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Abstract
In three-dimensional hydrodynamic turbulence forced at large length scales,
a constant energy flux Πu flows from large scales to intermediate scales, and
then to small scales. It is well known that for multiscale energy injection and
dissipation, the energy flux Πu varies with scales. In this review we describe
this principle and show how this general framework is useful for describing
a variety of turbulent phenomena. Compared to Kolmogorov’s spectrum, the
energy spectrum steepens in turbulence involving quasi-static magnetofluid,
Ekman friction, stable stratification, magnetohydrodynamics, and solution with
dilute polymer. However, in turbulent thermal convection, in unstably stratified
turbulence such as Rayleigh–Taylor turbulence, and in shear turbulence, the
energy spectrum has an opposite behaviour due to an increase of energy flux
with wavenumber. In addition, we briefly describe the role of variable energy
flux in quantum turbulence, in binary-fluid turbulence including time-dependent
Landau–Ginzburg and Cahn–Hillianrd equations, and in Euler turbulence. We
also discuss energy transfers in anisotropic turbulence.

Keywords: turbulence, variable energy flux, energy flux, MHD turbulence,
turbulent thermal convection, turbulence modelling, energy transfers
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1. Introduction

Turbulence is observed in most natural flows, for example, in atmospheres and interiors
of planets and stars, in oceanic flows, and in stellar and galactic winds. Many engineering
flows, as in air conditioners and combustion engines, as well as most kitchen flows are also
turbulent. These complex flows have multiple components that could be a combination of
velocity, temperature, density, and magnetic fields. The complexities of above turbulent flows
appear daunting, yet, the mathematical models and tools developed over the last two centuries
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provide reasonable understanding of such flows. In this review article we will describe one
such tool called variable energy flux.

The nonlinear interactions among the Fourier modes of a turbulent flow cause energy
exchange among the modes [1–14]. In one of the pioneering works, Kolmogorov [1, 2] showed
that when a hydrodynamic flow is forced vigorously at large scales, it becomes turbulent. In
such flows large-scale kinetic energy is transferred to intermediate scales, called inertial range,
and then to small scales. The flow is homogeneous and isotropic in the inertial range. For
hydrodynamic turbulence, we define kinetic energy flux Πu(k) as the net energy transfer from
the Fourier modes of a wavenumber sphere of radius k to the Fourier modes outside the sphere.
Kolmogorov [1, 2] argued that in the inertial range, an absence of forcing and weak dissipation
makes Πu(k0) constant. In addition, the inertial-range kinetic energy spectrum, Eu(k), varies as
k−5/3, also called Kolmogorov’s energy spectrum [5–7]. The above Fourier-space description
is directly related to the real-space description proposed by Kolmogorov [1, 2].

The constancy of energy flux in the inertial range of hydrodynamic turbulence is valid only
statistically. Researchers have observed strong fluctuations in the inertial-range energy flux
due to the singular nature of viscous dissipation [8, 15–17]. This effect is called intermittency.
Even though significant progress has been made in the understanding of intermittency, yet
first-principle derivation of intermittency is still lacking.

Kolmogorov’s theory of turbulence describes the energy spectrum and flux of hydrodynamic
turbulence without any external force in the intermediate scales. However this assumption is not
valid for many complex flows where the forcing and/or dissipation are active in the intermediate
scales. For example, gravity acts at all scales in buoyant flows (stably stratified turbulence and
thermal convection); the Lorentz force acts at all scales in MHD turbulence; Ekman friction
dissipates kinetic energy at all scales. Due to the additional forcing and/or dissipation, the
inertial-range energy flux of the such flows varies with wavenumber and the inertial-range
kinetic energy spectrum differs from Kolmogorov’s k−5/3 spectrum. In the present review, we
focus on these variations in the energy flux.

Interestingly, complex variations in energy spectrum and flux can be quantified using an
equation for the variable energy flux: dΠu(k)/dk = Fu(k) − Du(k), where Fu(k) is the kinetic
energy injection rate by the external force at wavenumber k, and Du(k) is the dissipation rate
at k [8, 9, 11, 14]. This framework of variable energy flux, which is the theme of this review,
helps us understand a wide range of turbulent phenomena. We introduce these topics in this
section and detail them in subsequent sections.

Strong external fields, such as magnetic field and rotation, make a flow anisotropic. Conse-
quently, the modal energy spectrum Eu(k), where k is the wavenumber, becomes a function of
k and θ, which is the angle between the anisotropy direction and k. The shell spectrum Eu(k),
which is a sum of Eu(k) over the shell of radius k, does not capture the θ-dependence of Eu(k).
A more refined measure called ring spectrum Eu(k, θ) [14, 18] is useful for such flows. The
energy flux Πu(k) too has a similar limitation, while the ring-to-ring energy transfer achieves
this objective [14, 18]. Note however that Eu(k) and Πu(k) are well defined for anisotropic
flows as well, and they pick up the multiscale dynamics quite well. For example, in quasi-
static magnetohydrodynamic (MHD) turbulence and in the presence of Ekman friction (both
being anisotropic flows), Eu(k) is steeper than Kolomogorov’s spectrum due to additional dis-
sipation. In stably stratified turbulence, a conversion of kinetic energy to potential energy leads
to a steepening of the energy spectrum. In this review we will study such variations in isotropic
turbulence, as well as in anisotropic turbulence, using variable energy flux.

Gravity acts at all scales in stably stratified turbulence and in thermal convection and gen-
erates variable kinetic energy fluxes in these systems. For the stably stratified turbulence
with moderate stratification, Bolgiano [19] and Obukhov [20] showed that Fu(k) < 0 and
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Figure 1. A figure illustrating variable energy flux. The blue and red arrows depict
Fu(k) and Du(k) respectively. The red curve represents Kolmogorov’s model for which
Πu(k)= constant in the inertial range because Fu(k) = 0 and Du(k) = 0. The green curve
represents the case when Fu(k) > 0 and dΠu(k)/dk > 0, while the blue curve represents
flows with Fu(k) < 0 and dΠu(k)/dk < 0.

dΠu(k)/dk < 0 due to a conversion of kinetic energy to potential energy by buoyancy. In
particular, Πu(k) ∼ k−4/5 and Eu(k) ∼ k−11/5 (different from Kolmogorov’s k−5/3 spectrum).
See figure 1 for an illustration.

The physics of thermal convection, however, is quite different from the stably stratified
turbulence even though the equations for the two systems are the same. This is because ther-
mal convection is unstable, while stably stratified turbulence is stable. In the inertial range
of turbulent convection, thermal plumes drive the velocity field. Hence, Fu(k) > 0 leading to
dΠu(k)/dk > 0. See figure 1 for an illustration. Detailed studies, however, show that for small
and moderate Prandtl numbers, Fu(k) is primarily concentrated at small wavenumbers, as in
Kolmogorov’s theory of hydrodynamic turbulence. Consequently, the kinetic energy spectrum
and flux of turbulent convection are similar to those predicted by Kolmogorov’s turbulence
theory [21–23]. Thus, energy flux diagnostics helped in resolving the long-standing problem
whether turbulent convection follows Bolgiano–Obukhov spectrum or Kolmgorov spectrum.

Variable energy flux is also useful for describing MHD turbulence and dynamo. Here, the
Lorentz force, which is active at all scales, transfers energy from the velocity field to the
magnetic field. These energy transfers are responsible for the enhancement of magnetic field
in astrophysical objects via dynamo mechanism [14, 24, 25]. These transfers also lead to a
reduction in the kinetic energy flux and an enhancement of the magnetic energy flux with
wavenumber [14]. In quasi-static MHD turbulence, Joule dissipation is significant at all scales;
consequently, the inertial-range kinetic energy flux decreases with k, and Eu(k) is steeper
than Kolmogorov’s k−5/3 spectrum [26–28]. Anas and Verma [29] showed that the variable
energy formalism successfully explains the spectral steepening of quasi-static MHD turbu-
lence observed in numerical simulations and experiments [26–28]. For a very strong magnetic
field, the Joule dissipation steepens Eu(k) even further and yields an exponential spectrum,
which is exp(−ck), where c is a constant.

In shear turbulence, shear acts at small wavenumbers and injects energy to the flow. This
injected energy leads to an increase in the kinetic energy flux with k. This variation in the
kinetic energy flux may be responsible for the 1/ f noise reported for many shearing flows
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[30–32]. On the other hand, Ekman friction acts at all scales and depletes the kinetic energy
flux in the inertial range leading to a steeper kinetic energy spectrum than k−5/3 [33, 34].

In the viscous range of hydrodynamic turbulence, dΠu(k)/dk = −2νk2Eu(k), where ν is the
kinematic viscosity. The viscous dissipation leads to steep decline in Πu(k) and Eu(k) in the
dissipation range. Researchers [11, 35–37] have attempted to model the energy spectrum in this
range. In particular, Pao [35] derived that in the inertial–dissipation range of 3D hydrodynamic
turbulence, Πu(k) and Eu(k)k5/3 vary as exp{−c(k/kd)4/3}, where c is a constant, and kd is the
Kolmogorov wavenumber. Pao’s model for the 3D inertial–dissipation range has been extended
to 2D hydrodynamic turbulence [14, 38]. Falkovich [39] and Verma and Donzis [40] showed
that the energy flux plays an important role in the bottleneck effect. Recently, Kuchler et al
[41] performed a detailed experimental study of bottleneck effect.

In most complex flows, one or several secondary fields are coupled to the velocity field. The
secondary field could be the density field in buoyant flows, the temperature field in thermal
convection, the magnetic field in MHD turbulence, or the conformation tensor of polymers in
polymeric flows. The nonlinear term associated with the secondary field also induces energy
transfer or secondary-energy flux. The potential-energy fluxes of stably stratified turbulence
and turbulent thermal convection are examples of such fluxes. In addition, a coupling between
the velocity field with the secondary field often yields energy exchange between the velocity
field and the secondary field, as well as variability in the secondary energy flux [42–44]. This
phenomena is related to the turbulent drag reduction in polymeric turbulence [45–47] and in
MHD turbulence [48].

The enstrophy (
∫

dr 1
2 |ω|2, whereω is the vorticity field) and kinetic helicity (

∫
dr 1

2 |[u · ω])
are important quantities of hydrodynamic turbulence. The fluxes of these quantities exhibit
interesting properties. For example, the enstrophy flux has a similar structure as those of kine-
matic dynamo [14, 24]. In MHD turbulence, the flux of magnetic helicity too exhibit interesting
properties [25].

Under strong external field, stably stratified turbulence, MHD turbulence, and rotating
turbulence become quasi-two-dimensional (quasi-2D) with |u⊥| � u‖, where u⊥ and u‖ are
respectively the perpendicular and parallel components of the velocity field in relation to the
anisotropy direction. On the other hand, in thermal convection, |u⊥| � u‖. In these flows, the
pressure acts as a mediator for the energy exchange between the parallel and perpendicular
components of the velocity field [14, 28, 49]. The energy fluxes of u⊥ and u‖ help us model the
anisotropic nature of such flows. The secondary fields too have similar anisotropic fluxes, but
these quantities have not been analyzed in detail. As described earlier, the other useful tools
for anisotropic flows are ring spectrum and ring-to-ring energy transfers.

Quantum systems, such as superfluids and Bose–Einstein condensate, too exhibit turbulent
behaviour for a range of parameters. Researchers have studied energy spectra and fluxes of
these systems. For example, in helium-4, normal and superfluid components interact with each
other that leads to a variability in their energy fluxes (e.g. [50–53] and references therein). The
scenario is more complicated in helium-3 that lacks normal component; here phonon coupling
at small scales is expected to provide the dissipation [54, 55].

The energy flux is a useful diagnostic tool for other nonequilibrium systems as well. For
example, in binary-mixture turbulence, the energy flux provides valuable insights into the
field dynamics, especially for phase separation and coarsening [56, 57]. Researchers have also
employed time-dependent Ginzburg–Landau and Cahn–Hilliard (CH) equations to model the
coarsening process [58, 59], where the energy flux is proving to be a very useful tool [56, 57].

Lee [60] and Kraichnan [61] showed that inviscid hydrodynamic turbulence (ν = 0) exhibits
equilibrium behaviour (also called absolute equilibrium). The energy flux for this case van-
ishes due to the detailed energy balance among the Fourier modes [8]. The evolution of such
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systems depends quite critically on the initial condition. For example, Cichowlas et al [62]
showed that Taylor–Green vortex as an initial condition yields a mixture of k−5/3 and k2 spec-
tra, which approaches k2 spectrum at all wavenumbers asymptotically. On the contrary, for
delta-correlated field as an initial condition, the system exhibits k2 spectrum for the whole
range of wavenumbers [63, 64]. The former system exhibits variable energy flux, but the lat-
ter system (equilibrium configuration) has no energy flux. The absolute equilibrium theory of
hydrodynamics has been extended to MHD turbulence [65, 66], quantum turbulence [67, 68],
Burger turbulence [69], and other forms of turbulence [6, 8].

The aforementioned turbulent systems have been studied extensively in the past, including
in books [3–11, 14] and review articles [70]. The equation of variable energy flux, dΠu(k)/dk =
Fu(k) − Du(k), too appears in several textbooks, for example [6–9]. In this review article, we
illustrate how various turbulent phenomena can be connected via variable energy flux. We also
present the scaling laws and energy fluxes of many turbulent systems thematically in the frame-
work of variable energy flux. This perspective helps model and understand several turbulent
systems. For example, using variable energy flux, it has been shown that the dynamics of tur-
bulent thermal convection is very different from that of stably stratified turbulence, contrary to
a popular view that the Bolgiano–Obukhov scaling for stably stratified turbulence [19, 20] also
works for turbulent thermal convection [71–73]. The different behaviour of the energy fluxes
of the two systems played a key role in the resolution of this critical puzzle.

