2
. (257)

Since ∼ k||B0, the constraint that�(k)/(k) is dimensionless yields

� = 2 − 
/2 . (258)

Now constraint that�(k0) is independent ofk0 provides

6 − 3� − 2
 = 0 . (259)

The solution of Eqs. (258, 259) is


 = 8

3
, � = 2

3
.

Therefore,

C(k) ∼ �2/3k
−10/3
⊥ L−1/3f

(
k||L1/3

k
2/3
⊥

)
.

HereL is the large length scale. The factors involving� and L have been deduced dimensionally. Note
that the exponent10

3 appears because ofk−5/3
⊥ /(k⊥k||).

The damping term�(k) has been postulated in GS model. Verma[179] attempted to deduce a similar
term using RG procedure in “random mean magnetic field” (see Section 7.3). Extension ofVerma’s model
to anisotropic situation will shed important insights into the dynamics. The “critical balanced state” in the
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inertial range is based on phenomenological arguments; it will be useful to have analytic understanding
of this argument.

Let us contrast the above conclusions with the earlier results of Kraichnan[85] and Iroshnikov[77]
where effective time-scale is determined by the mean magnetic fieldB0, and the energy spectrum isk−3/2.
Kraichnan’s and Iroshnikov’s phenomenology is weak turbulence theory under isotropic situations. This
is contradictory because strong mean magnetic field will create anisotropy. This is why3

2 theory is
inapplicable to MHD turbulence.

There are many numerical simulations connected to anisotropy in MHD turbulence. Matthaeus et al.
[115] showed that anisotropy scales linearly with the ratio of fluctuating to total magnetic field strength
(b/B0), and reaches the maximum value forb/B0 ≈ 1. Hence, the turbulence will appear almost isotropic
when the fluctuations become of the order of the mean magnetic field. In another development, Cho et
al. [35,37] found that the anisotropy of eddies depended on their size: Along the “local” magnetic field
lines, the smaller eddies are more elongated than the larger ones, a result consistent with the theoretical
predictions of Goldreich and Sridhar[69,165].

After studying anisotropic turbulence, we move on to the problem of generation of magnetic field in
MHD turbulence.

10. Magnetic field growth in MHD turbulence

Scientists have been puzzled by the existence of magnetic field in the Sun, Earth, galaxies, and other
astrophysical objects. It is believed that any cosmic body that is fluid and rotating possess a magnetic
field. It is also known that the cosmic magnetic field is neither due to some permanent magnet, not due to
any remnants of the past. Scientists believe that the generation of magnetic field is due to the motion of
the electrically conducting fluid within these bodies such that the flow generated by the inductive action
generates just those current required to provide the same magnetic field. This is a positive feedback or
“bootstrap” effect (until some sort of saturation occurs), technically known as “dynamo” mechanism.
Larmer[97] was the first scientist to suggest this mechanism in 1919.

A quantitative implementation of the above idea is very hard and still unsolved because of the nonlinear
and dynamic interactions between many scales. There are many important results in this challenging area,
but all of them cannot be discussed here due to lack of space. In this paper we will focus on some of
the recent results on dynamic dynamo theory. For detailed discussion, refer to books by Moffatt[125],
Krause and Rädler[91], and recent review article by Gilbert[67], and Brandenburg and Subramanian
[25]. The statements of some of the main results in this area are listed below.

1. Larmer (1919)[97]: He was first to suggest that the self-generation of magnetic field in cosmic bodies
may be possible by bootstrap mechanism: magnetic field driving currents, and then currents driving
the magnetic field.

2. Cowling (1934)[42]: The above idea of Larmer was shaken by Cowling who showed that steady
axisymmetric magnetic field could not be maintained by axisymmetric motions. The above statement
is called “anti-dynamo” theorem. It has been shown that dynamo action is absent in 2D flows and
other geometries as well. Therefore, for dynamo action, the field and flow have to be sufficiently
complicated, breaking certain symmetries.
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3. Elsässer (1946)[50]: He considered conducting fluid within a rigid spherical boundary with a
non-axisymmetric velocity field. He emphasized the importance of differential rotation and non-
axisymmetric motion for dynamo action.

4. Parker (1955)[143]: He showed that in the Sun, buoyantly rising or descending fluid will generate
a helical flow under the influence of Coriolis force. Helicity and differential rotation in a star can
produce both toroidal and poloidal magnetic field.

5. Steenbeck et al. (1966)[167], Braginskii (1964)[20,21]: They separated the fields into two part,
the mean and the turbulent, using scale separation. The evolution of the mean magnetic field was
expressed in terms of mean EMF obtained by averaging the turbulent fields. In this model, known
askinematic dynamo, the random velocity field generates magnetic field, but the “back-reaction”
of the magnetic field on the velocity field was ignored. Here the growth rate of magnetic field is
characterized by a parameter called “alpha” parameter, which is found to be proportional to kinetic
helicity. See Section 10.1.1.

6. Pouquet et al. (1976)[149]: They solved full MHD equations using EDQNM approximation, hence
keeping the effect of back-reaction of the magnetic field on the velocity field. Thus, their model is
dynamic. Pouquet et al. found that the growth of the magnetic field is induced by “residual helicity”,
which is the difference of kinetic helicity and magnetic helicity.

7. Kulsrud andAnderson (1992)[94]: They solved the equation for energy spectrum when kinetic energy
dominates the magnetic energy (kinematic dynamo). They claimed that the small-scale magnetic
energy grows very fast, and get dissipated by Joule heating. This process prevents the growth of
large-scale magnetic field.

8. Chou[40] and recent numerical simulations (∼ 2000): Chow[40] and others have performed direct
numerical simulations of dynamo-like situations, and studied the growth of magnetic field. For small-
scale seed magnetic field, the numerical results are in agreement with those of Kulsrud and Anderson
in early phase, but differ widely at later times. For large-scale seed magnetic field, the magnetic
energy grows with the time-scale of the largest eddy.

9. Brandenburg (2001)[22]: Brandenburg investigated the role of magnetic and kinetic helicity in
dynamo mechanism. He found a buildup of negative magnetic helicity and magnetic energy at large
scales. He has also studied the fluxes of these quantities.

10. Recent theoretical development (∼ 2000): Field et al.[53], Chou[39], Schekochihin et al.[158] and
Blackman[19] have constructed theoretical models of dynamics dynamo, and studied their nonlinear
evolution and saturation mechanisms.Verma[183]used energy fluxes in nonhelical and helical MHD
to construct a dynamic model.

The items (6,8,9,10) are based on dynamic models.
In dynamo research, there are calculations of magnetic field growth in specific geometry of interest,

e.g., solving MHD equations in a spherical shell to mimic solar dynamo. In addition there are papers
addressing fundamental issues (e.g., role of helicity), which are applicable to all geometries. Most of the
calculations of the later type assume turbulence to be homogeneous and isotropic, and use turbulence
models for predictions. This line of thinking is valid at intermediate scales of the system, and expected
to provide insights into the dynamics of dynamo. In this paper we will focus on calculations of the
later type.

We divide our discussion in this section on two major parts: Kinematic dynamo, and Dynamic
dynamo.
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10.1. Kinematic dynamo

In MHD velocity and magnetic field affect each other. The early models of dynamo simplified the
dynamics by assuming that a fully developed turbulent velocity field amplifies a weak magnetic field,
and the weak magnetic field does not back-react to modify the velocity field. This assumption is called
kinematic approximation, and the dynamo is calledkinematic dynamo. In this subsection, we discuss
kinematic dynamo models of Steenbeck et al.[167]and Kulsrud andAnderson’s[94]. Note that kinematic
approximation breaks down when the magnetic field has grown to sufficiently large value.

10.1.1. Steenbeck et al.’s model for�-effect
Steenbeck et al.[167] separated the magnetic field into two parts:B̄ on large scaleL, andb at small

scalel (B= B̄+ b), and assumed thatl>L. They provided a formula for the growth rate ofB̄ under the
influence of homogeneous and isotropic random velocity field.

Steenbeck et al. averaged the fields over scales intermediate betweenL andl; the averages are denoted
by 〈.〉. Now the induction equation can be separated into a mean and a fluctuating part,

�B̄
�t

=%× �̄ + �%2B̄, (260)

�b
�t

= ∇ × (u× B̄)+ ∇ × (u× b− 〈u× b〉)+ �∇2b , (261)

where the mean electromotive force (EMF)�̄ is given by

�̄ = 〈u× b〉 .

Steenbeck et al. assumedb to be small, hence neglected the second term of Eq. (261). Eq. (261) is linear,
with a source term proportional tōB. For a given random velocity field,b is linear inB̄. Therefore, the
mean EMF will also be linear in̄B, and is written in the form

�̄i = �ij B̄j + �ijk�kB̄j .

Here�ij and�ijk are pseudo-tensors. For homogeneous, isotropic, and randomu(x, t) field varying with
time scale�, it can be shown that[125]

� = −1

3
� 〈u · ∇ × u〉 , � = 1

3
�〈|u|2〉 .

See Moffatt[125], Krause and Rädler[91], and Gilbert[67] for the growth rate as a function of� and�.
This model has been used to study the evolution of large-scale magnetic field in the Sun and other cosmic
bodies (see Gilbert[67] for details).