The structure of the review is as follows. Section 2 introduces the energy transfers and
energy flux in hydrodynamic turbulence. The formalism of variable energy flux is presented in
section 3. In this section, we present variable energy fluxes in the dissipation range of hydro-
dynamic turbulence and in shear turbulence. In section 4 we derive the energy flux for the
secondary field that is advected by velocity field and show how it could become variable when
a multiscale force is applied to the secondary field. In section 5 we describe the energy exchange
between the secondary field and the velocity field, as well as those between the field compo-
nents in anisotropic turbulence. Section 6 contains discussions on turbulence in stably stratified
flows and thermal convection. Section 7 describes variable energy fluxes in MHD turbulence
and in quasi-static MHD turbulence. Here, we discuss several exact relations among the fluxes
of MHD turbulence. In section 8, we show how energy flux is an useful tool to describe a tur-
bulent flow with dilute polymer. Section 9 describes the fluxes associated with enstrophy and
kinetic helicity, while section 10 contains discussions on 2D and quasi-2D turbulence. Variable
energy fluxes in dissipationless systems are discussed in section 11, while those in quantum
turbulence and binary-mixture turbulence are discussed in section 12. In section 13 we briefly
discuss how to compute energy fluxes using field-theoretic tools. We conclude in section 14.

2. Energy flux in hydrodynamics

In this section, we introduce the kinetic energy flux of hydrodynamics. We start with the basic
equations of hydrodynamics in real and Fourier spaces.

2.1. Basic equations of hydrodynamics

The Navier–Stokes (NS) equations given below describe an incompressible flow [15]:

∂u
∂t

+ (u · ∇)u = −1
ρ
∇p+ Fu + FLS + ν∇2u, (1)

∇ · u = 0, (2)
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where u(r, t) is the velocity field, p(r, t) is the pressure field, FLS is the large-scale external
force, Fu is the force field such as buoyancy, and ν is the kinematic viscosity. Under incom-
pressible limit, the fluid density ρ can be treated as a constant. In this review, without loss of
generality, ρ is taken to be unity. We distinguish FLS and Fu to clearly demarcate the energy
transfers from these forces. Note that Fu could be a function of the velocity field; for example,
Ekman friction is −αu, where α is a constant. For an incompressible flow, the pressure field
is determined using

p = −∇−2∇ · [(u · ∇)u − Fu − FLS] . (3)

The ratio of the nonlinear term (u · ∇)u and the viscous term ν∇2u is called Reynolds number
Re, which is UL/ν, where U, L are the large-scale velocity and length respectively.

In three-dimensional (3D) inviscid (ν = 0) hydrodynamics, for a periodic or vanishing
boundary condition, the total kinetic energy, Eu = 1

2

∫
dru2, and the total kinetic helicity,

HK = 1
2

∫
dr(u · ω), are conserved [6, 8, 9]. Here, ω = ∇× u is the vorticity field. In two-

dimensional (2D) hydrodynamics, the total kinetic energy and the total enstrophy, 1
2

∫
dr|ω|2,

are conserved. Note that the physics of turbulence in 2D and 3D are quite different. In this
review, we will focus on the fluxes of kinetic energy and associated secondary energy in 3D
flows. The fluxes of other quantities, such as enstrophy and kinetic helicity, will be discussed
briefly.

The multiscale energy transfers and fluxes are conveniently described using the velocity
Fourier modes. For compactness, we denote the Fourier transform of u(r) using u(k); here r and
k denote the real and Fourier space coordinates respectively. In a Fourier space convolution, the
other wavenumbers are denoted by p and q. The wavenumbers are discrete for a flow confined
in a finite box, but they form a continuum for a flow in an infinite box.

The NS equations are transformed in Fourier space as [6, 8, 9, 23]

d
dt

u(k) + Nu(k) = −ikp(k) + Fu(k) + FLS(k) − νk2u(k), (4)

k · u(k) = 0, (5)

where

Nu(k) = i
∑

p

{k · u(q)}u(p) (6)

is the Fourier transform of the nonlinear term (u · ∇)u. Here q = k − p. The equation for the
pressure mode p(k) is

p(k) =
i

k2
k · {Nu(k) − Fu(k) − FLS(k)}. (7)

We define modal kinetic energy for wavenumber k as Eu(k) = 1
2 |u(k)|2. Note that Parseval’s

theorem yields the following relation for the total kinetic energy:

Eu =
1
2
〈|u(r)|2〉 = 1

Vol

∫
dr

1
2
|u(r)|2 =

∑
k

1
2
|u(k)|2, (8)

where ‘Vol’ is the volume of the box. We derive the following dynamical equation for Eu(k)
by performing a scalar product of equation (4) with u∗(k) and adding the resulting equation
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with its complex conjugate [6, 8, 9, 23]:

d
dt

Eu(k) = Tu(k) + Fuk) + FLSk) + Du(k)

=
∑

p

�
[
{k · u(q)}{u(p) · u∗(k)}

]
+R[Fu(k) · u∗(k)]

+R[FLS(k) · u∗(k)] − 2νk2Eu(k), (9)

where q = k − p, and R[.], �[.] stand respectively for the real and imaginary parts of the
argument. In the above equation, Tu(k) is the nonlinear energy transfer from all the Fourier
modes to u(k); Fu(k),FLSk) are the respective energy supply rates from Fu and FLS to u(k);
and Du(k) is the viscous dissipation rate of u(k).

The nonlinear interactions of equation (9) induce complex energy transfers among the
Fourier modes. However, a peep into a single wavenumber triad provides interesting insights
into the nature of nonlinear interactions [74], which will be described below.

2.2. Triadic energy transfers and energy flux in hydrodynamics

Kraichnan [74] focussed on a pair of interacting wavenumber triads, (k, p, q) and (−k,−p,−q)
with a condition that k = p + q. The corresponding Fourier modes are u(k), u(p), u(q) and
their complex conjugates: u∗(k), u∗(p), u∗(q). For convenience, we set ν = 0 to suppress the
viscous dissipation rate, which is a trivial linear term of equation (9). In addition, we assume
that Fu = 0 and FLS = 0.

The wavenumbers k, p, q of equation (9) are not symmetric (note k = p + q). The formulas
for the energy transfers are best expressed using a symmetric set (k′, p, q) obeying a constraint,
k′ + p + q = 0. Note that k′ = −k. For this triad, the dynamical equation for the modal energy
Eu(k′) is

d
dt

Eu(k′) = −�
[
{k′ · u(q)}{u(p) · u(k′)}+ {k′ · u(p)}{u(q) · u(k′)}

]
= Suu(k′|p, q). (10)

The equations for Eu(p) and Eu(q) are written in a similar manner.
The function Suu(k′|p, q), called the combined energy transfer, represents the net kinetic

energy transfer from modes u(p) and u(q) to u(k′). Note that the energy of the mode u(k′) grows
at a rate of dEu(k′)/dt. Using equation (10) and the incompressibility condition, k′ · u(k′) = 0,
we derive that [6, 74]

Suu(k′|p, q) + Suu(p|q, k′) + Suu(q|k′, p) = 0 (11)

that leads to the conservation of the total energy within a triad.
Even though Kraichnan’s combined energy transfer formula has been widely used, it does

not provide individual energy transfers among the Fourier modes. This task was first achieved
by Dar et al [42] who derived the mode-to-mode energy transfer from mode u(p) to mode u(k′)
with the mediation of mode u(q) as [43].

Suu(k′|p|q) = −�
[
{k′ · u(q)}{u(p) · u(k′)}

]
. (12)

The formula contains a scalar product between the receiver mode u(k′) and the giver mode u(p),
and another scalar product between the receiver wavenumber k′ and the mediator mode u(q).
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The successive arguments of Suu are receiver, giver, and mediator wavenumbers respectively.
In terms of wavenumbers k, p, q with k = p + q, the above formula is written as

Suu(k|p|q) = �
[
{k · u(q)}{u(p) · u∗(k)}

]
. (13)

Note that the mode-to-mode energy transfer functions satisfy the following properties:

Suu(k′|p|q) + Suu(k′|q|p) = Suu(k′|p, q), (14)

Suu(k′|p|q) = −Suu(p|k′|q). (15)

The latter property follows from the incompressibility condition: k′ · u(k′) = 0. Dar et al [42]
and Verma [43] showed that equation (12) satisfies equations (14) and (15), but it is not a
unique solution to equations (14) and (15). A circulating energy transfer that traverses along
wavenumbers p → k′ → q → p could be added to the respective mode-to-mode energy trans-
fers of equation (12) without violating equations (14) and (15). The circulating transfer enters
and leaves a mode, hence they do not alter the energy flux, which is a measurable quantity.
Therefore, the circulating transfer could be safely ignored. Later, using tensor analysis and
symmetry arguments, Verma [14] showed that equation (12) provides a unique formula for the
mode-to-mode energy transfer.

A fluid flow has many Fourier modes. Hence, the net energy transfer to the mode u(k) is a
sum of energy transfers from all other modes. In terms of mode-to-mode energy transfer, the
net energy transfer to u(k) is [42, 43]

d
dt

Eu(k) =
∑

p

Suu(k|p|q) + Fu(k) + FLS(k) − Du(k), (16)

where q = k − p. A comparison of equations (16) and (9) shows that

Tu(k) =
∑

p

Suu(k|p|q), (17)

is the net energy transfer to mode u(k) by nonlinearity. Also note that for any wavenumber
region A, ∑

p∈A

∑
k∈A

Suu(k|p|q) = 0. (18)

The above relation hinges on equation (15).
A very useful quantity in turbulence is the energy flux Πu(k0), which is the total energy

transfer from all the modes inside a wavenumber sphere of radius k0 to all the modes outside
the sphere. Starting from Kraichnan [74], researchers have derived a number of formulas for
Πu(k0) [1, 2, 6, 8, 9, 42, 43, 74, 75]. Here we present the flux formula in terms of mode-to-mode
energy transfer, which is

Πu(k0) =
∑
p�k0

∑
k>k0

Suu(k|p|q) =
∑
p�k0

∑
k>k0

�
[
{k · u(q)}{u(p) · u∗(k)}

]
(19)

with q = k − p. In the sum, the giver wavenumber p is inside the wavenumber sphere, while
the receiver wavenumber k is outside the sphere. For the above formula, it does not matter
whether the mediator wavenumber q is inside or outside the sphere. This liberty does not exist
for the combined energy transfer formula in which both u(p) and u(q) supply energy to u(k′).
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Figure 2. Illustration of the energy flux Πu(k0), the kinetic energy injection rates by
Fu(k) and FLS(k) (wheels), and the local viscous dissipation rate Du(k) (wavy lines).
The viscous dissipation is negligible at small wavenumbers.

The ambiguity of u(q) in the combined energy transfer poses a serious challenge for computing
the shell-to-shell energy transfers [42, 43].

We derive another set of formulas for the energy flux using Tu(k). We sum the terms of
equation (16) over all the modes inside the sphere that yields [6, 8, 9, 74]

d
dt

∑
k�k0

Eu(k) =
∑
k�k0

Tu(k) +
∑
k�k0

Fu(k) +
∑
k�k0

FLS(k) −
∑
k�k0

Du(k). (20)

To the wavenumber sphere of radius k0,
∑

k�k0
Fu(k) and

∑
k�k0

FLS(k) are the net energy
supply rates by Fu and FLS respectively; and

∑
k�k0

Du(k) is the net viscous dissipation rate in
the sphere (see figure 2). The sum

∑
k�k0

Tu(k) is the net energy transfer due to the nonlinear
term from the modes outside the sphere to the modes inside the sphere. Hence, by definition,

Πu(k0) = −
∑
k�k0

Tu(k). (21)

Using equations (20) and (21) we derive

Πu(k0) = − d
dt

∑
k�k0

Eu(k) +
∑
k�k0

Fu(k) +
∑
k�k0

FLS(k) −
∑
k�k0

Du(k). (22)

Similarly, using the following equation,

d
dt

∑
k>k0

Eu(k) =
∑
k>k0

Tu(k) +
∑
k>k0

Fu(k) +
∑
k>k0

FLS(k) −
∑
k>k0

Du(k), (23)

one obtainsΠu(k0) =
∑

k>k0
Tu(k) [6, 14]. Verma et al [76] employed equation (22) to compute

the energy fluxes of MHD turbulence.
Note that the energy fluxΠu(k) arises due to the nonlinear interactions. Its definition does not

hinge on the conservation laws for force-free inviscid flow, contrary to what is argued in some
literature. For example, in buoyant flows, Πu(k) is clearly defined, but total kinetic energy is
not conserved due to conversion of kinetic energy to potential energy. However, equations (20),
(22) and (23) are exact relations based on energy conservation for any region of Fourier space;
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the total incident energy to a volume of Fourier space yields rate of change of kinetic energy
in that region. The latter conservation law is related to the energy flux.