In this kinematic dynamo theory, the magnetic field does not react back to affect the velocity field. In
reality, however, when the magnetic field has grown to some level, it affects the velocity field by Lorentz
force. Therefore, alpha is modified to

� = �0
1

1 + c|B̄|2/B2
eq

,

whereBeq is the saturation value of the magnetic field, andc is a constant.
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Kulsrud andAnderson[94] studied the evolution of energy spectrum ofb under the influence of random
velocity field using analytical technique. We will describe their results in the next subsection.

10.1.2. Kulsrud and Anderson’s model for the evolution of magnetic energy spectrum
The equations for magnetic energy spectrum were derived in Section 3.7 as(

�

�t
+ 2�k2

)
Cbb(k, t)= 2

(d − 1)�(k + k ′)

∫
k ′+p+q=0

dp

(2�)2d

[
Sbu(k ′|p|q)+ Sbb(k ′|p|q)

]
.

In Section 8 we computed〈SYX(k, p, q)〉 using field-theory technique. Substitution ofS’s in the above
yields an equation of the following form:(

�

�t
+ 2�k2

)
Cbb (k, t)= Const

∫
dt ′
∫

dp[T (k, p, q)Gbb(k, t − t ′)Cbb(p, t, t ′)Cuu(q, t, t ′)

+ T (k, p, q)Guu(k, t − t ′)Cbb(p, t, t ′)Cbb(q, t, t ′)] . (262)

Kulsrud and Anderson (KA)[94] made the following assumptions to simplify the above equation:

1. The second term of Eq. (262) was dropped becauseCbb(q)>Cuu(q).
2. The velocity field was assumed to uncorrelated in time, i.e.,

〈ui(k, t)uj (k ′, t ′)〉 =
[
Pij (k)Cuu(k)− iεij lkl

HK(k)

k2

]
�(k + k ′)�(t − t ′) .

3. q>k, so that the integral of Eq. (262) could be performed analytically. Note that this is an assumption
of nonlocality and scale separation.

Under the above assumptions, KA could reduce the Eq. (262) to

�Eb(k, t)

�t
=
∫
Km(k, p)E

b(p, t)dp − 2k2 �T
4�
Eb(k, t)− 2k2 �

4�
Eb(k, t) , (263)

where

Km(k, p) ∼ k4
∫

d� sin3 �(k2 + p2 − kp cos�)
Cuu(q)

q2

�T
4�

∼ −
∫

dqHK(q)

with q = (k2 + p2 − 2kp cos�)1/2.
Using the definition that the total magnetic energyEb = ∫ Eb(k)dk, KA deduced that

�Eb(t)

�t
= 2�Eb(t) ,

where

� ∼ −
∫

dqHK(q) .
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By assumingq>k, KA expandedp neark, and obtained (by integrating by parts)

�Eb(k, t)

�t
= �

5

(
k2 �Eb(k)

�k2 − 2
�Eb(k)

�k
+ 6Eb(k)

)
− 2k2 �

4�
Eb(k, t) .

From the above equation KA deduced that

Eb(k) ∼ k3/2f (k/kR)exp[(3/4)�t]
for k much less than the resistive wavenumberkR ≈ (4��/�)1/2. The fluctuating magnetic energy will
flow to small scales, and then tokR, and get dissipated by Joule heating. Thus, according to KA, magnetic
energy at large length scale does not build up.

Chou [40] performed numerical simulation to test KA’s predictions. He finds that in early phase,
E(k) ∝ k3/2, and that energy grows exponentially in time, thus verifying KA’s model prediction as
described above. However, at later phase of evolution, the magnetic field back-reacts on the velocity field.
Consequently, the energy growth saturates, and the energy spectrum also evolves differently fromk3/2.
Clearly these discrepancies are due to the kinematic approximation made by KA.

10.2. Dynamic dynamo

The kinematic approximation described above breaks down when the magnetic field becomes compa-
rable to the velocity field. Indynamic dynamosthe back-reaction of the magnetic field on the velocity
field is accounted for. There are several analytic theories in this area, but the final word is still awaited.
Researchers are trying to understand these types of dynamo using direct numerical simulations. Here we
will present some of the main results.

10.2.1. Pouquet et al.’s EDQNM calculation
Pouquet et al.[149]solved the MHD equations with large-scale forcing under EDQNM approximation.

For details, refer to Section 8.3. Pouquet et al. observed thatfor nonhelical flows, the magnetic energy
first grows at the highest wavenumbers, where equipartition is obtained. After that the magnetic energy
at smaller wavenumbers start to grow.

Pouquet et al. analyzed the helical flows by forcing kinetic energy and helicity at forcing wavenumber.
They find that the magnetic helicity has an inverse cascade, and negative magnetic helicity and magnetic
energy grow at wavenumbers smaller than the forcing wavenumber.

Pouquet et al. estimated the contributions of helicities to the growth of magnetic energy, and concluded
that

� ≈ �u + �b = 1

3
� [−u ·  + b · (∇ × b)] , (264)

where� is a typical coherence time of the small-scale magnetic energy. The second term of the above
equation is due to the back-reaction of magnetic field.

10.2.2. Direct numerical simulation
Chou[40] performed direct numerical simulation of 3D incompressible MHD turbulence using pseudo-

spectral method (see Section 6), and analyzed the growth of (a) initial weak, large-scale seed magnetic
field, and (b) initial weak, small-scale seed magnetic field. In both the cases the magnetic energy grows at
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Fig. 31. Evolution of kinetic energy (Eu) and magnetic energy(Eb) for initial weak, large-scale seed magnetic field. Initially
Eb grows ast2, then exponentially, after which it saturates. Adopted from Chou[40].

all scales. For the initial condition of type (a), the magnetic energy grows ast2 for the first few turbulence
eddy turnover times, followed by an exponential growth, in which the growth time-scale is approximately
the large-scale eddy turnover time. After sometime the magnetic field saturates (seeFig. 31). For the
initial condition of type (b), initial growth of magnetic energy is determined by the eddy turnover time of
the smallest scale of turbulence, as predicted by KA, and then by the eddy turnover time of inertial range
modes (seeFig. 32); finally the growth saturates.

When the initial seed magnetic energy is at narrow bandwidth of large wavenumbers, the magnetic
energy quickly gets spread out, extending to both larger and smaller wavenumbers. The evolution of
energy spectrum is shown inFig. 33. In the early phase, the magnetic energy spectrum is proportional to
k3/2, confirming KA’s predictions. However, at a later time, the energy spectrum is very different, which
is due to the dynamic aspect of dynamo.

Recently Cho and Vishniac (CV)[38] performed numerical simulation of nonhelical MHD turbulence
and arrived at the following conclusion based on their numerical results. In our language, their results for
largerA can be rephrased as (1)�u<

u> ≈ U3; (2) �u<
(b<+b>) ≈ UB2; (3) �u<

b< ≈ (U − cB)B2, whereU
andB are the large-scale velocity and magnetic field respectively, andc is a constant. These results are
somewhat consistent with the field-theoretic flux calculations of Verma[184].

10.2.3. Brandenburg’s calculations
Brandenburg[22] performed direct numerical simulation of compressible MHD (Mach number

around 0.1–0.3) on maximum grid of 1283. He applied kinetic energy and kinetic helicity forcing in the
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Ebexponentially, then it saturates. Adopted from Chou[40].

wavenumber band(4.5,5.5). He obtained many interesting results, some of which are given below.

1. Magnetic helicity grows at small wavenumbers, but it has a negative sign. Brandenburg explains this
phenomena by invoking conservation of magnetic helicity. For a closed or periodic system the net
magnetic helicity is conserved, except for dissipation at small scales. Thus, for magnetic helicity to
be conserved, it must have equal amount of positive and negative helicity. The helicity at small scales
will get destroyed by dissipation, while magnetic helicity at large scales will survive with negative
sign.

2. Brandenburg computed the magnetic-helicity flux and found that to be positive. Note that injection of
kinetic helicity induces a flux of magnetic helicity (see Eq. (243)).

3. Brandenburg argued that most of the energy input to the large-scale field is from scales near the forcing.
He claimed the above process to be alpha effect, not an inverse cascade (local). Now the built-up energy
at large-scales cascades to neighboring scales by forward cascade (k3/2 region). Once the large-scale
fields have grown, Kolmogorov’s direct cascade will take place. Above observations are illustrated in
Fig. 34.

Brandenburg has done further work on open boundaries, and applied these ideas to solar dynamo. For
details, refer to review paper by Brandenburg[24].

Verma[183,184]has computed energy fluxes and shell-to-shell energy transfers in MHD turbulence
using field-theoretic calculations. Below we show how Verma’s results are consistent with Brandenburg’s
results.
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10.2.4. Dynamo using energy fluxes
In Section 8 we discussed various energy fluxes and shell-to-shell energy transfer in MHD turbulence.

Here we will apply those ideas to estimate the growth rate of magnetic energy. These calculations are
based on homogeneous and isotropic turbulence, so the predictions made here are probably valid for
galactic dynamo, or at small scales in solar and planetary dynamo.

Verma has calculated energy flux for both nonhelical and helical MHD. It has been shown in Section
10.1.1 that whenEu(k)>Eb(k), kinetic energy gets transferred to magnetic energy, hence turbulence
is not steady. Now we compute the energy transfer rate to the large-scale magnetic field. In absence of
helicity, the source of energy for the large-scale magnetic field is�u<

b<. When helicity is present, the fluxes
�b>
b<helical+ �u>

b<helical provide additional energy to the large-scale magnetic field (see Section 8). Hence,
the growth rate of magnetic energy is

dEb(t)

dt
= �u<

b< + �b>
b<helical + �u>

b<helical . (265)

Since there is no external forcing for large-scale magnetic field, we assume

�u<
b< ≈ �b<

b> + �b<
u> .