Interestingly, Tu(k)-based energy flux formula can be used for systems whose nonlinear
interactions differ from those of incompressible hydrodynamics. For example, for dissipation-
less Burgers equation, ∂tu = −∂xu2/2, the energy equation is

d
dt

1
2
|u(k)|2 =

∑
p

�[ku(k − p)u(p)u∗(k)] = T(k). (24)

Hence, the energy fluxΠ(k0) = −
∑

k<k0
T(k). We can also use the above procedure to compute

the energy flux forφ4 theory where the interaction is quartic, and T(k) ∼ φ(k1)φ(k2)φ(k3)φ(k4)
with k1 + k2 + k3 + k4 = 0 [77, 78]. Such schemes are useful for modelling energy transfers
in binary fluids, in time-dependent Ginzburg–Landau, and in Cahn-Hilliard equations. (See
section 12).

Kraichnan [74], Frisch [8], Alexakis et al [44, 75], and others have derived formulas for
the energy flux based on nonlinear interactions in Fourier space. These formulas will not be
discussed here due to lack of space and due to similarities with those discussed above. In
contrast, Kolmogorov’s formula for the energy flux [1, 2] is based on the third-order structure
function of real space.

For homogeneous, isotropic, and steady hydrodynamic turbulence, under the limit of
ν → 0, Kolmogorov [1, 2] formulated a theory for the third-order structure function. Assum-
ing the fluid to be forced at large scales, the theory predicts that the energy flux is constant
in the inertial range, and that the inertial-range energy spectrum is proportional to k−5/3. For
such systems, the constancy of the inertial-range energy flux can also be deduced using the
Fourier-space formalism. Since the flow is forced at large scales, Fu(k) = FLS(k) = 0 for the
inertial-range wavenumbers where Du(k) is negligible. For the steady state (〈∂tE(k)〉 = 0),
using equation (22), we deduce that in the inertial range [8, 14],

〈Πu(k)〉 = 〈εu〉 = const., (25)

where εu is the energy supply rate by the large-scale forcing, and 〈 f 〉 denotes the ensemble
average of the quantity f . We remark that Πu(k) and εu exhibit fluctuations with nontrivial
probability distribution function (PDF) [8]. Consequently, 〈[Πu(k)]q〉 �= 〈Πu(k)〉q for hydrody-
namic turbulence [8].

In Kolmogorov’s model, the inertial-range energy flux is constant under steady state because
Fu(k) = 0. The energy flux varies with k when the flow is forced in the inertial range
(Fu(k) �= 0). In this review, we will illustrate various systems with such kind of forcing. In
addition, the energy flux does not capture anisotropic effects because it is a sum over the modes
of a wavenumber sphere. We will discuss these issues in the next subsection.

2.3. Caveats for energy flux; anisotropic turbulence

In this subsection, we will discuss some more important issues related to the energy flux.

(a) Since Tu(k) is a scalar, the energy flux, which is a sum of Tu(k), is also a scalar. Note that
Πu(k) is the net energy transfer from the Fourier modes inside the sphere of radius k to
modes outside the sphere.

(b) Several authors (e.g. Nazarenko [79]) have proposed a vectorial energy flux 	Π(k) that
satisfies the following relation:

∇ · 	Π(k) = −Tu(k). (26)

10
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Figure 3. An illustration of the shell-to-shell energy transfer from wavenumber shell m
to shell n. The giver wavenumber p is in shell m, while the receiver wavenumber k is in
shell n. From Verma. Reproduced with permission from [14]. © Cambridge University
Press.

The vectorial flux 	Π(k) is useful for anisotropic flows, where the energy transfers depend
on the polar angle. However, we face several difficulties in this definition. Since divergence
of a solenoidal vector vanishes, we can always add such functions to 	Π(k), which makes
this energy flux indeterminate. This issue could be overcome by choosing a gauge (as in
electromagnetism).

A major difficulty with 	Π(k) is a lack of algorithm to compute this flux. It is hoped that
we will have a working definition of 	Π(k) in future.

(c) Another energy transfer of interest is that from a wavenumber shell to another shell. The
wavenumber space is divided into many shells. A shell with shell index m is defined as a
set of wavenumbers,

Shell(m) := {k : km−1 � |k| < km} , (27)

where km−1 and km are the inner and outer radii of the shell. The shell-to-shell energy
transfer from shell m to shell n is [42]

Tu,m
u,n =

∑
k∈n

∑
p∈m

Suu(k|p|q). (28)

We illustrate this transfer in figure 3. It is important to contrast the ‘shell’ of equation (27)
with that of the shell spectrum, where the shell width is typically taken to be unity.

(d) Keeping in mind the power-law physics of turbulent flows, typically, the shell radii for the
shell-to-shell transfers are logarithmically binned. Numerical simulations and experiments
reveal that Tu,m

u,n is scale invariant in the inertial range of hydrodynamic turbulence, that
is, Tu,m

u,n is a function of n − m [14, 42, 80]. In addition, the inertial-range shell-to-shell
energy transfer is forward and dominantly local. That is, in the inertial range, maximal
energy flows from shell m to m + 1 [81]. However, significant energy also gets transferred
to other shells (e.g. m to m + 2 and m + 3) via nonlocal transfers. See figure 4 for an
illustration, where km ∝ 2m/5 for the inertial-range shells. Due to the above reasons, the
energy flux is not analogous to real-space fluxes that represent transfers of quantities, such
as, mass, momentum, energy, electric field locally across a surface.
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Figure 4. Plot of Tu,m
u,n vs n − m for 3D hydrodynamic turbulence with Re = 68 000.

km ∝ 21/5 for inertial-range shells. From Verma. Reproduced with permission from [14].
© Cambridge University Press.

(e) External fields or anisotropic geometries typically induce anisotropy in the energy dis-
tribution, as well as in the energy transfers. Teaca et al [83] introduced ring spectrum
and ring-to-ring energy transfers for an axisymmetric flow. The anisotropy direction is
taken to be along ẑ, while the polar angle, θ, is the angle between k and ẑ. A ring is an
intersection of a shell and a sector. For example, a ring of index (i, j) is defined as

Ring(i, j) := {k : k ∈ Shell(i) ∩ Sector( j)} , (29)

where sector( j) is defined as the set,

Sector( j) :=

{
k : θ j−1 � arccos

(
k‖
|k|

)
< θ j

}
, (30)

with θ j denoting the angular division of the wavenumber space [82]. See figures 5(a) and
(b) for an illustration. The kinetic energy spectrum of ring(k, j) in Fourier space is defined
as,

Eu(k, j) =
1
A j

∑
k−1<|k′|�k;θ j−1<θ�θ j

1
2
|u(k′)2|, (31)

where A j := |cos(θ j) − cos(θ j−1)| is the normalization constant that compensates for the
uneven distribution of modes inside sectors. Note that a sector near the equator contains
more modes than those near the pole. The ring-to-ring energy transfer from ring (m,α) to
ring (n, β) is defined as

T (m,α)
(n,β) =

1
AαAβ

∑
k∈Ring(n,β)

∑
p∈Ring(m,α)

S(k|p|q). (32)

We also define conical energy flux for Fourier-space cones in the Fourier space (see
figure 5(c)). The axis of the cone is aligned along the anisotropy direction. Conical energy
flux for a cone with a half-angle of θ is the rate of energy transfer by modes inside the
cone to the modes outside the cone; the receiver Fourier modes have polar angle greater

12
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Figure 5. Illustrations of (a) wavenumber rings; (b) shells, sectors, and rings; (c) conical
energy transfer from the blue cone. In (c), the modes inside the blue cone transfer energy
to the modes outside the cone (the receiving modes have polar angle greater than θ).
From Sharma et al. Reprinted with permission from AIP. Reprinted from [82], with the
permission of AIP Publishing.

than θ. Therefore,

Π(θ) =
∑
k∈R

∑
p∈cone

S(k|p|q), (33)

where the region R represents the region of receiving Fourier modes (see figure 5(c)).
(f ) For isotropic systems, the energy transfers are isotropic. For example, isotropic flows do

not exhibit energy transfer (statistically) between any two rings with the same radius (for
example, red and green rings of figure 5). However, anisotropic turbulence exhibits energy
transfers among such rings. For example, in quasi-static MHD turbulence, energy flows
from equatorial rings to ones with lower polar angles (e.g. from green ring to red ring in
figure 5). The ring-to-ring energy transfers take place among nearest neighbours (local),
as well as among distant rings (nonlocal). Due to the above the nonlocal nature of ring-to-
ring energy transfers, the Fourier-space energy transfer for a turbulent flow is not a vector,
but it is a scalar.

(g) Note that neither the energy flux and nor the shell-to-shell energy transfer capture the
anisotropic energy transfers. However, the formulas of equations (19) and (21) are appli-
cable to isotropic, as well as anisotropic flows. The energy flux, which involves a sum over
Fourier modes of a sphere, is well-defined for such flows. Due to these reasons, energy
flux remains an important quantity for anisotropic turbulence (e.g. buoyant and MHD tur-
bulence), even though such flows are typically anisotropic. In subsequent sections we will
study variability of Πu(k) in anisotropic systems.

In the next section, we will show how the energy flux varies with wavenumbers due to
multiscale external force and dissipation.

3. Variable energy flux

The kinetic energy flux varies with wavenumbers in the presence of multiscale forcing and
dissipation [6, 8, 9, 11, 23]. In this review we summarise how past works employed this obser-
vation to deduce interesting properties of turbulence. We start this section with an equation
for the variable energy flux. In this section we assume the wavenumber k to be a continuous
variable.

13
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3.1. Formalism

Rewriting equation (20) for spheres of radii k and k + dk, and then taking a difference between
the two equations yields

d
dt

∑
k<k′�k+dk

Eu(k′) =
∑

k<k′�k+dk

Tu(k′) +
∑

k<k′�k+dk

Fu(k′)

+
∑

k<k′�k+dk

FLS(k′) −
∑

k<k′�k+dk

Du(k′). (34)

Using
∑

k<k′�k+dk Tu(k′) = [−Πu(k + dk) +Πu(k)] and taking the limit dk → 0, we obtain the
following evolution equation for one-dimensional energy spectrum Eu(k) [6, 8, 9, 11, 23]:

∂

∂t
Eu(k, t) = − ∂

∂k
Πu(k, t) + Fu(k, t) + FLS(k, t) − Du(k, t), (35)

where

Eu(k)dk =
∑

k<k′�k+dk

Eu(k′), (36)

Fu(k)dk =
∑

k<k′�k+dk

R[Fu(k′) · u∗(k′)], (37)

FLS(k)dk =
∑

k<k′�k+dk

R[FLS(k′) · u∗(k′)], (38)

Du(k)dk = 2ν
∑

k<k′�k+dk

k′2Eu(k′). (39)

Figure 6 illustrates the above quantities for a wavenumber shell whose inner and outer radii
are k and k + dk respectively. Also note that Tu(k, t) is defined as [5, 6]

Tu(k, t) = − ∂

∂k
Πu(k, t). (40)

Equation (35) describes how Πu(k) varies with k in an unsteady flow. Note that equation (35) is
based on energy conservation. The net rate of energy supply to a wavenumber shell determines
the rate of change of energy in that shell. This is an exact relation.

In this review we focus on the behaviour of the kinetic energy flux under a statistical steady
state. Setting 〈∂Eu(k, t)/∂t〉 = 0, where 〈.〉 represents averaging, in equation (34) yields the
following equation for the wavenumber shell of radius k:

d
dk

〈Πu(k)〉 = 〈Fu(k)〉+ 〈FLS(k)〉 − 〈Du(k)〉 . (41)

That is, the energy flux Πu(k) varies with k due to the energy injection rates Fu(k) and
FLS(k), and the viscous dissipation rate Du(k). For brevity, we avoid writing the angular brack-
ets throughout the review. We remark that equation (41) is an exact relation in a statistical
sense. That is, the quantities Πu(k), Fu(k), FLS(k), and Du(k) fluctuate around their mean, but
equation (41) holds on an average. The structure of the equation is local, that is, the local
variation of the energy flux depends on the local energy injection by forcing and by the dissipa-
tion rate. This feature yields complimentary insights compared to Kolmogorov’s four-fifth law
[8, 14] in which real-space interactions are nonlocal, as we describe below.
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Figure 6. A figure illustrating the energy flux difference, Πu(k + dk) −Πu(k); the
energy injection rates Fu(k)dk and FLS(k)dk are represented by wheels; and the viscous
dissipation rate Du(k)dk is represented by wavy lines. Refer to equation (35).

Starting from NS equation, under the assumption of homogeneity and isotropy, Karman and
Howarth [84] (also see [4, 8]) derived the following evolution equation for

〈
uiu′

j

〉
:

∂

∂t
1
2
〈uiu

′
i〉 =

1
2

〈
u′

i
∂

∂t
ui

〉
+

1
2

〈
ui

∂

∂t
u′

i

〉

=
1
4
∇l ·

〈
|u′ − u|2(u′ − u)

〉
+ 〈FLS,iu

′
i〉+ ν∇′2 〈uiu

′
i〉

= Tu(l) + FLS(l) − Du(l). (42)

In the above equation, u and u′ represent velocities at two different locations. The above
derivation makes use of tensorial and symmetry properties (homogeneity and isotropy) of the
correlation functions. For example, 〈pu′

i〉 = 〈p′ui〉 = 0 due to isotropy. For details, refer to [2,
8, 15, 85, 86].

Fourier transform of equation (42) yields equation (16). The Fourier transform of 1
4∇l ·〈

|u′ − u|2(u′ − u)
〉

yields Tu(k), while those of FLS(l) and Du(l) yield FLS(k) and Du(k)
respectively. See figure 7(a) for an illustration. Thus, the Fourier and real space formalisms
are equivalent, as expected. Further, the term Tu(l) is a product of three velocity differences.
Among them, the product |u′ − u|2 includes the gier and receiver fields, while the third δu is
the mediator field (see figure 7(b)). Hence, the structure of the nonlinear energy transfer in real
and Fourier space are similar.

Coming back to Fourier space, in the intermediate wavenumber range, the nonlinear term
dominates the viscous term, a reason for which this is called the inertial range. In addition,
FLS(k) = 0 and Du(k) ≈ 0 in this range. Therefore,

d
dk

Πu(k) = Fu,in(k), (43)

where the subscript ‘in’ stands for the inertial range. Thus, the energy flux varies due toFu,in(k).
Behaviour of Πu(k) can be classified into the following four categories (see figure 8):
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Figure 7. (a) A figure illustrating connection between the terms of the energy equations
in real and Fourier spaces. (b) Similarity between the nonlinear energy terms Tu(l) and
Tu(k). Here f̂ represents Fourier transform operation of the real function f .

Figure 8. Four categories of Πu(k) depending on the inertial-range forcing Fu,in(k):
(a) Fu,in(k) = 0 and Πu(k) = 0 (equilibrium); (b) Fu,in(k) = 0 and Πu(k) = C > 0
(nonequilibrium); (c) Fu,in(k) < 0 ⇒ dΠu(k)/dk < 0; (d) Fu,in(k) > 0 ⇒ dΠu(k)/dk >
0. Viscous dissipation Du(k) dominates the nonlinear term beyond wavenumber kDI.

(a) Fu,in(k) = 0 and Πu(k) = 0: this case corresponds to the absolute equilibrium scenario of
Euler’s equation (Navier Stokes equation with ν = 0) [60, 61]. For this case, the aver-
age energy exchange between any two Fourier modes is zero. That is, 〈Suu(k′|p|q)〉 = 0
for any triad, thus satisfying detailed balance of kinetic energy transfer. Therefore, as in
thermodynamics, the modal kinetic energy spectrum Eu(k) = constant, leading to
Eu(k) ∼ k2 and ∼k for 3D and 2D hydrodynamic turbulence respectively [6, 12, 43, 60,
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61, 70]. We will discuss these cases in more detail in section 11. A related phenomenon
to this cases is flux loop cascade [87, 88], which will be discussed in section 10.

(b) Fu,in(k) = 0 and Πu(k) = C > 0: this regime is described by Kolmogorov’s theory of tur-
bulence. For this nonequilibrium case, 〈Suu(k′|p|q)〉 > 0 for k′ > p and vice versa. We
briefly describe this case in in section 3.2.

(c) Fu,in(k) < 0 and dΠu(k)/dk < 0: for Fin(k) < 0, the kinetic energy flux decreases with
k. Notable examples in this category are quasi-static MHD turbulence, flows with Ekman
friction, and stably-stratified turbulence. These flows are described in subsequent sections.

(d) Fu,in(k) > 0 and dΠu(k)/dk > 0: the kinetic energy flux increases in this case. Leading
examples for this case are turbulent thermal convection and shear turbulence that will be
described in later sections.

In the above four cases, the nature of energy fluxes in the inertial range is the asymptotic
behaviour with the effects of large-scale forcing and dissipative effects suppressed.

In literature, it has been argued that the energy flux in turbulence is related to the conserved
quantities [6, 8]. For an inviscid force-free hydrodynamics, all the terms in the right-hand-side
of equation (41) vanish. Hence, Πu(k) is a constant, in fact zero, as we describe for case (a).
This is a consequence of conservation of kinetic energy, and it yields an equilibrium solution.

However, a more interesting scenario is case (b) that includes large-scale forcing and vis-
cous dissipation. Here, the total kinetic energy is not conserved. But, the equation for the
variable energy flux hinges on the principle of energy conservation: the net energy injected
into a wavenumber shell alters the energy fluxes at the two surfaces of the shell. A direct con-
sequence of the above is that Πu(k) is a nonzero constant in the inertial range when Fu = 0.
Note that the absence of Fu plays a key role in the energy conservation for the inviscid and
force-free hydrodynamics. This is the connection between the conservation law and constancy
of energy flux in the inertial range where the large-scale forcing and dissipative effects have a
minimal role.

In later parts of the paper we will show that secondary fields (e.g. magnetic field and buoy-
ancy) induce Fu (see cases (c) and (d) described above). Consequently, the total kinetic energy
is not conserved for such systems in the inviscid and force-free limit. Following the arguments
described above, we observe that such systems do not exhibit constant Πu(k) in the inertial
range. However, some systems with secondary field exhibit conserved quantities that are func-
tion of velocity and secondary fields. For example, in stably stratified turbulence, the total
energy, which is a sum of kinetic and potential energies, is conserved in the inviscid limit. We
show in section 6 that the flux associated with the total energy is constant in the inertial range.
Thus, conservation laws are connected to the constancy of inertial-range fluxes of appropriate
quantities. In addition, we can derive certain exact relations using the equations for variable
energy fluxes for the velocity and secondary fields (see sections 4, 6 and 7). Thus, the formalism
of variable energy flux provides interesting insights into the physics of turbulence.

In the following discussion, we provide several examples of variable energy flux in hydro-
dynamic turbulence. We start with a brief description of energy flux in inertial–dissipation
range of hydrodynamic turbulence.

3.2. Variable energy flux in the inertial–dissipation range

According to Kolmogorov’s theory of turbulence [1, 2, 8], a homogeneous, isotropic, and
steady 3D hydrodynamic turbulent flow with large-scale forcing exhibits a constant energy flux
in the inertial range. Kolmogorov simplified equation (42) under the above assumptions and
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arrived at the four-fifth law. Note that the constancy of inertial-range energy flux for hydrody-
namic turbulence with large-scale forcing follows from equation (43) with Fu,in(k) = 0. Thus,
the equation representing variable energy flux is very useful.

A key assumption in Kolmogorov’s theory is that the flow is forced at large scales. Another
important assumption of Kolmogorov’s theory of turbulence is that the physics in the inertial
range is independent of the forcing and dissipative mechanisms [5, 6, 8]. Hence, the energy
spectrum Eu(k) is isotropic, and it depends only on εu and local wavenumber k. Absence of any
external length scale implies that Eu(k) is a power law in k. This assumption is related to the
locality of interactions in hydrodynamic turbulence [80, 89, 90], which was briefly discussed
in the previous section.

The above inputs and dimensional analysis yield

Eu(k) = KKoε
2/3
u k−5/3, (44)

where εu is the viscous dissipation rate. Note that the dissipation rate matches with the inertial-
range energy flux under steady state. We remark that equation (44) is an approximate relation.
Experiments and numerical simulation reveal small correction to spectral exponent (from 5/3
to 1.70) due to intermittency [8, 91]. However, equations (41) and (43) are exact relations in
the statistical sense, similar to Karman–Howarth relation [84] and Kolmogorov’s four-fifth law
[1, 2].

Kolmogorov’s k−5/3 energy spectrum is observed in the inertial range of hydrodynamic tur-
bulence, but not in the dissipative range. Using the data from numerical simulations, Chen
et al [36] and Martinez et al [37] proposed that in the far-dissipation range, the energy spec-
trum varies as kα exp

(
−ck/kd

)
, whereα, c are constants, and kd = (εu/ν

3)1/4 is Kolmogorov’s
wavenumber. Pao [35] argued in favour of k−5/3 exp(−c(k/kd)4/3) spectrum. Pope [11] showed
that the following energy spectrum is a good fit to many experimental observations (see e.g.
[92]):

Eu(k) = KKoε
2/3k−5/3 f L(kL) fη(k/kd), (45)

where f L(kL), fη(k̃) represent the large-scale and dissipative-scale components respec-
tively. Recently, using numerical simulations, Buaria and Sreenivasan [93] argued that
E(k) ∼ k−5/3 exp(−c(k/kd)2/3). The exponent 2/3 is determined using the best-fit curve on
the function φ(k) = d log E(k)/d log k = α− βγ(kη)γ . See figure 9 for an illustration.

Here we present Pao’s model [35], which is based on the variable energy flux. In the
inertial–dissipation range, where Fu = FLS = 0, equation (41) yields

d
dk

Πu(k) = −2νk2Eu(k). (46)

Pao’s model makes the following ansatz to close the equation: in the inertial-dissipative range,
Πu(k)/Eu(k) is independent of ν and is function only of k and εu (also see [5]). Under these
assumptions, dimensional analysis with an aid of equation (44) yields

Eu(k)
Πu(k)

= KKoε
−1/3
u k−5/3. (47)

Substitution of equation (47) in (46) yields

Πu(k) = εu exp

(
−3

2
KKo(k/kd)4/3

)
, (48)
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Figure 9. (a) Normalized energy spectrum (E(k)k5/3ε
−2/3
u ) in the inertial–dissipation

range, computed using numerical simulations with Taylor-scale Reynolds num-
ber ranging from 140 to 1300. (b) The log-derivative of energy spectrum
φ(k) = d log E(k)/d log k, which is modelled as α− βγ(kη)γ , with α,β, γ as constants.
The green curve at the top indicates the best-fit curve with γ = 2/3. From Buaria and
Sreenivasan. Reproduced from [93]. CC BY 4.0.

Figure 10. (a) and (b) The energy spectra and fluxes of hydrodynamic turbulence for a
40963 DNS exhibited as a red curve. Predictions of Pao’s model (green curve) and Pope’s
model (dashed curve) are also shown in the figure. Figures (a) and (b) are adopted from a
figure of Verma et al. Reprinted by permission from Springer Nature Customer Service
Centre GmbH: Springer. Fluid Dyn. [81] © 2018.

Eu(k) = KKoε
2/3
u k−5/3 exp

(
−3

2
KKo(k/kd)4/3

)
. (49)

Pao [35] showed that the above energy spectrum describes many experimental observations
[94] reasonably well. Recently, Verma et al [81] showed that the above spectrum and flux
describe the results of high-resolution numerical simulations reasonably well, but it marginally
overpredicts the energy flux and spectrum in the dissipation range (see figure 10). This discrep-
ancy arises because the numerical results indicate that equation (47) is not strictly valid (see
the discussion in the following subsection and figure 12).
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Figure 11. (a) Bottleneck effect observed by Ishihara et al in high-resolution simulations
on grids ranging from 20483 to 12 8883. From Ishihara et al. Reprinted figure with per-
mission from [95], Copyright (2016) by the American Physical Society. (b) Bottleneck
effect observed by Kuchler et al in an experiment on hydrodynamic turbulence over a
wide range of Reynolds number. From Kuchler et al. Reproduced from [41]. CC BY 4.0.
(c) Spyksma et al showed that Bottleneck effect is enhanced in the presence of hypervis-
cosity: higher the hyperviscous effect, higher the bottleneck effect. From Spyksma et al.
Reprinted from [96], with the permission of AIP Publishing. Figures (a) and (c) repro-
duced with permission from APS and AIP respectively; Figure (b) reproduced under the
terms of the Creative Commons CC BY license.

3.3. Bottleneck effect and variable energy flux

In hydrodynamic turbulence, the normalised energy spectrum Eu(k)k5/3 exhibits a hump
between the inertial range and the dissipation range [39–41, 92, 97] (see figures 9(a) and 10(a)).
This phenomena, called bottleneck effect, is not yet fully understood. Falkovich [39] related
the bottleneck effect to the nonlinear energy transfer Tu(k) of equation (40). Verma and Donzis
[40] argued that the observed bottleneck effect in most experiments and simulations is due to
the insufficient inertial range available for facilitating the energy transfer from the large scales
to small scales. Ishihara et al [95] observed bottleneck effect in their high-resolution numeri-
cal simulations with the strength of bottleneck decreasing with the increase of grid resolution.
Kuchler et al [41] performed an experimental study of bottleneck effect and arrived at a similar
conclusion. Spyksma et al [96] showed that the bottleneck effect gets enhanced by hypervis-
cosity. These results are illustrated in figure 11. Interestingly, as shown in figure 10, Pao’s
model does not exhibit bottleneck effect.
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Figure 12. For the DNS of Verma et al [81], the normalized energy spectrum Ẽ(k) =
E(k)k5/3ε

−2/3
u /KKo (blue solid curve), normalized flux Π̃u(k) = Πu(k)/εu (red solid

curve), and the ratio Π̃u(k)/Ẽu(k) (green chained curve). The hump in Ẽ(k) commenses
when Π̃u(k)/Ẽu(k) starts to decrease.

The energy flux provides complimentary inputs to the present understanding of the bot-
tleneck effect. In the inertial range, Πu(k) ∝ Eu(k)k2/3, meaning that the energy flux is
proportional to the normalized energy spectrum. However, Πu(k) decreases sharply in the dis-
sipation range. This sharp decrease in the energy flux leads to a pile up of energy near the
junction between the inertial range and the dissipation range, as in wave shoaling, as suggested
by Sheremet et al [98]. This connection however needs more careful investigation.

To quantify the connection between the energy flux and bottleneck effect further, in
figure 12 we plot the normalized flux Π̃u(k) = Πu(k)/εu, the normalized energy spectrum
Ẽ(k) = E(k)k5/3ε

−2/3
u /KKo, and their ratio for the numerical data of Verma et al [81]. For the

three datasets, the ratio Π̃u(k)/Ẽ(k) exhibits significant variations in the inertial and dissipation
range, which is contrary to the assumptions of Pao [35]. Interestingly, the bottleneck effect (the
hump in Ẽ(k)) commences when Π̃u(k)/Ẽ(k) starts to decrease, which is near the vertical red
lines in figure 12. This is an important diagnostics that needs to be investigated even further
using more numerical and experimental datasets.