In typical astrophysical situations, magnetic and kinetic helicities are typically small, with negative
magnetic helicity and positive kinetic helicity. For this combination of helicities, both the helical fluxes
are negative, thus become a source of energy for the growth for large-scale magnetic field.

Since the magnetic energy starts with a small value (largerA limit), all the fluxes appearing in Eq.
(265) are proportional tor−1

A [cf. Eqs. (233, 234)], i.e.,

�u<
b< + �b>

b<helical + �u>
b<helical = c�

Eb

Eu
, (266)

whereEu is the large-scale kinetic energy,� is the kinetic energy flux, andc is the constant of order 1.
Hence,

1

�

dEb

dt
≈ Eb

Eu
. (267)

UsingEu =Ku�2/3L2/3, whereL is the large length-scale of the system, we obtain

1√
EuEb

dEb

dt
≈ 1

L(Ku)3/2
. (268)

We assume thatEu does not change appreciably in the early phase. Therefore,

Eb(t) ≈ Eb(0)exp

( √
Eu

L(Ku)3/2
t

)
. (269)

Hence, the magnetic energy grows exponentially in the early periods, and the time-scale of growth is of
the order ofL(Ku)3/2/

√
Eu, which is the large-scale eddy turnover time.
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In Section 8.1.3 we derived the following expression (Eq. (243)) for the flux of magnetic helicity:

�HM (k0)= 1

k0
(−drM + erK) , (270)

whererK = HK(k)/(kE
u(k)), rM = kHM(k)/E

b(k), andd ande are positive constants. When kinetic
helicity is forced(rK >0) at forcing wavenumber, magnetic helicity flux will be positive. But the total
magnetic helicity is conserved, so positiveHM will flow to larger wavenumber, and negativeHM will flow
to smaller wavenumber. The negativeHM (rK <0) will further enhance the positive magnetic helicity
flux, further increasing negativeHM at lower wavenumbers. The above observation explains the numerical
findings of Brandenburg[22] discussed above.

The negative magnetic helicity described above contributes to the growth of magnetic energy. Note
that for small wavenumberHM andHK have opposite sign, and according to formula (242) derived in
Section 8.1.3

dEb

dt
= ar2

M − brMrK , (271)

(a andb are positive constants) magnetic energy will grow. This result is consistent with the numerical
simulation of Brandenburg[22] and EDQNM calculation of Pouquet et al.[149]. It is important to contrast
the above equation with the growth equation of Pouquet et al.[149]) (cf. Eq. (264)), and test which of the
two better describes the dynamo. The direct numerical simulation of Pouquet and Patterson[151] indicate
thatHM helps the growth of magnetic energy considerably, but that is not the case withHK alone. This
numerical result is somewhat inconsistent with results of Pouquet et al. and others[149] (Eq. (264)), but
it fits better our formula (271) (dEb/dt = 0 if rM = 0). Hence, formula (271) probably is a better model
for the dynamically consistent dynamo. We need more careful numerical tests and analytic investigations
to settle these issues.

In Section 8 we studied the shell-to-shell energy transfer in MHD turbulence assuming powerlaw
energy spectrum for all of wavenumber space. Since magnetic helicity changes sign, and its spectrum
does not follow a powerlaw, the above assumption is not realistic. However, some of the shell-to-shell
energy transfer results are in tune with Brandenburg’s numerical results. For example, we found that
helicity induces energy transfers across distant wavenumber shells, in the same lines as�-effect. More
detailed analytic calculation of shell-to-shell energy transfer is required to better understand dynamo
mechanism.

10.2.5. Theoretical dynamic models
Field et al.[53] and Chou[39] constructed a theoretical dynamical model of dynamo. They use scale

separation and perturbative techniques to compute the effects of back-reaction of magnetic field on
�. Schekochihin et al.[158] and Blackman[19] discussed various models of nonlinear evolution and
saturation for both small- and large-scale dynamo. Basu[5] has applied field-theoretic methods to compute
�. For details refer to the original papers and review by Brandenburg and Subramanian[25].

In summary, dynamo theory has come a long way. Early calculations assumed kinematic approxima-
tions. For last 15 years, there have been attempts to construct dynamic dynamo models, both numerically
and theoretically. Role of magnetic and kinetic helicity is becoming clearer. Yet, we are far away from
fully consistent dynamo theory.
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11. Intermittency in MHD turbulence

The famous Kolmogorov’s turbulence model assumes a constant energy flux or dissipation rate at all
scales, i.e.,�(k) ∼ ∫

dk�(k)k2E(k) is independent ofk. The renormalized viscosity�(k) ∼ k−4/3 and
E(k) ∼ k−5/3 are consistent with the above assumption. Landau[96] pointed out that the dissipation rate,
which is proportional to the square of vorticity, is singular and quite inhomogeneous. Thus Kolmogorov’s
theory of turbulence needs modification. The above phenomena in which strong dissipation is localized
both in time and space is called intermittency.

11.1. Quantitative measures of intermittency

There are several quantitative measures of intermittency. Consider the increment of the velocity, or
some other field, between two points separated byl,

�u(x, l)= u(x + l)− u(x) .

The longitudinal component of�u(x, l) will be given by

�u||(l)= �u(x, l).l/l ,

and the transverse component is�u⊥(l)= �u(x, l)− �u||(l)l/l. Here we have assumed homogeneity and
isotropy for turbulence, so that the increment in velocities depend only onl, not onx. Now we define
longitudinal and transverse structure functions using

S(n)(l)= 〈[�u||(l)]n〉, U(n)(l)= 〈[�u⊥(l)]n〉 ,
respectively. The structure functionS(n)(l) is expected to have a power-law behavior forl in the inertial
range,

S(n)(l)= anl
�n , (272)

where�n is a universal number called the intermittency exponent.
Moments and probability density function (pdf) are equivalent description of random variables. Note

that if P(�u||(l)) were gaussian, i.e.,

P(�u||(l))= 1

�r
√

�
exp−(�u||(l))2

�2
r

then, it is easy to verify that

〈(�u||(l))n〉 ∝ �nr .

Kolmogorov’s model of turbulence predicts that

�r ∼ ε1/3l1/3 .

For constantε, we obtain

S(n)(l) ∝ εn/3ln/3 .
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Systems with gaussian probability distribution or equivalentlyS(n)(l) ∝ lcn (c = constant) are called
nonintermittent system. For intermittent systems, the tails of pdf decays slower that gaussian, and could
follow a powerlaw.

Structure function can be written in terms of local dissipation rate[138]

�ul ∼ ε
1/3
l l1/3 .

Kolmogorov[83] introduced therefined similarity hypothesisrelating structure function toεl as

S
(n)
|| (l)= dn〈εn/3l 〉ln/3 .

If

〈εnl 〉 ∼ l
n ,

then

�n = n

3
+ 
n/3 .

Many researchers have attempted to modelεl .
In any numerical simulation or experiment, the power-law range is quite limited. However, when

we plotS(n)(l) vs. S(3)(l), we obtain a much larger scaling range. This phenomena is called extended
self-similarity (ESS). Since,S(3)(l) ∝ l [82], �n measured using Eq. (272) or ESS are expected to
be the same.

There have been some ingenious attempts to theoretically compute the intermittency exponents (e.g.,
see series of papers by L’vov and Procaccia[106]). Yet, this problem is unsolved. There are several
phenomenological models. Even here, phenomenological models have been better developed for fluid
turbulence than MHD turbulence. We will describe some of them in the following discussion, first for
fluids and then for MHD turbulence.

11.2. Results on intermittency in fluid turbulence

In fluid turbulence, the pdf of velocity increment deviates from gaussian[61]. In experiments and
simulations one finds that�n vs.n is a nonlinear function ofn. Hence, fluid turbulence shows intermittency.
Note that�2 ≈ 0.71, which yields a correction of approximately 0.04 to Kolmogorov’s spectral index of
5
3. However, the correction for largen is much more. See Frisch[61] for further details.

Remarkably, starting from Navier–Stokes equation, Kolmogorov[82] obtained an exact relation

S
(3)
|| (l)= −4

5
εl

under� → 0 limit (also see[61,96]). Note thatε is the mean dissipation rate. Unfortunately, similar
relationship could not be derived for other structure functions. In the following discussion we will discuss
some of the prominent intermittency models for fluid turbulence.
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Fig. 35. Plots of�n vs.n for various intermittency models in fluids and MHD. She-Leveque’s log-Poisson model fits best with
the experimental data in both fluid and MHD. For MHD turbulence, Kolmogorov-like models are in better agreement than KID’s
like model.

11.2.1. Kolmogorov’s log-normal model
Obukhov[138] and Kolmogorov[83] claimed that the dissipation rate in turbulent fluid is log-normal.

As a consequence,

�n = n

3
− 


n(n− 3)

18
,

where

〈ε(x)ε(x + l)〉 ∼ l−
 .

Numerical simulations and experiments give
 ≈ 0.2.
The predictions of this model agree well with the experimental results up ton ≈ 10, but fails for higher

values ofn. In Fig. 35we have plotted the above�n along with other model predictions given below.