The curves of figure 12 indicate that Π̃u(k)/Ẽ(k) is not a constant in the inertial–dissipation
range. This is the reason why the predictions of Pao’s model deviate from the numerical data.
This observation provides us clues for a better modelling of the dissipation range of a turbulent
energy spectrum.

The above discussion on Pao’s model and the bottleneck effect illustrates the usefulness of
the energy flux.

3.4. k−1 spectrum in shear turbulence

Many turbulent systems exhibit k−1 energy spectrum at small wavenumbers or 1/ f frequency
spectrum at small frequencies. For example, Tichen [30] and Pereira et al [32] observed k−1

energy spectrum in shear-driven turbulence. In the solar wind, Matthaeus and Goldstein [31]
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reported 1/ f spectrum for small frequencies where solar wind jets may create shear turbulence.
Recently, Duguid et al [99] reported 1/ f spectrum for the total kinetic energy of thermal con-
vection at large time scales. To explain the k−1 spectrum at small k’s, Tchen [30] modelled
shear turbulence at large scales using Heisenberg’s turbulence model [100]; he argued that
the shear induces strong resonance in the flow, which in turn yields uk ∼ constant. Hence,
Eu(k) ∼ u2

k/k ∼ k−1.
In the following discussion we derive k−1 spectrum using variable energy flux. The veloc-

ity shear injects kinetic energy to the small-wavenumber modes of the flow. Hence, we
expect that FLS(k) > C that leads to an increase in the energy flux Πu(k) with k, as in case
(d) discussed in section 3.1. Consequently, we make an ansatz that the energy spectrum
Eu(k) ∼ [Πu(k)]2/3k−5/3. Since Πu(k) will increase with k, it is expected that Eu(k) will be shal-
lower than k−5/3. In particular, for FLS(k) = C, equation (43) yields Πu(k) =

∫ kFLS(k′)dk′ =
Ck. Now, using dimensional analysis we derive that

Eu(k) ∼ C2/3k−1. (50)

As argued in section 2, the energy flux can be defined for shear turbulence even though it is
anisotropic. The above wavenumber-dependentFLS(k) is tune with the earlier works by Yakhot
and Orszag [101] and Sain et al [102].

The above mechanism provides a plausible explanation for the k−1 energy spectrum in shear
turbulence [30–32]. The low-frequency 1/ f spectrum in the solar wind may be due to the shear
experienced by wind jets [31], while that in thermal convection may be due to shear among
the large-scale thermal plumes [99]. Note that we convert the wavenumber spectrum to the
frequency spectrum using Taylor’s hypothesis, which is applicable to the solar wind because
it is much faster than spacecrafts [103]. In thermal convection, Taylor’s hypothesis is expected
to work under certain conditions [104–106].

The above theory of k−1 spectrum in shear turbulence hinges on the assumption that
Fu(k) = C, which needs to be tested using experiments and/or numerical simulations. Inter-
estingly, 1/ f noise has been reported in a large number of physical systems—electric currents,
ion-channel currents, music, earthquakes, etc (see [107–109], and references therein). It is pos-
sible that 1/ f spectrum in the electric and ion-channel currents are connected to shear in the
electron flow. This conjecture, however, needs to be tested.

In addition to the above, there are many more examples of variable energy flux. In stably-
stratified turbulence,Πu(k) decreases as k−4/5 due to buoyancy [19, 20]. On the contrary,Πu(k)
increases marginally in turbulent thermal convection. We will describe these fluxes in section 6.
In MHD turbulence, the kinetic energy flux varies in the inertial range itself due to the Lorentz
force. Similar variations are observed in solvents with polymers, quantum turbulence, binary-
mixture turbulence, etc. We will discuss these systems in sections 7 and 12. In addition, the
energy flux variations can be generalised to other quantities such as enstrophy and kinetic
helicity; these issues will be discussed in section 9.

With this, we close our brief discussion on variable energy flux in hydrodynamic turbulence.
In the next section, we will discuss variable energy flux in the presence of a secondary field.

4. Variable energy flux in flows with a secondary field: formalism

Consider a secondary field ζ advected by the velocity field u. This secondary field could be a
scalar, a vector, or a tensor. Leading examples of a scalar field are density and temperature of
a fluid; that of a vector field are magnetic field, dipolar field, and flock velocity; and that of
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Table 1. Energy (Eζ ) and modal energy (Eζ (k)) of a secondary field.

Scalar Vector Tensor

Eζ
1
2

〈
ζ2
〉

1
2 〈ζ · ζ〉 1

2 〈ζi jζi j〉
Eζ (k) 1

2 |ζ(k)|2 1
2 |ζ(k)|2 1

2 ζi j(k)ζ∗i j(k)

a tensor are the configuration tensor of a polymer and stress tensor of an elastic fluid. In this
section, we present energy fluxes associated with a secondary field and those arising due to the
interactions between the velocity and secondary fields. As we describe below, many features
of energy transfers are common among the scalar, vector, and tensor secondary fields.

4.1. Variable energy flux associated with a secondary field

The equations for the velocity field u are same as those covered in section 2, except that the
force field for the velocity field (Fu) could be a function of u, ζ, r, and t. The equations for the
secondary field are

Scalar :
∂ζ

∂t
+ (u · ∇)ζ = Fζ(u, ζ) + κ∇2ζ, (51)

Vector :
∂ζ

∂t
+ (u · ∇)ζ = Fζ (u, ζ) + κ∇2ζ, (52)

Tensor :
∂ζi j

∂t
+ (u · ∇)ζi j = Fζ,i j(u, ζ) + κ∇2ζi j, (53)

where κ is the diffusion coefficient of the secondary field, and Fζ is the force field for the
secondary field. Two important nondimensional parameters are Prandtl number, Pr = ν/κ,
and Pélet number, Pe, which is the ratio of the nonlinear term and the diffusion term in the
equation for the secondary field, that is,

Pe =
(u · ∇)ζ
κ∇2ζ

=
UL
κ

, (54)

where U, L are the large-scale velocity and length respectively.
Similar to the kinetic energy, we define secondary energy and associated modal energy,

as listed in table 1. For discrete wavenumbers, one-dimensional secondary energy spec-
trum is defined as Eζ(k) =

∑
k−1<k′�k Eζ (k′), but for continuum wavenumbers, Eζ (k)dk =∑

k<k′�k+dk Eζ (k′). The evolution equation for the modal secondary energy of a scalar is

d
dt

Eζ(k) = Tζ (k) + Fζ(k) − Dζ(k)

=
∑

p

�
[
{k · u(q)}{ζ(p)ζ∗(k)}

]
+R[Fζ(k)ζ∗(k)] − 2κk2Eζ (k). (55)

In the above equation, Tζ(k) is the nonlinear transfer of secondary energy to ζ(k), Fζ(k) is the
secondary energy transfer to ζ(k) by Fζ(k), and Dζ(k) is the diffusion or dissipation rate of ζ(k).
The equations for the vector and tensor fields are very similar to the above equations, except
that the field multiplication is performed appropriately (scalar product or tensor product).
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Several important points regarding the secondary field are

(a) When Fζ is a linear function of u, the scalar energy injection rate Fζ(k) = R[Fζ(k)ζ∗(k)]
is a function of u(k) and ζ(k). We encounter such forms of Fζ(k) in stably stratified
turbulence and in thermal convection where Fζ ∝ uz. Similar properties hold for Fu(k)
when Fu is a linear function of ζ .

(b) When Fζ is a nonlinear function of u and/or ζ, the scalar energy injection rate Fζ(k) is a
convolution. Therefore,Fζ(k) involves wavenumbers other than k. For example, in MHD
turbulence, where Fζ = ζ · ∇u with ζ as the magnetic field,

Fζ(k) =
∑

p

−�
[
{k · ζ(k − p)}{u(p) · ζ∗(k)}

]
(56)

is a convolution. The nonlinear Fu yields a similar convolution.

The nonlinear term (u · ∇)ζ (and similar ones for vector and tensor) for the secondary
field facilitates scalar energy transfer. For a wavenumber triad (k′, p, q), the mode-to-mode
secondary energy transfer from wavenumber p to wavenumber k with the mediation of
wavenumber q is [22, 23, 110]:

Scalar : Sζζ(k′|p|q) = −�
[
{k′ · u(q)}{ζ(p)ζ(k′)}

]
, (57)

Vector : Sζζ(k′|p|q) = −�
[
{k′ · u(q)}{ζ(p) · ζ(k′)}

]
, (58)

Tensor : Sζζ(k′|p|q) = −�
[
{k′ · u(q)}{ζi j(p)ζi j(k′)}

]
. (59)

In the above equations, the giver and receiver modes are from the secondary field, while
a velocity mode acts as a mediator for the secondary energy transfer. The aforementioned
form of energy transfer also follows from the structure of nonlinear term (u · ∇)ζ where u
advects the scalar field ζ . Also, the superscript of Sζζ refer to the receiver and giver fields, both
being ζ .

Using incompressibility condition, we can show that the mode-to-mode secondary energy
transfer functions satisfy the following property:

Sζζ(k′|p|q) = −Sζζ(p|k′|q). (60)

Using equation (60) we deduce that for a wavenumber region A (including a triad),∑
k′∈A

∑
p∈A

Sζζ(k′|p|q) = 0. (61)

This relation also implies that Eζ is conserved when Fζ = 0 and κ = 0. Using the formula for
the mode-to-mode energy transfers, we define the secondary energy flux for a wavenumber
sphere of radius k0 as [5, 6, 8, 22, 23, 110]:

Πζ (k0) =
∑
k′>k0

∑
p�k0

Sζζ(k′|p|q). (62)

Here, Πζ(k0) is the net secondary energy transfer from all the modes inside the sphere to all
the modes outside the sphere.

Following similar lines of arguments as in section 3, we derive the following evolution
equation for the scalar energy spectrum Eζ(k) [6, 14]:

∂

∂t
Eζ(k, t) = − ∂

∂k
Πζ(k, t) + Fζ(k, t) − Dζ(k, t), (63)

24



J. Phys. A: Math. Theor. 55 (2022) 013002 Topical Review

where

Eζ(k)dk =
∑

k<k′�k+dk

Eζ(k′), (64)

Fζ(k)dk =
∑

k<k′�k+dk

R[Fζ(k′)ζ∗(k′)], (65)

Dζ(k)dk =
∑

k<k′�k+dk

2κk′2Eζ(k′). (66)

Here, Fζ(k) represents the scalar energy supply rate by Fζ to shell k, and Dζ(k) represents
the diffusion or dissipation rate of the scalar energy in shell k. For the vector and tensor sec-
ondary fields, equation (65) involves vector and tensor products respectively. For a steady state
(∂Eζ(k)/∂t = 0), equation (63) yields

d
dk

Πζ(k) = Fζ(k) − Dζ(k). (67)

Thus, the energy flux of a secondary field is affected by Fζ(k) and Dζ(k). We may obtain a
steady state when ζ field is forced at large scales.

In the inertial range, Dζ (k) ≈ 0, hence

d
dk

Πζ = Fζ,in(k), (68)

where the subscript ‘in’ of Fζ,in represents the inertial range. Therefore, in the inertial range,
similar to the description of section 3, variations ofΠζ(k) can be classified into four categories:

(a) Fζ,in(k) = 0 and Πζ(k) = 0,
(b) Fζ,in(k) = 0 and Πζ(k) = C > 0,
(c) Fζ,in(k) < 0 and dΠζ (k)/dk < 0,
(d) Fζ,in(k) > 0 and dΠζ (k)/dk > 0.

The interpretation of the above four cases are very similar to those for the kinetic energy flux
discussed in section 3 and exhibited in figure 8. Note that the first case corresponds to the equi-
librium configuration for the secondary field. We will describe these cases in the subsequent
sections.

4.2. Cross energy transfers between the velocity and secondary fields

In this subsection we describe the energy transfers from the velocity field to the secondary field
and vice versa. We consider k0 beyond k f and rewrite equation (20) as [6, 14]

d
dt

∑
k�k0

Eu(k, t) =
∑
k�k0

Tu +
∑
k�k0

Fu(k) +
∑
k�k0

FLS(k) −
∑
k�k0

Du(k)

= −Πu(k0) +Πζ
u<(k0) + εinj −

∑
k�k0

Du(k), (69)

where εinj is the kinetic energy injection rate by the large-scale force, and Πζ
u<(k0) is the

net energy transfer from all the ζ modes to the velocity modes within the sphere of radius
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Figure 13. (a) The fluxΠζ
u<(k0) (Πζ

u>(k0)) represents the energy transfer from ζ modes to
the velocity modes inside (outside) the sphere. (b) The flux Πu

ζ<(k0) (Πu
ζ>(k0)) represents

the reverse energy transfers, i.e. from all the velocity modes to ζ modes inside (outside)
the sphere.

k0. In Πζ
u<(k0), the superscript and subscripts denote the giver and receiver field variables

respectively, while < denotes the modes within the sphere. In the same vein, we define

Πζ
u>(k0) =

∑
k>k0

Fu(k) (70)

as the net energy transfer from all the ζ modes to the velocity modes outside (represented by
the symbol >) the sphere of radius k0. Using the evolution equation for Eζ(k) we deduce that

Πu
ζ<(k0) =

∑
k�k0

Fζ(k); Πu
ζ>(k0) =

∑
k>k0

Fζ(k) (71)

are the respective energy transfers from all the velocity modes to the ζ modes inside and outside
of the sphere of radius k0. Figure 13 illustrates these fluxes.