11.2.2. The�-model
Novikov and Stewart[137] and Frisch et al.[60] proposed that smaller scales in turbulent fluid is less

space filling. In each step of the cascade an eddy�un of scaleln splits into 2D� eddies of scaleln+1= ln/2,
whereD is the space dimensionality, and� is a fixed parameter with 0< � � 1. In this model

�n = n

3
− �

3
(n− 3) ,

where� = 2−�.
Note that�n is linear inn, and it does not match with experimental and numerical data for largen

(seeFig. 35).
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11.2.3. The multifractal models
Parisi and Frisch[142] developed a multifractal model of turbulence. Maneveau and Sreenivasan[107]

constructed an intuitive model. Here the energy cascade rateεl is not distributed equally into smaller
eddies, say, in each cascade it gets divided intopεl and(1 − p)εl . After several cascades, one finds that
energy distribution is very skewed or intermittent. The intermittency exponent in this model is

�n =
(n

3
− 1
)
Dn + 1 ,

with

Dn = log2(p
n + (1 − p)n)1/(1−n) .

Forp near 0.7,�n fits quite well with the experimental data. The deficiency of this model is that it requires
an adjustable parameterp. For more detailed discussion, refer to Stolovitzky and Sreenivasan[164].

11.2.4. The log-Poisson model
She and Leveque[159] proposed a model involving a hierarchy of fluctuating structures associated

with the vortex filament. In their model

�n = n

3
(1 − x)+ C0(1 − �n/3) , (273)

whereC0 is co-dimension of the dissipative eddies, andx and� are parameters connected by

C0 = x

1 − �
(274)

(see Biskamp[14] for details; also see Politano and Pouquet[144]). For Kolmogorov scaling,x = � = 2
3.

In hydrodynamic turbulence, the dissipative eddies are vortex filaments, i.e., 1D structures. Therefore,
the co-dimension isC0 = 2. Hence, for fluid turbulence

�SL
n = n

9
+ 2

[
1 −

(
2

3

)n/3]
. (275)

The above prediction fits remarkably well with experimental results. All the above functions have been
plotted inFig. 35for comparison.

After the above introductory discussion on intermittency in fluid turbulence, we move on to intermit-
tency in MHD turbulence.

11.3. Results on intermittency in MHD turbulence

In MHD turbulence, the pdf of increment of velocity, magnetic, and Elsässer variables are all nongaus-
sian. The�n vs. n is a nonlinear function ofn, hence MHD turbulence also exhibits intermittency. The
theoretical and phenomenological understanding of intermittency in MHD turbulence is more uncertain
than that in fluid turbulence because the nature of energy dissipation rates in MHD turbulence is still quite
obscure.
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Following the similar lines as Kolmogorov[82], Politano and Pouquet[145] derived an exact relation-
ship:

〈�z∓|| �z±i �z±i 〉 = −4

3
ε±l .

This result is consistent with Kolmogorov-like model (Eq. (105)) that

�z±l ∼ (ε±)2/3(ε∓)−1/3l1/3 .

There are more than one set of exponents in MHD because of presence of more number of variables.
Forz± variables we have

S±
n (l)= 〈|�z±l |n| ∼ l�

±
n .

In the following, we will discuss log-Poisson model and numerical results on intermittency in MHD
turbulence.

11.3.1. The log-Poisson model
Politano and Pouquet[144] extended She and Leveque’s formula (273) to MHD turbulence. They

argued that smallest eddies in fully developed MHD turbulence are micro-current sheets, hence the
codimension will beC0 = 1. Kolmogorov’s scaling yieldsx = 2

3 and� = 1
3. Therefore

�MHD
n = n

9
+ 1 −

(
1

3

)n/3
.

If KID’s scaling were to hold for MHD, thenx = 1
2 and� = 1

2. Consequently,

�KID
n = −n

2
+ 1 −

(
1

2

)n/3
.

For details refer to Biskamp[14]. Now we compare these predictions with the numerical results.

11.3.2. Numerical results
Biskamp and Müller[15] have computed the exponents�±

n for 3D MHD, and they are shown in
Fig. 36. In the same plot,�MHD

n and�KID
n have also been plotted. Clearly,�MHD

n agrees very well with 3D
MHD numerical data. This again shows that Kolmogorov-like phenomenology models the dynamics of
MHD turbulence better that KID’s phenomenology. InFig. 36She–Leveque’s predictions for fluid (solid
line) and KID’s model (dotted line) are also shown for reference. Two-dimensional MHD appears to be
more intermittent than 3D MHD. A point to note that the plots ofFigs. 35, 36are for small cross helicity
(�c → 0); the equality of�+

n and�−
n may not hold for higher cross helicity.

Müller et al.[133]numerically computed the intermittency exponents in the presence of mean magnetic
field.They found that a mean magnetic field reduces the parallel-field dynamics, while in the perpendicular
direction a gradual transition toward 2D MHD turbulence is observed.

Biskamp and Schwarz[16] computed the intermittency exponents for 2D MHD turbulence (see
Table 3of Biskamp and Schwarz[16]). The exponents are much lower than�MHD

n . The exponent�2
is close to 0.5, which prompted Biskamp and Schwarz to infer that 2D MHD follows KID’s phenomenol-
ogy withE(k) ∼ k−�2−1 ∼ k−3/2 power spectrum. However,�4 is much below 1, which makes the claim
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Fig. 36. Numerically computed intermittency exponents�+n (diamond) and�−n (square) for 3D MHD turbulence, and�+n /�+3 (tri-
angle) for 2D MHD turbulence. The numerical values matches quite well with the She–Leveque model based on Kolmogorov-like
spectrum (dashed line). Adopted from Biskamp and Müller[15].

less certain. Earlier, using flux analysis Verma et al.[191] had shown that Kolmogorov-like phenomenol-
ogy is a better model for 2D MHD than KID’s phenomenology (see Section 6). Hence, Biskamp and
Schwarz[16] and Verma et al.’s[191] conclusions appear contradictory. It may be possible that 2D MHD
turbulence is highly intermittent, with53 exponent still applicable. In any case, further work is required
to clarify these issues. Refer to Verma et al.[188] and Biskamp[13] for further details.

Basu et al.[6] numerically computed the intermittency exponents for velocity and magnetic fields.
They showed that�b > �±> �u, i.e., magnetic field is more intermittent than the velocity field. They also
find that�b ≈ �SL. For theoretical arguments regarding�u and�b we refer to Eq. (216), which implies
that

�ul ∼ (�u)1/3l1/3 ,

�bl ∼ (�b)1/3l1/3 ,

where�u=�u<
u>+�u<

b> is the total kinetic energy flux, and�b=�b<
b>+�b<

u> is the total magnetic energy
flux. Clearly,

Su(n)(l)= 〈(�ul)n〉 = 〈(�u)n/3〉ln/3 ∼ l�
u
n ,

Sb(n)(l)= 〈(�bl)n〉 = 〈(�b)n/3〉ln/3 ∼ l�
b
n .

Hence,�u and�b depend on the small-scale properties of�u and�b. From the numerical results of Basu
et al.[6] it appears that�b is more intermittent that�u. Note that Basu et al.’s result was derived from
magnetically dominated run, So we need to test the above hypothesis for various ratios of kinetic and
magnetic energies.
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Some of the earlier work on intermittency in MHD turbulence has been done by Carbone[31]. His
work is based on KID’s model, and he alludes that the spectral index of solar wind is close to 1.7
because of intermittency correction of approximately 0.2 over3

2. There is also an extensive investigation
of intermittency in solar wind data. Refer to Burlaga[26], Marsch and Tu[111], and Tu et al.[175].

It is evident from the above discussion that physical understanding of intermittency is quite weak. We
need to better understand dissipation mechanisms in MHD turbulence. With these remarks, we close our
discussion on intermittency.

12. Miscellaneous topics

In this section we will briefly discuss the following topics connected to the spectral theory of MHD
turbulence: (a) large-eddy simulations of MHD turbulence, (b) energy decay of MHD turbulence, (c)
shell model of MHD turbulence, and (d) compressible turbulence.

12.1. Large-eddy simulations (LES) of MHD turbulence

Basic idea of LES is to resolve only the large scales of turbulent flow. The effect of smaller scale
interactions are modeled appropriately using the existing theories. Letu<K andb<K represent the filtered
fields at filter width ofl. The filtered MHD equations are

�u<

�t
= −∇ · (u<u< − b<b< + �u)− ∇p< + �∇2u<

�b<

�t
= −∇ · (u<b< − b<u< + �b)+ �∇2u<

∇ · u< = ∇ · b< = 0 ,

where�u=(uu)<−u<u<−(bb)<+b<b<, and�b=(ub)<−u<b<−(bu)<+b<u< are the filtered-scale
stress tensors. Main task in LES is to model these tensors. A class of models assume that[3,134]

�u = −2�tS<, S< = (∇u< + [∇u<]T)/2 ,

�b = −2�tJ
<, J< = (∇b< + [∇b<]T)/2 ,

where “T” denotes the transposed matrix, and�t and�t are the eddy-viscosity and eddy-resistivity re-
spectively. Agullo et al.[3] and Müller and Carati[134] prescribed�t and�t using two different models
M1 andM2:

M1 : �t = C1(t)l
4/3, �t =D1(t)l

4/3 ,

M2 : �t = C2(t)l
2(2S< : S<)1/2, �t =D2(t)l

2|j<| .
Both models contain two unknown parametersCi andDi . Agullo et al.[3] and Müller and Carati[134]
determined these parameters using dynamic LES, in which a test filter is used[66]. After determining�t
and�t , the velocity and magnetic fields were updated using DNS. Their evolution of kinetic and magnetic
energy using modelsM1 andM2 agree quite well with DNS. The decay of the magnetic energy in DNS
andM1,2 are quite close, but there is a slight discrepancy. Note thatM0 : �u,b = 0 fares quite badly.
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Verma and Kumar[189] employed DNS to MHD equations, with viscosity and resistivity replaced by
renormalized viscosity and renormalized resistivity given below

�r (kC)= (Ku)1/2�1/3k
−4/3
C �∗ (276)

�r (kC)= (Ku)1/2�1/3k
−4/3
C �∗ . (277)

HereKu is Kolmogorov’s constant for MHD,� is the total energy flux, and�∗, �∗ are the renormalized
parameters.The parameters�∗, �∗, andKu depend on theAlfvén ratiorA. In our decaying MHD turbulence
simulation, we start with unit total energy andrA = 100.0. The ratio of magnetic to kinetic energy grows
as a function of time, as expected. Therefore, we need to compute the renormalized parameters for various
values ofrA. The energy cascade rates are computed following the method described in Section 6. We
take �r (kC) and�r (kC) from Eqs. (276, 277). The energy flux� changes with time; we compute�
dynamically every 0.01 time unit. We carried out LES for MHD up to 25 nondimensional time units.
McComb et al.[122] had done a similar LES calculation.

The evolution of kinetic energy using LES is quite close to that using DNS. However, the evolution of
magnetic energy does not match very well. Comparatively, LES of Agullo et al.[3] and Müller and Carati
[134] yield a better fit to the temporal evolution of magnetic energy. Hence, refinements are required in
our modeling.

In summary, LES of MHD turbulence is in its infancy, and more work is required in modeling of
eddy-viscosity and resistivity.

12.2. Energy decay of MHD turbulence

The models of energy decay in MHD turbulence are motivated by the decay laws of fluid turbulence.
In these models, the energy loss is due to Kolmogorov’s energy flux. In addition, conservation laws are
used to close the equation. Biskamp and Müller[15] first proposed that

Ebl0 =HM , (278)

wherel0 is the integral scale,Eb is the total magnetic energy, andHM is magnetic helicity. The corre-
sponding equation for fluid turbulence isELs+1 = const, withs = 4. Assuming advection term to be the
dominant nonlinearity for energy flux, Biskamp and Müller suggested that the dissipation rateε is

ε = −dE

dt
∼ u · ∇E ∼ (Eu)1/2

E

l0
.

A substitution ofl0 of Eq. (278) into the above equation yields

E5/2

εHM

rA

(1 + rA)
3/2 = const.

This phenomenological formula was found to be in very good agreement with numerical result.
Alfvén ratio rA itself is varies with time; Biskamp and Müller numerically found its variation to be
rA ≈ 1.5(E/HM). Using this result and taking the limitrA>1, they obtained

−dE

dt
≈ 0.5

E3

H 3/2
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with the similarity solutionE ∼ t−1/2. The relationshiprA ≈ 1.5(E/HM) yieldsEu ∼ (Eb)2 ∼ t−1.
For finiterA, the evolution is expected to be somewhat steeper.

For nonhelical MHD (HM = 0), Biskamp and Müller found a different decay law

dE

dt
E−2 = const

yieldingE ∼ t−1; this result was verified in numerical simulations. Note that all the above arguments are
valid for zero or vanishing cross helicity. When cross helicity is finite, it decays with a finite rate. Galtier
et al.[64] reached to the similar conclusions as Biskamp. Note that similar arguments for fluid turbulence
shows that kinetic energy decays ast−10/7.

In the light of current results on evolution of kinetic and magnetic energy discussed in Section 8.2,
some new deductions can made regarding the energy evolution in MHD turbulence. Since the energy
fluxes�± are not coupled (seeFig. 6), we expectE± to decay in the same way as fluid turbulence.
However, the evolution of kinetic and magnetic energy is more complex because of cross transfers of
energy between velocity and magnetic fields (seeFig. 5).

�u
b is the net energy transfer from kinetic to magnetic. Therefore,

Ėb = �u
b −Db ,

Ėu = − �u
b −Du ,

whereDb,u are dissipation rates of magnetic and velocity fields, respectively. Olivier et al.[46] computed
�u
b numerically and found that (see Section 6.4)

�u
b

�
=
{

�(rA − 0.4) for rA >0.4 ,
0 for rA � 0.4

with �=0.57. We can takeDb ≈ ��, andDu ≈ (1−�)�, where� is the total energy. Haugens et al.[75]
numerically found that� ≈ 0.6. We model� = �E3/2

tot (� = 1) based on Kolmogorov’s phenomenology of
turbulence. With the above ansatz we obtain the following equations for 0.4<rA <1:

Ėb = [�(rA − 0.4)− �](Eb + Eu)3/2 ,

Ėu = [−�(rA − 0.4)− 1.0 + �](Eb + Eu)3/2 .

We solve the above equations with initial conditionEu = Eb = 1
2 (rA = 1). The evolution ofEu,Eb,

total energy, and Alfvén ratio are shown inFig. 37. Note that magnetic energy decays slower than the
kinetic energy. The decay rates typically depends on the initial phases, so strictly speaking, the model
calculations should be compared with ensemble averages (expensive numerical calculation). So far, some
of the decay laws have been tested using numerical calculations, e.g., Biskamp and Müller[15]. Still
further work is required specially for turbulence withrA close to 1.

12.3. Shell models of MHD turbulence

Shell models of turbulence were introduced as an attempt to solve hydrodynamic equations using much
fewer degrees of freedom. In these models, one variable is used to represent all the modes in wavenumber
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Fig. 37. Plot of evolution of kinetic energy (solid line), magnetic energy (dotted line), total energy (long dash), and Alfvén ratio
(short dash).

shell (kn, kn+1). The shell radius is given bykn = k0s
n with s as a parameter, typically taken to be 2.

The coupling between shells is local with constraints of preserving conserved quantities. One type of
shell-model for MHD turbulence is given below[59]:(

d

dt
+ �k2

)
Un = ikn

[(
U∗
n+1U

∗
n+2 − B∗

n+1B
∗
n+2

)− ε

2

(
U∗
n−1U

∗
n+1 − B∗

n−1B
∗
n+1

)
−(1 − ε)

4

(
U∗
n−2U

∗
n−1 − B∗

n−2B
∗
n−1

)]+ fn , (279)(
d

dt
+ �k2

)
Bn = ikn

[
(1 − ε − εm)

(
U∗
n+1B

∗
n+2 − B∗

n+1U
∗
n+2

)+ εm

2

(
U∗
n−1B

∗
n+1 − B∗

n−1U
∗
n+1

)
× (1 − εm)

4

(
U∗
n−2B

∗
n−1 − B∗

n−2U
∗
n−1

)]+ gn , (280)

wherefn andgn are kinetic and magnetic forcing, respectively. The above equations conserve total energy
and cross helicity for anyεm. However, conservation of the third integral imposes condition onε’s. In 3D,
this integral is

HM =
∑
n

(−1)nk−1
n |Bn|2 ,

which is conserved ifε = 1
2 andεm = 1

3 in 2D, the choice ofε = 5
4 andεm = −1

3 leads to conservation of

a =
∑
n

k−2
n |Bn|2 .

Frick and Sokoloff[59] numerically solved Eqs. (279, 280), with 30 shells (−4� n� 27). The sys-
tem was forced near then = 0 shell. The time integration was done using fourth-order Runge–Kutta
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method. Frick and Sokoloff studied energy spectrum, fluxes, and the structure functions. They obtained
Kolmogorov-like energy spectrum (5

3) for nonAlfvénic MHD (�c ≈ 0); this state is independent of mag-
netic helicityHM. However, when the magnetic and velocity fields are correlated, Kolmogorov state is
not established, and the result depends on the magnetic helicity. High level ofHM suppresses any cascade
of energy, and KID’s spectra was obtained.

Frick and Sokoloff[59] and Basu et al.[6] studied the structure functions of MHD. They found that
intermittency in MHD turbulence is slightly higher than in the hydrodynamic case, and the level of
intermittency for the magnetic field is slightly higher than the velocity field. Biskamp[12] has studied
the effect of mean magnetic field using shell model. For reference, Gloaguen et al.[68] constructed one
of the first shell models for MHD turbulence.

Shell models are based on an assumption of local energy transfer. This assumption appears to be suspect
in the light of our results on shell-to-shell energy transfer described in 8.2, where we showed that there
are significant amount of nonlocal energy transfer in MHD turbulence, specially in presence of magnetic
helicity. This issue requires a closer look.

12.4. Compressible turbulence

Terrestrial MHD plasmas are incompressible because plasma velocities are typically much smaller
compared to sound speed or Alfvén speed. However, astrophysical plasmas are typically compressible.
Currently the energy spectrum of incompressible (infinite sound speed) and fully compressible (zero
sound speed) turbulence are reasonably well understood. Fully compressible fluid is described by Burgers
equation

�u
�t

+ (u · ∇)u= �∇2u .

for which shocks are exact solution in 1D under� → 0 limit. It can be easily shown thatE(k) ∼ k−2

and intermittency exponents�q = 1 for q >1. Shocks are present in higher dimensions as well, and the
spectral index is expected to be 2. Fully compressible MHD turbulence, modeled by generalized Burgers
equation[65], also show shocks. For properties of shocks, refer to Biskamp[14] and Priest[152]. For
the other limiting case, incompressible fluid turbulence as well as MHD turbulence are well described by
Kolmogorov’s theory of turbulence. The difficulty is with finite Mach number.