The net energy transfer from ζ to u is

Fu =
∑

k

Fu(k) = Πζ
u<(k) + Πζ

u>(k). (72)

Since Fu is a fixed number, the sum Πζ
u<(k) +Πζ

u>(k) is constant in k. Similarly, the net energy
transfer from u to ζ is

Fζ =
∑

k

Fζ(k) = Πu
ζ<(k) +Πu

ζ>(k). (73)

with the sum Πu
ζ<(k) +Πu

ζ>(k) as a constant in k. Note however that the individual fluxes (e.g.
Πu

ζ<(k)) may vary with k.
Using the definitions of the above fluxes, we derive the following relations [14]:

d
dk

Πζ
u>(k) = −Fu(k);

d
dk

Πζ
u<(k) = Fu(k);

d
dk

Πu
ζ>(k) = −Fζ(k);

d
dk

Πu
ζ<(k) = Fζ(k). (74)
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Figure 14. Schematic diagram illustrating the identities (a) Πu(k0) +Πζ
u>(k0) =∫∞

k0
dk′Du(k′); (b) Πζ (k0) +Πu

ζ>(k0) =
∫∞

k0
dk′Dζ(k′). The wheel in the centre of (a)

represents kinetic energy injection rate εinj.

If we assume an absence of large scale forcing for ζ , then the fluxes obey the following
properties under steady state:

Πu(k0) +Πζ
u>(k0) =

∫ ∞

k0

dkDu(k′, t), (75)

Πζ (k0) +Πu
ζ>(k0) =

∫ ∞

k0

dkDζ (k), (76)

∫ k0

0
dkFu(k) = Πu(k0) +Πu<

ζ (k0) +
∫ k0

0
dkDu(k) (77)

Πu
ζ<(k0) = Πζ (k0) +

∫ k0

0
dkDζ (k). (78)

The dissipative terms become significant only in the dissipation range. Hence, for k0 in the
inertial range,

∫ k0
0 dkDu,ζ(k′, t) ≈ 0 and

∫∞
k0

dkDu,ζ (k′, t) ≈ εu,ζ . In addition, we assume that the

forcing is at large scales, hence,
∫ k0

0 dkFu(k) ≈ εinj. Therefore, for a inertial-range spheres of
radius k0,

Πu(k0) +Πζ
u>(k0) = εu, (79)

Πζ (k0) +Πu
ζ>(k0) = εζ , (80)

εinj = Πu(k0) +Πu<
ζ (k0), (81)

Πu
ζ<(k0) = Πζ (k0). (82)

Note that some of the fluxes, such as Πu(k0) and Πζ
u>(k0), vary with k, hence, they are variable

energy fluxes. However, the above combinations of fluxes are constants (statistically) due to
the conservation of energy. We call the above equations as exact relations of energy fluxes.
These relations are illustrated in figures 14 and 15.

Physical interpretations of the above identities are as follows. As shown in figure 14(a),
the energy incident to the velocity modes outside the wavenumber sphere is destroyed in the
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Figure 15. Schematic diagram illustrating identities for a steady state: (a) εinj = Πu

(k0) +Πu<
ζ (k0) +

∫ k0
0 dkDu(k); (b) Πu

ζ<(k0) = Πζ (k0) +
∫ k0

0 dkDζ (k). The wheel in the
centre of (a) represents kinetic energy injection rate εinj.

dissipation range by viscosity. Similar energetics are observed for the secondary field, as shown
in figure 14(b). These conservation laws refer to exact relations of equations (75) and (76)
respectively. Figures 15(a) and (b) illustrate that the energy incident at large-scale velocity and
secondary fields get cascaded as energy fluxes to inertial range, and gets dissipated in the large
scales. These equalities refer to exact relations of equations (77) and (78) respectively. These
identities have important consequences in MHD turbulence and in drag reduction in polymeric
flows [47]. We will discuss these issues is section 7.

Conservation laws are related to the exact relations for the energy fluxes. In addition, for
some systems, the total energy,

∫
dr(u2 + ζ2)/2, is conserved in the inviscid limit. For example,

for MHD turbulence, the sum of kinetic and magnetic energies is conserved; the sum of
kinetic and potential energies is also conserved for stably stratified flows. Energetically, these
conditions corresponds to

Fu + Fζ = 0. (83)

Consequently, equations (72) and (73) yield the following exact relation:

Πζ
u<(k) +Πζ

u>(k) +Πu
ζ<(k) +Πu

ζ>(k) = 0. (84)

We will describe these fluxes and exact relation in later sections of this review.
In subsequent discussion, we will describe the role of variable energy flux in several turbu-

lent flows with secondary fields, namely, passive scalar flow, buoyancy driven flows, MHDs,
and polymer solution. Note that in the turbulent limit, the nonlinear terms (u · ∇)u and (u · ∇)ζ
dominate the respective dissipation terms, and hence Re � 1 and Pe � 1.

In the next subsection, we describe the scaling of passive secondary turbulence.

4.3. Turbulence with a passive secondary field

Consider a flow whose Fu is independent of the secondary field ζ and, hence, the velocity field
is unaffected by the secondary field. However, the secondary field ζ is affected by u. This is the
reason why such a ζ is called a passive secondary field [3–8]. We will discuss the properties
of such flows in this subsection.
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If the forces on the velocity and the passive secondary fields are active only at large scales,
then Fu,in(k) = 0 andFζ,in(k) = 0, where the subscript ‘in’ refers to the inertial range. For such
field configurations, using equations (43) and (68) we deduce that Πu(k) andΠζ(k) are constant
in the inertial range. Since the velocity field is unaffected by ζ, the kinetic energy is described
by Kolmogorov’s theory of turbulence (see section 3.2). Therefore, the kinetic energy spectrum
is given by equation (44).

In the inertial range, Πζ(k) = const. = εζ , where εζ is the energy dissipation rate of the
secondary field. Using dimension analysis and similar arguments as in section 3.2, one obtains
[6–8]

Eζ(k) = KOCεζ(εu)−1/3k−5/3, (85)

where KOC is the Obukhov–Corrsin constant. The above scaling has been verified using several
numerical simulations and experiments [6–9, 111, 112]. For the inertial–dissipation range,
using arguments similar to those in section 3.2, Pao [113] derived that

Πζ (k) = εζ exp

(
−3

2
KOC(k/kc)4/3

)
, (86)

Eζ(k) = KOCεζε
−1/3
u k−5/3 exp

(
−3

2
KOC(k/kc)4/3

)
, (87)

where kc =
(
εu/κ

3
)1/4

is Kolmogorov’s diffusion wavenumber. Hence, kc/kd = Pr3/4.
The above arguments are valid when Re � 1 and Pe � 1. The spectral properties are quite

different for other regimes (e.g. Re � 1 and Pe � 1) [23, 114, 115], which are not discussed
in this review. In the next section, we will discuss how variable energy flux play an important
role in anisotropic turbulence.

5. Variable energy flux in anisotropic turbulence

Typically, a fluid flow becomes anisotropic in the presence of a strong external field (e.g. mean
magnetic field, buoyancy, external rotation field). In such flows, we denote the velocity com-
ponents perpendicular and parallel to the external field as u⊥ and u‖, and the corresponding
energy spectra as Eu,‖(k) = 1

2 |u‖(k)|2 and Eu,⊥(k) = 1
2 |u⊥(k)|2 respectively. The corresponding

energy fluxes are [23, 28]:

Πu,‖(k0) =
∑
k′>k0

∑
p�k0

−�
{[

k′ · u(q)
] [

u‖(k
′)u‖(p)

]}
, (88)

Πu,⊥(k0) =
∑
k′>k0

∑
p�k0

−�
{[

k′ · u(q)
] [

u⊥(k′) · u⊥(p)
]}

, (89)

where k = p + q and k′ = −k.
The evolution equations for the one-dimensional spectra Eu,⊥(k) and Eu,‖(k) are

∂

∂t
Eu,‖(k, t) = − ∂

∂k
Πu,‖(k, t) + P(k, t) − 2νk2Eu,‖(k, t) + Fu,‖(k) + FLS,‖(k), (90)

∂

∂t
Eu,⊥(k, t) = − ∂

∂k
Πu,⊥(k, t) − P(k, t) − 2νk2Eu,⊥(k, t) + Fu,⊥(k) + FLS,⊥(k), (91)
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where

P(k)dk =
∑

k<k′�k+dk

�
{

k‖p(k)u∗
‖(k)

}
, (92)

and Fu,‖(k),FLS,‖(k), Fu,⊥(k), and FLS,⊥(k) are the energy injection rates to u‖ and u⊥ by the
parallel and perpendicular components of Fu and FLS. Under a steady state and in the inertial
range with Fu = 0 and FLS = 0,

d
dk

Πu,‖(k) = − d
dk

Πu,⊥(k) = P(k). (93)

Thus, Πu,⊥(k) and Πu,‖(k) vary with k. However,

d
dk

Πu(k) =
d
dk

[Π‖(k) +Πu,⊥(k)] = 0. (94)

That is, the energy flux Πu(k) is constant in inertial range, as expected from Kolmogorov’s
theory of turbulence. Note that P(k) facilitates energy transfers between the perpendicular and
parallel components of the velocity field.

In later sections, we briefly discuss anisotropy in stably stratified turbulence, turbulent ther-
mal convection, quasi-static MHD turbulence, and MHD turbulence. In all these systems,
pressure plays an important role in energy exchange between u⊥ and u‖. In section 10.2 we
show how the above energy transfers take an active part in quasi-2D turbulence generated
by strong rotation, external magnetic field, or gravity. We refer the reader to earlier works
[49, 70, 82, 116] for further details. We also remark that similar formulas need to be derived for
the secondary fields as well. For example, it will be interesting to investigate how the parallel
and perpendicular components of the magnetic field exchange energy among themselves.

In the next section we describe how the ideas of variable energy flux yields interesting
insights into the physics of buoyancy-driven turbulence.

6. Variable energy flux in buoyancy-driven turbulence

Buoyancy-driven flows can be broadly classified into two categories: stable and unstable
[10, 23, 117, 118]. The properties of these two categories of flows are very different [119]. For
brevity, our focus would be on flows with linear stratification, which is a good approximation
for a small region of planetary or stellar atmospheres.

In the next two subsections we will review the turbulence phenomenologies of stably-
stratified and unstably-stratified flows. Since gravity affects the velocity field, the secondary
fields in such flows are called active fields. The buoyant flows are typically anisotropic due to
external gravity. Still, one-dimensional energy spectrum and flux are often employed to charac-
terize such flows because they provide cumulative effects over the polar angles (angle between
the buoyancy direction and wavenumber k). For justification, refer to section 2. More advanced
tools like ring spectrum and ring-to-ring energy transfer too have been applied to model such
flows, but these topics are beyond the scope of this review.

6.1. Stably stratified turbulence

A flow is said to be stably stratified when the density of a fluid under gravity decreases with
height. See figure 16(a) for an illustration. The background density profile is

ζ̄(z) = ζb +
dζ̄
dz

z = ζb +
ζt − ζb

d
z, (95)
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Figure 16. For stably stratified turbulence: (a) a schematic diagram depicting the den-
sity ζ(z) that decreases with height; (b) kinetic energy flux, Πu(k), decreases for k < kB,
and is constant for kB < k < kDI, where kB is the Bolgiano wavenumber, and kDI is
the wavenumber beyond which the dissipation range starts. (c) Secondary energy flux,
Πζ (k), increases marginally for k < kB, and is constant for kB < k < kDI. For turbulent
thermal convection: (d) a schematic diagram depicting a fluid between two plates whose
temperatures are Tb and T t (Tb > T t); (e) and (f) Πu(k) and Πζ (k) are approximately
constant in the inertial range.

where ζ̄(z) is the vertical density profile, which is assumed to be linear; gravity is along −ẑ;
and ζb, ζ t are respective densities at the bottom and top layers of the flow that is confined
within a vertical distance d. Stably stratified environment supports internal gravity waves with
Brunt–Väisälä frequency, which is given by [117, 118]

N =

√
g
ζm

∣∣∣∣dζ̄
dz

∣∣∣∣, (96)

where ζm is the mean density of the whole fluid, and g is the acceleration due to gravity.
Another useful nondimensional number is Richardson number, which is the ratio of buoyancy
and nonlinear term.
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The governing equations for the system are [10, 23, 117, 118]

∂u
∂t

+ (u · ∇)u = −∇σ − Nζ ẑ + ν∇2u + FLS, (97)

∂ζ

∂t
+ (u · ∇)ζ = Nuz + κ∇2ζ, (98)

where σ is the pressure, ζ → (gζ)/(Nζm) is the density fluctuation in velocity units, and −Nζ ẑ
is buoyancy. For periodic or vanishing boundary condition and in the absence of dissipative
terms, the total energy,

Eu + Eζ =

∫
dr

1
2

u2 +

∫
dr

1
2
ζ2, (99)

is conserved [10, 23, 117, 118, 120]. In the above expression, Eζ is the total potential energy.
The forces related to buoyancy are

Fu = −Nζ ẑ; Fζ = Nuz, (100)

which are linear functions of the field variables. Clearly, the energy injection rates by these
two forces are

Fu(k) = −NR[ζ(k)u∗
z (k)], (101)

Fζ(k) = NR[ζ(k)u∗
z (k)]. (102)

Hence, Fζ(k) + Fu(k) = 0. Therefore, in the inertial range where Du(k) = 0 and
Dζ(k) = 0, adding equations (43) and (68) yields

d
dk

[Πu(k) + Πζ(k)] = Fu + Fζ = 0 (103)

leading to constancy of Πu(k) +Πζ(k) in the inertial range. Note that Fu + Fζ = 0 plays an
important role in the conservation of total energy in the inviscid limit (see equation (99)). For
the forced and dissipative equations, the same condition, Fu + Fζ = 0, leads to constancy of
total energy flux. Due to the local interactions in Fu(k) and Fζ(k), the cross fluxes Πu<

ζ>(k),

Πu>
ζ<(k), Πζ<

u>(k), and Πζ>
u<(k) are zeros.