The velocity in compressible fluids is decomposed into compressible partuc and solenoidal partus.
In Fourier space,us is perpendicular tok, anduc is parallel tok. Corresponding to these fields, we have
solenoidal and compressive velocity spectrum,Es(k) andEc(k). Porter et al.[146] showed that in the
supersonic turbulence (Ma>1),Ec(k) ∼ k−2, which is similar to the spectrum in Burgers turbulence.
However for subsonic turbulence (Ma<1), bothEc andEs have5

3 spectral index.
Pressure spectrum is defined using〈p2〉 = ∫ EP(k)dk. Assuming5

3 spectrum for velocity and using
pk ∼ 	0u

2
k, Batchelor[7], and Monin and Yaglom[126] obtained

1

	2
0

EP(k) ∼ ε4/3k−7/3 .

The above law is expected to be valid for subsonic flows. For polytropic flowsp ∼ 	�, or

�p = C2
s�	 ,
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using which we can immediately derive the density spectrum for subsonic flows

N	(k)= ε4/3C−4
s k−7/3 .

Note that〈	2〉 = ∫ N	(k)dk.
For nearly incompressible MHD turbulence Montgomery et al.[127] argued thatEP(k) ∼ N	(k) ∼

k−5/3. Their argument is based on quasi-normal model. For detail refer to Montgomery et al.[127] and
Zank and Matthaeus[195,196]. Lithwick and Goldreich[103] also obtained Kolmogorov’s spectrum for
the density fluctuations in the ionized interstellar medium. They calculated the above density spectrum by
extending the theory of incompressible MHD given by Goldreich and Sridhar[69,165]. Cho and Lazarian
[34] found similar results in their computer simulation.

It is interesting to note that the Burgers equation is local in real space, contrary to the incompressible
turbulence which is nonlocal in real space. Also, “mode-to-mode” energy transfer formulas of Dar et al.
[45] cannot be applied to Burgers equation because∇ · u = 0 is not applicable to Burgers equation. We
need some kind of generalized theory which will continuously vary the energy spectrum as we change
the Mach number.

13. Conclusions and future directions

Here we summarize the main results in statistical theory of MHD turbulence. In this paper, we focussed
on the energy spectrum, fluxes, and the shell-to-shell energy transfers in homogeneous turbulence. When
the mean magnetic field is applied, turbulence is naturally anisotropic. When the mean magnetic field
is much greater than fluctuations (weak turbulence), the energy cascade is planar, perpendicular to the
mean magnetic field; In this limit Galtiers et al.[63] showed that

E1,2(k⊥) ∼ (�B0)
1/2k

1/2
|| k−2

⊥ . (281)

When the fluctuations become comparable to the mean magnetic field (strong turbulence), Goldreich
and Sridhar[69,165]showed thatE(k) ∼ k

−5/3
⊥ , thus establishing Kolmogorov-like dynamics for MHD

turbulence. Verma[179] showed that the nonlinear evolution of Alfvén waves are affected by “effec-
tive mean magnetic field”, and showed that Kolmogorov’s5

3 powerlaw is a valid spectrum for MHD
turbulence. The effective mean-magnetic field turns out to be local (k-dependent) field, and can be in-
terpreted as the field due to the next largest eddy. The above theoretical result is seen in the numerical
simulation of Cho et al.[35]. The renormalization group calculations (e.g., Verma[180]) also favor Kol-
mogorov’s5

3 energy spectrum for MHD turbulence. All the above results have been discovered in the last
10 years.

Let us contrast the above conclusions with the earlier results of Kraichnan[85] and Iroshnikov[77]
where effective time-scale is determined by the mean magnetic fieldB0, and the energy spectrum isk−3/2.
Kraichnan’s and Iroshnikov’s phenomenology is weak turbulence theory under isotropic situations. This
is contradictory because strong mean magnetic field will create anisotropy. This is why3

2 theory is
inapplicable to MHD turbulence.

Recently studied energy fluxes and shell-to-shell energy transfers in MHD turbulence are providing
important insights into the energy exchange between velocity and magnetic fields, and also among var-
ious scales. These calculations have been done using “mode-to-mode” energy transfers in MHD triads.
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For 3D nonhelical flows (HM =HK = 0), all the fluxesu-to-u, u-to-b, b-to-u, b-to-b are positive except
b-to-u, which is negative for large Alfvén ratio. In kinetic-energy-dominated regime, kinetic energy flows
to magnetic energy, and the reverse happens in magnetic-energy-dominated regime. Hence, steady-state
situation is possible only whenEu ≈ Eb; we believe this to be the reason for the equipartition of kinetic
and magnetic energy in MHD turbulence. The shell-to-shell energy transfer also suggests that nonhelical
transfers are local. Theu-to-u and b-to-b transfers are forward, butu-to-b and b-to-u are somewhat
complex. Helicity induces inverse cascade of magnetic energy, but their magnitude is smaller than the
nonhelical counterparts for small magnetic and kinetic helicities, which is typical. We also find a forward
cascade of magnetic helicity.

Many of the above analytical work have been motivated by the clues obtained from numerical sim-
ulations, e.g.,[15,40,45,108,132,191]. High-resolution simulations, which can test spectrum as well as
energy fluxes, have been made possible by recent powerful computers. In turbulence research, numerical
simulations have become synonymous with experiments. Similarly, observational results from the solar
wind data have been very useful in understanding the dynamics of MHD turbulence.

Amplification of magnetic field in MHD turbulence, commonly known as dynamo, has been of interest
for almost a century. Earlier theories were of kinematic origin where given velocity spectrum induces
growth of magnetic field, but the magnetic field cannot affect the velocity field. In the last 10 years,
there have been a surge of attempts to solve the full MHD equation including the back-reaction of the
magnetic field to the velocity field. Pouquet et al.[149] performed EDQNM calculations and showed
that “residual helicity” (difference of kinetic helicity and magnetic helicity) induces growth of large
scale magnetic field. Some of the recent models are motivated by the numerical results. Brandenburg
[22] finds that kinetic helicity induces growth of negative magnetic helicity at large scales, which in turn
enhances the large-scale magnetic field. Chou[40] has shown growth of large-scale magnetic field with
small-scale or large-scale seed magnetic field. Verma’s[183]analytical findings are in agreement with the
above-mentioned numerical results. Field et al.[53], Chou[39], Schekochihin et al.[158] and Blackman
[19] have constructed theoretical models of dynamics dynamo, and studied their nonlinear evolution and
saturation mechanisms.

Intermittency exponents have been computed numerically by Müller and Biskamp[15] and others.
Generalized She and Leveque’s[159] theoretical model based on log-Poisson process fits quite well with
the numerical data. Note however that theoretical calculation of intermittency exponents from the first
principles is still alluding turbulence researchers.

There are many unanswered questions in MHD turbulence. We list some of them here:

1. Goldreich and Sridhar’s[69] argument for5
3 spectral index for strong MHD turbulence is semi-

phenomenological. Generalization ofVerma’s field-theoretic calculation for mean magnetic field[179]
to anisotropic situations will be very useful. It will help us in quantifying the effects of mean magnetic
field on energy fluxes, etc.

2. Effects of magnetic and kinetic helicity on energy spectrum and fluxes, is known only partially through
numerical simulations and absolute-equilibrium theories.

3. Good understanding of compressible fluid and MHD is lacking. Theoretical studies of coupling of
solenoidal, compressible, pressure modes, etc. will advance our understanding in this area.

4. There are only a couple of large-eddy simulations (LES) of MHD turbulence, and they are not com-
pletely satisfactory. Considering the importance of LES in modeling large-scale practical systems,
e.g., Tokomak flows, dynamo, etc., further investigation of LES of MHD is required.



360 M.K. Verma / Physics Reports 401 (2004) 229–380

5. Application of field-theoretic calculation of MHD turbulence to electron magnetohydrodynamics[17],
active scalar[156], drift wave turbulence[136], etc. could help us in better understanding of these
models.

6. Role of turbulence in corona heating, accretion disks, and other astrophysical objects are active area
of research.

With these remarks we conclude our review.
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Appendix A. Fourier series vs. Fourier transform for turbulent flows

In the statistical theory turbulence we typically assume the flow field to be homogeneous. Therefore,
Fourier transform is not applicable to these flows in strict sense. However, we can define these quantities
by taking the limits carefully. This issue has been discussed by Batchelor[8] and McComb[119]. We
briefly discuss them here because they form the basis of the whole paper.

A periodic functionu(x) in boxLd can be expanded using Fourier series as following:

u(x)=
∑

û(k)exp(ik · x) ,
û(k)= 1

Ld

∫
dxu(x)exp(−ik · x) ,

whered is the space dimensionality. When we take the limitL → ∞, we obtain Fourier transform. Using
u(k)= û(k)Ld , it can be easily shown that

u(x)=
∫

dk

(2�)d
u(k)exp(ik · x) ,

u(k)=
∫

dxu(x)exp(−ik · x) ,

with integrals performed over the whole space. Note however that Fourier transform (integral converges)
makes sense whenu(x) vanishes as|x| → ∞, which is not the case for homogeneous flows. However,
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correlations defined below are sensible quantities. Using the above equations, we find that

〈ui(k)uj (k ′)〉 =
∫

dxdx′〈ui(x)uj (x′)〉 exp[−i(k ˙·x + k ′ · x′)]

=
∫

drCij (r )exp(−ik · r )
∫

dx exp[−i(k + k̇ ′) · x]
=Cij (k)(2�)d�(k + k ′) . (A.1)

We have used the fact that�(k) ≈ Ld/(2�)d . The above equation holds the key. In experiments we
measure correlation functionC(r ) which is finite and decays with increasingr, hence spectraC(k) is
well defined. Now the energy spectrum as well as the total energy can be written in terms ofC(k) as the
following:

〈u2〉 = 1

Ld

∫
dxu2 =

∑
k

|û(k)|2 = 1

Ld

∫
dk

(2�)d
〈|u(k)|2〉

= (d − 1)
∫

dk

(2�)d
C(k) .

We have used the fact that�(k) ≈ Ld/(2�)d . Note that〈|u(k)|2〉 = (d − 1)C(k)Ld [see Eq. (A.1)] is not
well defined in the limitL → ∞.

In conclusion, the measurable quantity in homogeneous turbulence is the correlation function, which
is finite and decays for larger. Therefore, energy spectra, etc. are well defined objects in terms of Fourier
transforms of correlation functions.

We choose a finite box, typically(2�)d , in spectral simulations for fluid flows. For these problems
we express the equations (incompressibleMHD) in terms of Fourier series. We write them below for
reference.(

�

�t
− i(B0 · k)+ �k2

)
ûi(k, t)= − ikip̂tot(k, t)− ikj

∑
[ûj (q, t)ûi(p, t)

+ b̂j (q, t)b̂i(p, t)] ,(
�

�t
− i(B0 · k)+ �k2

)
b̂i(k, t)= − ikj

∑
[ûj (q, t)b̂i(p, t)− b̂j (q, t)ûi(p, t)] .

The energy spectrum can be computed usingûi(k, t):∫
E(k)dk =

∑
|û(k)|2/2 =

∫
dn|û(k)|2/2 =

∫
dk|û(k)|2/2 ,

wheren is the lattice vector ind-dimensional space. The above equation implies that

E(k)= |û(k)|2
2

Sdk
d−1.

A natural question is why the results of numerical simulations or experiments done in a finite volume
should match with those obtained for infinite volume. The answer is straightforward. When we go from
size 2� to L, the wavenumbers should be scaled by(2�)/L. The velocity and frequency should be should
be scaled by(2�)/L and[(2�)/L]2 to keep dimensionless� fixed. The evolution of the two systems will
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be identical apart from the above factors. Hence, numerical simulations in a box of size 2� can capture
the behavior of a system withL → ∞, for which Fourier transform in defined.

Appendix B. Perturbative calculation of MHD equations: z± variables

The MHD equations in terms ofz± can be written as

(
z+i (k̂)
z−i (k̂)

)
=
(
G++(k̂) G+−(k̂)
G−+(k̂) G−−(k̂)

)( −iMijm(k)
∫

dp̂[z−j (p̂)z+m(k̂ − p̂)]
−iMijm(k)

∫
dp̂[z+j (p̂)z−m(k̂ − p̂)].

)
. (B.1)

The Greens functionG is related to self-energy using

G−1(k,)=
(−i − �++ �+−

�−+ −i − �−−
)
. (B.2)

We solve the above equation perturbatively keeping the terms upto the first nonvanishing order. The
integrals are represented using Feynmann diagrams. To the leading order,

(B.3)

(B.4)

The variablesz+ andz− are represented by double-dotted and dotted line, respectively. The quantity
G++,G+−,G−−,G−+ are represented by thick double-zigzag, thin double-zigzag, thick zigzag, and thin
zigzag, respectively. The square represents−iMijm vertex. These diagrams appear in the renormalization
calculations as well as in the energy flux calculation.

B.1. “Mean magnetic field” renormalization

The expansion ofz+ in terms of Feynman diagrams are given below

(B.5)
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We illustrate the expansion of one of the above diagrams

(B.6)

Equation forz− can be obtained by interchanging+ and−. In the above diagrams,〈z+(k)z+(k ′)〉,
〈z−(k)z−(k ′)〉, and 〈z±(k)z∓(k ′)〉 are represented by double-dotted, dotted, and dotted arrow lines,
respectively. All diagrams except fourth and eighth ones vanish due to gaussian nature ofz±< variables.
In our calculations, we assume fourth and eighth diagram to vanish. For its evaluation, refer to Zhou et
al. [202,203]. As a consequence, the second term ofI+ is zero. Similar analysis shows that the third term
also vanishes.

The fourth term ofI+ is diagramatically represented as

(B.7)

(B.8)

(B.9)

(B.10)
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(B.11)

(B.12)

In Eqs. (B.9)–(B.12) we have omitted all the vanishing diagrams (similar to those appearing in Eq.
(B.6)). These terms contribute to�’s.

The algebraic expressions for the above diagrams are given in Section 7.3. These expressions have
Green’s functions, correlation functions, and algebraic factors resulting from the contraction of tensors.
The algebraic factors for−(d − 1)��++, denoted byS(1−4)(k, p, q), are given below.

S1(k, p, q)=Mbjm(k)Mmab(p)Pja(q)= kp(d − 2 + z2)(z+ xy) ,

S2(k, p, q)=Majm(k)Mmab(p)Pjb(q)= kp(−z+ z3 + y2z+ xyz2) ,

S3(k, p, q)=Mbjm(k)Mjab(p)Pma(q)= kp(−z+ z3 + x2z+ xyz2) ,

S4(k, p, q)=Majm(k)Mjab(p)Pmb(q)= kp(−z+ z3 + xy + x2z+ y2x + xyz2) .

Here,x, y, z are direction cosines defined as

p · q= −pqx, q · k = qky, p · k = pkz . (B.13)

B.2. Renormalization of dissipative parameters

The Feynman diagrams for renormalization of�±±, �±∓ are identical to the given above except that in
the renormalization of dissipative parameters,> modes are averaged instead of< modes.

B.3. Mode-to-mode energy transfer in MHD turbulence

In Section 3, we studied the “mode-to-mode” energy transferS±(k ′|p|q) from z±(p) to z±(k ′) with
the mediation ofz∓(q). The expression for this transfer is

S±(k ′|p|q)= −I([k ′ · z∓(q)][z±(k ′) · z±(p)]) (B.14)
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In perturbative calculation ofSwe assume the field variablesz± to be quasi-gaussian. Hence,Svanishes
to zeroth order. To first order,S+ is

(B.15)

where the left vertex denoteski , and the right vertex (square) represents−iMijm. The diagrams forS−
can be obtained by interchanging+ and−. Some of the diagrams may vanish depending on the form of
correlation function.

The corresponding expressions to each diagram would involve two correlation functions, one Green’s
function, and an algebraic factor. For isotropic flows, these factors, denoted byT(13−24)(k, p, q), are
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given by

T13,15(k, p, q)= kiMjab(k
′)Pja(p)Pib(q)= −kpyz(y + xz) ,

T14,16(k, p, q)= kiMjab(k
′)Pjb(p)Pia(q)= k2(1 − y2)(d − 2 + z2) ,

T17,19(k, p, q)= kiMjab(p)Pja(k)Pib(q)= kpxz(x + yz) ,

T18,20(k, p, q)= − T14(k, p, q) ,

T21,23(k, p, q)= kiMiab(q)Pja(k)Pjb(p)= −kpxy(1 − z2) ,

T22,24(k, p, q)= − T13(k, p, q) .

Appendix C. Perturbative calculation of MHD equations: u,b variables

The MHD equations can be written as

(
ui(k̂)

bi(k̂)

)
=
(
Guu(k̂) Gub(k̂)

Gbu(k̂) Gbb(k̂)

)(− i
2P

+
ijm(k)

∫
dp̂[uj (p̂)um(k̂ − p̂)− bj (p̂)bm(k̂ − p̂)]

−iP−
ijm(k)

∫
dp̂[uj (p̂)bm(k̂ − p̂)]

)
,

(C.1)

where the Greens functionG can be obtained fromG−1(k̂)

G−1(k,)=
(−i − �uu �ub

�bu −i − �bb

)
. (C.2)

We solve the above equation perturbatively keeping the terms upto the first nonvanishing order. Feyn-
mann diagrams representing various terms are

(C.3)

(C.4)

The solid and dashed lines represent fieldsuandb, respectively. The thick wiggly (photon), thin wiggly,
thick curly (gluon), and thin curly lines denoteGuu,Gub,Gbb, andGbu, respectively. The filled circle
denotes−(i/2)P+

ijm vertex, while the empty circle denotes−iP−
ijm vertex. These diagrams appear in the

renormalization calculations as well as in the energy flux calculations.
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C.1. Viscosity and resistivity renormalization

The expansion ofu, b in terms of Feynman diagrams are given below:

(C.5)

(C.6)

A factor of 2 appears inIu because of<> symmetry in the corresponding term. To zeroth order, the
terms with<> are zero because of quasi-gaussian nature of> modes. To the next order in perturbation,
the third term ofIu is

(C.7)

In the above diagrams solid lines denote〈u(k)u(k ′)〉, and the dashed lines denote〈u(k)b(k ′)〉.
As mentioned earlier, the wiggly and curly lines denote various Green’s functions. All the diagrams
except 4,8,12, and 16th can be shown to be trivially zero using Eqs. (148)–(154). We assume that 4,8,12,
and 16th diagrams are also zero, as usually done in turbulence RG calculations[119,193,202,203].
Hence, the term is zero. Following the similar procedure we can show that the 4th term ofIu,
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and the 2nd and 3rd terms ofI b are zero to first order. Now we are left with>> terms (5th and 6th of
Iu, and 4th term ofI b), which are

(C.8)

(C.9)

where

(C.10)

(C.11)

(C.12)

(C.13)

In Eqs. (C.10)–(C.13) we have omitted all the vanishing diagrams (similar to those appearing in Eq.
(C.7)). These terms contribute to�’s.
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The algebraic expressions for the above diagrams are given in Section 7. For isotropic flows, the alge-
braic factorsSi(k, p, q) resulting from tensor contractions are given below. The factors for the diagrams
areS, S6, S6, S, S, S5, S, S5, S8, S10, S12, S7, S8, S9, S11, S9 in sequential order.