Stably stratified turbulence has complex properties, which are discussed in detail in many
books and papers, for example, Lindborg [120], Davidson [118], and references therein. In this
review, to present applications of variable energy flux in buoyant flows, we describe the spec-
tral analysis for moderately stratified flows where |u · ∇u| ≈ Nζ. For such flows, Richardson
number is of the order of unity.

For moderately stratified flows, Bolgiano [19] and Obukhov [20] provided the first phe-
nomenological model. They assumed that for a wavenumber band in the inertial range,

ku2
k = Nζk; Πζ = kζ2

k uk = εζ (104)

that yield the following fluxes and spectra for the velocity and density fields:

Eu(k) = c1ε
2/5
ζ N4/5k−11/5, Πu(k) = c3ε

3/5
ζ N6/5k−4/5, (105)

Eζ(k) = c2ε
4/5
ζ N−2/5k−7/5, Πζ (k) = εζ . (106)
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Clearly, the kinetic energy flux Πu(k) decreases with k, in contrast to constant Πu in the inertial
range of 3D hydrodynamic turbulence. The reduction of Πu(k) occurs due to the conversion
of kinetic energy to potential energy, and it leads to a steepening of Eu(k) [19–21, 23, 118,
120]. Since the declining Πu(k) is much less than unity, constancy of total energy flux yields
Πζ (k) ≈ const. [121]. See figures 16(b) and (c) for an illustration.

In addition, Obukhov [19] and Obukhov [20] predicted that buoyancy becomes weak for
k > kB, where kB ≈ N3/2ε

−5/4
u ε

3/4
ζ is Bolgiano wavenumber. Due to the weak buoyancy, Bol-

giano and Obukhov predicted that both kinetic and secondary energies exhibit k−5/3 spec-
trum for kB < k < kDI, where kDI is the wavenumber beyond which dissipation becomes
significant. See figure 16(b) for an illustration. Using the constraint kB � kd, where kd is
Kolmogorov’s wavenumber, Alam et al [121] showed that simultaneous presence of both the
scaling regimes (k−11/5 and k−5/3) requires very large Reynolds number. Hence, the k−5/3

regime of Bolgiano–Obukhov phenomenology is quite difficult to reproduce in numerical
simulations.

Kimura and Herring [122] reported Bolgiano–Obukhov scaling for a narrow wavenumber
band in their decaying simulation on a 1283 grid. Kumar et al [21] performed a numerical sim-
ulation of stably stratified turbulence on a 10243 grid for Richardson number around unity and
observed a good agreement between numerical results and the predictions of equations (105)
and (106). Rosenberg et al [123] reported Bolgiano–Obukhov scaling in their simulation of
rotating stratified turbulence.

Strong buoyancy (large Richardson number) makes the flow anisotropic, hence Bol-
giano–Obukhov scaling is inapplicable to such flows. Lindborg [120] and Davidson [118]
argued that the longitudinal and traverse velocity components exhibit k−3 and k−5/3 spectra
respectively. Variable energy flux may provide interesting clues for this regime as well. For 2D
stably stratified turbulence, Kumar et al [124] derived several interesting relations using vari-
able energy flux. Also note that buoyancy is weak for flows with small Richardson number.
Hence, such flows exhibit Kolmogorov’s spectrum [21].

In the next subsection we will employ the ideas of variable energy flux to turbulent thermal
convection.

6.2. Turbulent thermal convection

Thermal convection too is driven by buoyancy. However, in contrast to the stably stratified
flows, the fluid density increases with height that makes the flow unstable. A setup, exhib-
ited in figure 16(d), consists of a thin fluid layer confined between two thermally conducting
plates separated by a distance d. The temperatures of the bottom and top plates are Tb and T t

respectively.
In thermal convection, the temperature is a sum of externally-imposed linearly varying

temperature T̄(z) and fluctuation ζ(x, y, z):

T(x, y, z) = T̄(z) + ζ(x, y, z), (107)

where

T̄(z) = Tb +
dT̄
dz

z = Tb −
Tb − Tt

d
z. (108)

The equations for thermal convection under Boussinesq approximation are [125]

∂u
∂t

+ (u · ∇)u = − 1
ζm

∇σ + αgζ ẑ + ν∇2u, (109)
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∂ζ

∂t
+ (u · ∇)ζ =

Δ

d
uz + κ∇2ζ, (110)

∇ · u = 0, (111)

where α,κ are respectively the thermal expansion coefficient and thermal diffusivity of the
fluid, g is the acceleration due to gravity, and Δ = Tb − T t. The two important parameters of
turbulent thermal convection are Prandtl number, Pr = ν/κ, and Rayleigh number,

Ra =
αgd3Δ

νκ
. (112)

Note that the forces

Fu = αgζ ẑ, Fζ =
Δ

d
uz (113)

are linear functions of the field variables.
In thermal convection, hot plumes ascend and cold ones descend. Hence, 〈ζ(r)uz(r)〉 > 0.

Therefore, using Parceval’s theorem we deduce that∑
k

R
[
〈ζ(k)u∗

z (k)〉
]
> 0. (114)

Further, numerical simulations reveals that R
[
〈ζ(k)u∗

z (k)〉
]
> 0 for most Fourier modes of

thermal convection [22]. Hence,

Fu(k) = αgR[ζ(k)u∗
z (k)] > 0 (115)

Fζ(k) =
Δ

d
R[ζ(k)u∗

z (k)] > 0 (116)

Therefore, in the inertial range where Du(k) = 0 and Dζ (k) = 0, subtracting (αgd/Δ) ×
equation (68) from equation (43) yields

d
dk

[
Πu(k) − αgd

Δ
Πζ (k)

]
= 0 (117)

leading to

Πu(k) − αgd
Δ

Πζ(k) = const. (118)

In the dissipationless limit,
∫

dr 1
2 [u2 − (αgd/Δ)ζ2], a sum of kinetic energy and potential

energy, is conserved. Here, the potential energy,− 1
2 (αgd/Δ)ζ2, is negative because the system

is unstable. Since this potential energy can be converted to kinetic energy, it is also called avail-
able potential energy. Contrast this potential energy with that for stably stratified turbulence
[118]. Also, note that constancy of Πu(k) − (αgd/Δ)Πζ(k) is related to the above conservation
law, as we argued for the stably stratified turbulence.

Equation (115) implies that Πu(k) should increase with k. However, for Pr ∼ 1, Verma et al
[22] showed that Fu(k) ∼ (kL)−5/3, hence, Fu(k) is small in the inertial range because kL � 1.
The functionFu(k) is even steeper for small Prandtl numbers [23]. These observations indicate
that large-scale thermal plumes drive the flow, similar to the forcing in Kolmogorov’s theory
for hydrodynamic turbulence. These results falsify the popular statements that thin thermal
plumes drive thermal convection.
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Based on similarities between the forcing in thermal convection and Kolmogorov’s model
of turbulence, Kumar et al [21] and Verma et al [22] argued that for Pr � 1, Πu(k) remains
an approximate constant in the inertial range and Eu(k) ∼ k−5/3. Kumar et al [21] and Verma
et al [22] verified the above phenomenology using high-resolution numerical simulations. The
above flux-based arguments resolve the long impasse in the field regarding the energy spec-
trum. Note that several past works [71–73, 126] projected that Bolgiano–Obukhov’s scaling
for stably stratified turbulence (Eu(k) ∼ k−11/5) holds for turbulent thermal convection as well,
while experimental and numerical works were inconclusive. For large Prandtl numbers, the
flow is dissipative and Eu(k) ∼ k−13/3 [23, 127].

However, there is a major difference between hydrodynamic turbulence and turbulent con-
vection. In turbulent convection, inertial-range kinetic energy flux is a fraction of the total vis-
cous dissipation rate. This is because thermal plumes drive the flow at all scales. In particular,
under steady state, for wavenumber k in the inertial range,

Πu(k) ≈
∫ k

0
dk′Fu(k′) =

∫ ∞

0
dk′Fu(k′) −

∫ ∞

k
dk′Fu(k′)

= εu −
∫ ∞

k
dk′Fu(k′), (119)

where εu is the total viscous dissipation rate. Using equation (119) we deduce that the inertial-
range kinetic energy flux Πu(k) < εu due to the presence of buoyancy at all scales. Using
numerical simulations, Bhattacharya et al [128] showed that for Pr = 1, the inertial-range
Πu(k) is around one-third of εu.

Turbulent thermal convection has other complex issues, e.g. anisotropy, anomalous heat
transport, boundary layers, but these topics are beyond the scope of this review. In the pass-
ing we remark that for moderate Prandtl numbers, turbulent thermal convection exhibit near
isotropy. Following the analysis of section 5, Nath et al [129] showed that for thermal con-
vection, P(k) of equation (92) is negative implying that energy transfer takes place from u‖ to
u⊥. This observation is consistent with the fact that bouyancy drives u‖, which in turn provides
energy to u⊥.

There are many turbulent flows with unstable stratification, notably Rayleigh–Taylor tur-
bulence [130], bubbly turbulence [131], Taylor–Couette turbulence [132, 133], etc. Based on
the arguments of this subsection, we expect that the turbulence properties of unstable stable
stratification are similar to those of hydrodynamic turbulence, e.g. Eu(k) ∼ k−5/3 [22, 23]. The
results on Rayleigh–Taylor turbulence [130, 134, 135] and Taylor–Couette turbulence [132]
in some regimes are consistent with the above observations.

In the aforementioned buoyant flows, Fu and Fζ are linear functions of ζ and u respectively.
Hence the cross energy transfer occurs among the modes with same wavenumbers. Therefore,
Fu(k) and Fζ (k) are functions only of local wavenumber k. However, when Fu and Fζ are
nonlinear functions of u and/or ζ, the cross energy transfers are convolutions of u and ζ Fourier
modes. In the following section, we illustrate such energy transfers in MHD turbulence.

7. Variable energy fluxes in magnetohydrodynamic turbulence

Magnetohydrodynamic (MHD) turbulence is a vast area of research with many astrophys-
ical and engineering applications. It is covered in several books and review papers, e.g.
[25, 43, 70, 136–139] and references therein. The present section does not attempt to sum-
marise vast number of results of MHD turbulence, but focusses on variable energy fluxes of
MHD turbulence.
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A magnetofluid, which is a quasi-neutral and electrically-conducting collisional plasma,
is described using velocity field and magnetic field, which is denoted by ζ. In the following
subsection, we describe the governing equations for MHD turbulence.

7.1. MHD turbulence: governing equations and cross transfers

The dynamical equations for the velocity and magnetic fields of MHD are [136–138]

∂u
∂t

+ (u · ∇)u = −∇p+ (ζ · ∇)ζ + FLS + ν∇2u, (120)

∂ζ

∂t
+ (u · ∇)ζ = (ζ · ∇)u + κ∇2ζ, (121)

∇ · u = ∇ · ζ = 0, (122)

where p is the total (thermodynamic + magnetic) pressure, FLS is the large-scale external
force, and ν,κ are the kinematic viscosity and magnetic diffusivity respectively. In the above
equation, the magnetic field is in Alfvénic units, which has same dimension as the velocity
field; and the forces on u and ζ are

Fu = (ζ · ∇)ζ; Fζ = (ζ · ∇)u. (123)

For an inviscid flow (ν = κ = 0) with FLS = 0, under periodic or vanishing boundary condi-
tion, the total energy,

Eu + Eζ =

∫
dr

1
2

u2 +

∫
dr

1
2
ζ2, (124)

is conserved [136–138]. Here, Eζ is the total magnetic energy.
In Fourier space, the forces of equation (123) are

Fu(k) = i
∑

p

{k · ζ(q)}ζ(p); Fζ(k) = i
∑

p

{k · ζ(q)}u(p), (125)

where q = k − p. The equation for the kinetic and magnetic modal energies are

d
dt

Eu(k) = Tu(k) + Fu(k) + FLS(k) − Du(k)

=
∑

p

�
[
{k · u(q)}{u(p) · u∗(k)}

]
+ Fu(k) + FLS(k) − 2νk2Eu(k), (126)

d
dt

Eζ(k) = Tζ (k) + Fζ(k) − Dζ(k)

=
∑

p

�
[
{k · u(q)}{ζ(p) · ζ∗(k)}

]
+ Fζ(k) − 2κk2Eζ(k), (127)

where the kinetic and magnetic energy injection rates by the forces Fu(k) and Fζ(k) are

Fu(k) =
∑

p

−�
[
{k · ζ(q)}{ζ(p) · u∗(k)}

]
, (128)

Fζ(k) =
∑

p

−�
[
{k · ζ(q)}{u(p) · ζ∗(k)}

]
. (129)
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Note that Fu(k) facilitates energy transfer from ζ to u, while Fζ (k) yields energy transfer from u
to ζ. As remarked earlier,Fu(k),Fζ(k) are convolutions because Fu, Fζ are nonlinear functions
of u and ζ. In contrast, the corresponding transfers for the buoyant flows are functions of fields
at local wavenumber (see section 6).