S(k, p, q)= P+
bjm(k)P

+
mab(p)Pja(q)= kp((d − 3)z+ 2z3 + (d − 1)xy) ,

S5(k, p, q)= P+
bjm(k)P

−
mab(p)Pja(q)= kp((d − 1)z+ (d − 3)xy − 2y2z) ,

S6(k, p, q)= P+
ajm(k)P

−
mba(p)Pjb(q)= −S5(k, p, q) ,

S7(k, p, q)= P−
ijm(k)P

+
mab(p)Pja(q)Pib(k)= S5(p, k, q) ,

S8(k, p, q)= P−
ijm(k)P

+
jab(p)Pma(q)Pib(k)= −S5(p, k, q) ,

S9(k, p, q)= P−
ijm(k)P

−
mab(p)Pja(q)Pib(k)= kp(d − 1)(z+ xy) ,

S10(k, p, q)= P−
ijm(k)P

−
mab(p)Pjb(q)Pia(k)= −S9(k, p, q) ,

S11(k, p, q)= P−
ijm(k)P

−
jab(p)Pma(q)Pib(k)= −S9(k, p, q) ,

S12(k, p, q)= P−
ijm(k)P

−
jab(p)Pmb(q)Pia(k)= S9(k, p, q) .

C.2. Mode-to-mode energy transfer in MHD turbulence

In Section 3, we studied the “mode-to-mode” energy transferSYX(k ′|p|q) from the modep of field X
to the modek ′ of fieldY, with the modeq acting as a mediator. The perturbative calculation ofSinvolves
many terms. However when cross helicity is zero, then many of them vanish and yield

(C.14)

(C.15)
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(C.16)

(C.17)

In all the diagrams, the left vertex denoteski , while the filled circle and the empty circles of right vertex
represent(−i/2)P+

ijm and−iP−
ijm respectively. For isotropic nonhelical flows, the algebraic factors are

given below. The factors for the diagrams areT1, T5, T9, T2, T6, T10, T3, T7, T11, T4, T8, T12 in sequential
order.

T1(k, p, q)= kiP
+
jab(k)Pja(p)Pib(q)= kp((d − 3)z+ (d − 2)xy + 2z3 + 2xyz2 + x2z) ,

T3(k, p, q)= kiP
−
jab(k)Pja(p)Pib(q)= −k2((d − 2)(1 − y2)+ z2 + xyz) ,

T5(k, p, q)= −kiP+
jab(p)Pja(k)Pib(q)= −kp((d − 3)z+ (d − 2)xy + 2z3 + 2xyz2 + y2z) ,

T7(k, p, q)= −kiP−
jab(p)Pja(k)Pib(q)= −kp((2 − d)xy + (1 − d)z+ y2z) ,

T9(k, p, q)= −kiP+
iab(q)Pja(k)Pjb(p)= −kq(xz− 2xy2z− yz2) ,

T11(k, p, q)= −kiP−
iab(q)Pja(k)Pjb(p)= −kqz(x + yz) ,

T2n(k, p, q)= −T2n−1(k, p, q) for n= 1 . . .6 .

For helical flows, we get additional terms involving helicities. We are skipping those terms due to lack
of space.
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Following the similar procedure, we can obtain Feynman diagrams for mode-to-mode magnetic-helicity
transfer, which is

(C.18)

where empty, shaded, and filled triangles (vertices) representεijm,−εijmkikl/k
2 andεijmkikl/k

2, respec-
tively. The algebraic factors can be easily computed for these diagrams.

Appendix D. Digression to fluid turbulence

Many of the MHD turbulence work have been motivated by the theories of fluid turbulence. Therefore,
we briefly sketch some of the main results on the statistical theory of fluid turbulence.
1. McComb and coworkers[119,124,201]have successfully applied self-consistent renormalization

group theory to 3D fluid turbulence. The RG procedure has been described in Section 7.4.1. They
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Fig. 38. Plot of�∗(k′) vs.k′ for 2D and 3D fluid turbulence. In 2D,�∗ is negative.

showed that

E(k)=KK0�2/3k−5/3 , (D.1)

�(k = knk
′)=K

1/2
K0 �1/3k

−4/3
n �∗(k′) (D.2)

is a consistent solution of renormalization group equation. Here,KK0 is Kolmogorov’s constant,� is
the energy flux, and�∗(k′) is a universal function that is a constant (≈ 0.38) ask′ → 0. SeeFig. 38
for an illustration.

2. Energy flux for 3D fluid turbulence can be computed using field-theoretic technique described in Sec-
tion 8.1.1. This technique is same as Direct Interaction Approximation of Kraichnan. The computation
yields Kolmogorov’s constantK to be close to 1.58.

3. The above analysis can be extended to 2D fluid turbulence. For5
3 regime, we find that Eqs. (D.1, D.2)

are the solution of RG equations, but�∗(k′) is negative as shown inFig. 38. The function�∗ is not very
well behaved ask′ → 0. Still, the negative renormalized viscosity is consistent with the negative eddy
viscosity obtained using Test Field Model[86] and EDQNM calculations. We estimate�∗ ≈ −0.60 .
The energy flux calculation yieldsK2D

K0 ≈ 6.3.
4. Incompressible fluid turbulence is nonlocal in real space due to incompressibility condition. Field-

theoretic calculation reveals that mode-to-mode transferS(k|p|q) is large whenp>k, but small
for k ∼ p ∼ q, hence Navier–Stokes equation is nonlocal in Fourier space too. However, in 3D
shell-to-shell energy transfer rateT YXnm is forward and most significant to the next-neighboring shell
[49,199,185]. Hence, shell-to-shell energy transfer rate is local even though the interactions appear
tobe nonlocal in both real and Fourier space.Fig. 39shows the shell-to-shell energy transfer computed
using field-theoretic method[185]. These results are in close agreement with the numerical results of
Verma et al.[185]. For comparison refer toFigs. 39and40.

5. In 2D fluid turbulence, energy transfer to the next neighboring shell is forward, but the transfer
is backward for the more distant shells (seeFig. 39). The sum of all these transfers is a negative
energy flux, consistent with the inverse cascade result of Kraichnan[86]. For details refer to
Verma et al.[185].

6. Kinetic helicity suppresses the energy flux. Field-theoretic calculation discussed in Section 8.1.3 yields

� =K3/2�(0.53− 0.28r2
K) ,

whererK =HK(k)/(kE(k)) (see the entry of�u<
u> in Table 11).

7. All the above conclusions are for large Reynolds number or� → 0 limit.The behavior of Navier–Stokes
equation for viscosity� = 0 (inviscid) is very different, and has been analyzed using absolute
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Fig. 39. Plots of shell-to-shell energy transfer ratesT YXnm /� vs.n−m for 3D and 2D fluid turbulence. In 3D energy transfer is
forward and local. In 2D energy transfer is forward for the nearest neighbors, but is backward for fourth neighbor onward; these
backward transfers are one of the major factors in the inverse cascade of energy. Taken from Verma et al.[185].
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Fig. 40. Plot of normalized shell-to-shell energy transferTnm/� vs.n − m for d = 3 obtained from numerical simulations on
5123 DNS. Thenth shell is(k0s

n, k0s
n+1) with s = 21/4. The energy transfer is maximum forn = m ± 1, hence the energy

transfer is local and self-similar. The energy transfer is also forward. Taken from Verma et al.[185].

equilibrium theory (see Section 4.3). It can be shown using this theory that under steady state, en-
ergy is equipartitioned among all the modes, resulting inC(k) = const[139]. Using this result we
can compute mode-to-mode energy transfer rates〈Suu(k|p|q)〉 to first order in perturbation theory
(Eq. (203)), which yields

〈Suu(k|p|q)〉 ∝
∫

(T1(k, p, q)+ T5(k, p, q)+ T9(k, p, q))const

�(k)k2 + �(p)p2 + �(q)q2 = 0

becauseT1(k, p, q)+T5(k, p, q)+T9(k, p, q)=0. Hence, under steady state, their is no energy transfer
among Fourier modes in inviscid Navier–Stokes. In other words “principle of detailed balance” holds
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here. Note that the above result holds for all space dimensions. Contrast this result with the turbulence
situation when energy preferentially gets transferred from smaller wavenumber to larger wavenumber.
This example contrasts equilibrium and nonequilibrium systems.
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