The nonlinear structure of the cross transfers between u and ζ can be formulated in terms of
mode-to-mode energy transfers. For a triad (k′, p, q) satisfying k′ + p + q = 0, Dar et al [42]
and Verma [43] derived the following formulas for the mode-to-mode energy transfers from u
to ζ and vice versa:

Suζ(k′|p|q) = �
[
{k′ · ζ(q)}{ζ(p) · u(k′)}

]
= −�

[
{k · ζ(q)}{ζ(p) · u∗(k)}

]
, (130)

Sζu(k′|p|q) = �
[
{k′ · ζ(q)}{u(p) · ζ(k′)}

]
= −�

[
{k · ζ(q)}{u(p) · ζ∗(k)}

]
. (131)

The former is the mode-to-mode energy transfer from ζ(p) to u(k′) with the mediation of ζ(q),
while the latter provides the energy transfer from u(p) to ζ(k′) with the mediation of ζ(q). In
Scd(k′|p|q), the superscript c and d refer to receiver and giver fields respectively.

These transfers satisfy the property:

Scd(k′|p|q) = −Sdc(p|k′|q), (132)

that is, the energy gained by c(k′) from d(p) is negative of the energy gained by d(p) from
c(k′). This is a property of energy exchange. Using the above property, we can show that for
any region A of Fourier space, including a triad,∑

k′∈A

∑
p∈A

[Suζ(k′|p|q) + Sζu(p|k′|q)] = 0. (133)

By summing over all the Fourier modes, we deduce that Fu + Fζ = 0, where Fu and Fζ are
respectively the total energy gained by the velocity and secondary fields via cross energy
transfers. Note that stably-stratified turbulence too has Fu + Fζ = 0.

In three dimensions, MHD turbulence has two other conserved quantities: cross helicity
(
∫

dr(u · ζ)/2) and magnetic helicity (
∫

dr(A · ζ)/2, where A is the vector potential). In the
turbulent regime, both these quantities exhibit turbulent cascades [25, 70]. In this paper, we con-
sider the cross helicity flux (in addition to the energy fluxes), which is detailed in subsection 7.4.
The discussion of magnetic helicity flux is too complex too be covered here.

In the next subsection, we define the energy fluxes of MHD turbulence.

7.2. Various energy fluxes of MHD turbulence

Using the mode-to-mode energy transfers of equations (130) and (131), Dar et al [42] and
Verma [43] derived formulas for the energy fluxes of MHD turbulence for a wavenumber sphere
of radius k0. Note that Πu(k0) and Πζ(k0) are respective fluxes for the kinetic and magnetic
energies, while the energy flux Πu<

ζ>(k0) represents the net energy transfer from all the velocity
modes inside the sphere to all the magnetic modes outside the sphere, that is,

Πu<
ζ>(k0) =

∑
p�k0

∑
k′>k0

Sζu(k′|p|q). (134)

The other fluxes, Πζ<
u>(k0), Πu<

ζ<(k0), and Πu>
ζ>(k0) are defined similarly. Note that an application

of equation (132) yields

Πua
ζb(k0) = −Πζb

ua(k0), (135)
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Figure 17. The six energy fluxes of MHD turbulence. εu, εζ are the dissipation rates of
the velocity and magnetic fields respectively. The wheel in the centre of the velocity
sphere represents the external forcing at large scales.

where a, b represent< or>. The above energy fluxes of MHD turbulence, depicted in figure 17,
have been studied in great detail [42, 44, 140]. Interestingly, Πu<

ζ>(k) and Πζ<
u>(k) are absent in

buoyant flows due to the products of field variables with the same wavenumber (see section 6).
Now we relate the above quantities to the fluxes Πu

ζ<, Πu
ζ>, Πζ

u<, and Πζ
u> discussed in

section 4.2. Clearly,

Πζ
u<(k0) =

∑
k�k0

Fu(k) = Πζ<
u<(k0) +Πζ>

u<(k0), (136)

Πζ
u>(k0) =

∑
k>k0

Fu(k) = Πζ<
u>(k0) +Πζ>

u>(k0), (137)

Πu
ζ<(k0) =

∑
k�k0

Fζ(k) = Πu<
ζ<(k0) +Πu>

ζ<(k0), (138)

Πu
ζ>(k0) =

∑
k�k0

Fζ(k) = Πu<
ζ>(k0) +Πu>

ζ>(k0). (139)

The identities of equations (72) and (73) are translated to the following identities for MHD
turbulence:

Fu = Πζ<
u<(k) +Πζ<

u>(k) +Πζ>
u<(k) +Πζ>

u>(k) = C1, (140)

Fζ = Πu<
ζ<(k) +Πu<

ζ>(k) +Πu>
ζ<(k) +Πu>

ζ>(k) = C2, (141)

where C1 and C2 are constants. The above two sums are constant in k even though the individual
flux in the sum can vary with k. Note that C1 is the net energy transfer from ζ to u, while C2 is
the net energy transfer from u to ζ. Hence, C2 = −C1 due to the conservation of total energy.
The above equality also follows because of the identity of equation (135). Interestingly, the
vorticity field has similar properties as the magnetic field (with some important deviations)
[141]. In section 9.1 we will describe various fluxes associated with the vorticity field.
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Figure 18. MHD turbulence: various energy fluxes associated with u and ζ computed
numerically. The total energy flux, Πtot, matches with the total energy injection rate of
0.4 in the inertial range (k = (3, 20)). But, all other fluxes vary in the inertial range itself.
From Verma et al. Reproduced from [142]. CC BY 4.0.

Under a steady state with no external forcing for ζ, the net nonlinear energy transfer to the
magnetic field, Fζ , balances the magnetic diffusion or dissipation rate, εζ . That is,

Fζ =
∑

k

2ηk2Eζ(k) = εζ > 0. (142)

Note however that an imbalance in Fζ and εζ makes the flow unsteady. For the velocity field,
Fu = −Fζ < 0. In addition, the viscous force dissipates the kinetic energy. Hence, for the
velocity field, a large-scale force, FLS, is required to maintain a steady state. Using energy
balance we obtain

εinj + Fu =
∑

k

2νk2Eu(k) = εu, (143)

where εinj is the total energy injection rate by FLS. In astrophysics, a supernova is an example
of one such energy source. Note that under a steady state, the net energy injection rate by FLS

equals the sum of viscous dissipation and Joule dissipation, i.e. εinj = εu + εζ .

7.3. Variable energy flux in MHD turbulence

The energy fluxes of MHD turbulence vary with k due to cross transfers between u and ζ.
Recently, Verma et al [142] simulated MHD turbulence and analyzed the variations of the
above energy fluxes. They employed random forcing to the large-scale velocity modes in
the wavenumber band (2, 3). The total kinetic-energy injection rate was taken as 0.4. Their
numerically-computed energy fluxes for the steady state are illustrated in figure 18. As shown
in the figure, all the energy fluxes vary with k due to cross transfers between the u and ζ [142].
For these reasons, the above fluxes are called variable energy fluxes.

However, the total energy flux, which equals the net energy transferred to the inertia-range
modes of velocity and magnetic field, is constant. That is,

εinj = Πu(k) +Πu<
ζ (k) = Πu(k) +Πu<

ζ<(k) +Πu<
ζ>(k)

= Πu(k) +Πζ (k) +Πζ<
u>(k) +Πu<

ζ>(k) = Πtot(k) = εu + εζ . (144)
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Figure 19. Numerical verification of the exact relations, equations (145)–(148). From
Verma et al. Reproduced from [142]. CC BY 4.0.

Here, we employ the identity Πu<
ζ< = Πζ + Πζ<

u>(k). Note however that the above relation does
not hold for unsteady flows [6]. The other conserved quantity is Fu.

When k is in the inertial range, an application of equations (136)–(139) to the identities of
equations (75)–(78) leads to

Πu(k) +Πζ<
u>(k) +Πζ>

u>(k) = εu, (145)

Πζ (k) +Πu<
ζ>(k) +Πu>

ζ>(k) = εζ , (146)

Πu(k) +Πu<
ζ<(k) +Πu<

ζ>(k) = εinj (147)

Πζ (k) = Πu<
ζ<(k) +Πu>

ζ<(k). (148)

As described in section 4, the above equations follow from energetics. Equation (145)
(equation 146)) represent balance between the energy arriving at the inertial range of veloc-
ity (magnetic) field and the viscous (Joule) dissipation. On the other hand, equation (147)
(equation (148)) represent balance between the energy arriving at the large-scale velocity (mag-
netic) field and the energy spreading out of this region. Verma et al [142] verified the above
exact relations using numerical simulations. Figure 19 illustrates how the left- and right-hand
sides of the exact relations match in the inertial range that extends from k = 3 to 20.

Equation (147) has important consequence on the dynamo action. Here, the velocity field
is forced at large scales by FLS. A part of the injected kinetic energy by FLS cascades to the
inertial range as Πu, but a fraction of it is transferred to the magnetic energy as Πu<

ζ (k) > 0
[25, 42–44]. This cross transfer from u to ζ amplifies the magnetic field; this mechanism
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is responsible for the generation of large-scale magnetic field in planets, stars, and galaxies
[24, 25, 43, 143]. Note that this cross energy transfer in MHD turbulence makes the fluxes
Πu(k), Πu<

ζ<(k), and Πu<
ζ>(k) functions of k, in contrast to constant Πu(k) in the inertial range

of hydrodynamic turbulence. An important to note that the above relations do not hold for
unsteady flows.

The cross energy transfer Πu<
ζ (k) is also responsible for the drag reduction in MHD turbu-

lence [48]. Since Πu<
ζ (k) > 0, using equation (147) we deduce that Πu(k) < εinj. Note that in

hydrodynamic turbulence,Πu(k) ≈ εinj. Therefore, for the same εinj, Πu(k) in MHD turbulence
is lower than that for hydrodynamic turbulence. Therefore, the turbulent drag, FD ≈ Πu/U,
will be lower for MHD turbulence compared to its hydrodynamic counterpart [48]. In the next
section we will show that a similar dynamics is a work in turbulent flows with dilute polymer.
Thus, variable energy flux provides valuable insights into the dynamics of MHD turbulence
and dynamo.

7.4. Energy fluxes associated with Elsäser variables

An alternative formulation of MHD turbulence is in terms of Elsäser variables, z± = u ± ζ.
The MHD equations in terms z± and a mean magnetic field B0 are [136, 138]

∂z±

∂t
∓ (B0 · ∇)z± + (z∓ · ∇)z± = −∇p+ ν+∇2z± + ν−∇2z∓, (149)

∇ · z± = 0, (150)

where ν± = 1
2 (ν ± η). For z+, in a triad (k′, p, q), the mode-to-mode energy transfer from

z+(p) to z+(k′) with the mediation of z−(q) is [43]

Sz+z+ (k′|p|q) = −�
[
{k′ · z−(q)}{z+(p) · z+(k′)}

]
. (151)

For z−, the mode-to-mode energy transfer from z−(p) to z−(k′) with the mediation of z+(q) is

Sz−z− (k′|p|q) = −�
[
{k′ · z+(q)}{z−(p) · z−(k′)}

]
. (152)

Note that there is no cross transfer from z+ to z− and vice versa. The corresponding energy
fluxes are

Πz+ (k0) =
∑
p�k0

∑
k>k0

Sz+z+ (k|p|q), (153)

Πz− (k0) =
∑
p�k0

∑
k>k0

Sz−z−(k|p|q). (154)

Due to the absence of cross transfers between z+ and z−, Πz±(k0) are constant in the inertial
range of MHD turbulence. In addition, in the inertial range, Πz± (k) = εz± , where εz± are the
total dissipation rates of z±. Figure 20 illustrates the constancy of Πz± (k) in the inertial range
[142]. In the inertial range,Πz+ = 0.5 and Πz+ = 0.3. In contrast, the energy fluxes associated
with the velocity and magnetic fields are variable in the inertial range.

Note that total energy and cross helicity (Hc) are related to the energy spectra of the Elsässer
variables as follows:

E =
1
2

(Ez+ + Ez−); Hc =
1
4

(Ez+ − Ez− ). (155)
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Figure 20. The energy fluxes Πz± (k) computed numerically. Πz± (k) are nearly constant
in the inertial range (k = (3, 20)). The figure also shows the fluxes of total energy and
cross helicity. From Verma et al. Reproduced from [142]. CC BY 4.0.

Hence, the fluxes of the total energy (Π) and cross helicity (ΠHc) can be deduced from Πz± (k)
as follows:

Π(k0) =
1
2

[Πz+ (k0) +Πz− (k0)] (156)

ΠHc(k0) =
1
4

[Πz+ (k0) −Πz− (k0)]. (157)

See figure 20 for illustration of these fluxes. In the inertial range, total energy and cross helicity
fluxes are 0.4 and 0.05 respectively.

Constancy of Πz± (k) in the inertial range makes them suitable candidates for modelling the
energy spectrum of MHD turbulence. For example, Marsch [144] argued that

Ez±(k) = Kz± (k)ε4/3
z± ε

−2/3
z∓ k−5/3, (158)

where Kz± (k) are nondimensional constants. The energy fluxes related to the velocity and mag-
netic fields vary with k, hence they are not quite appropriate for spectra modelling. Refer to
Biskamp [138] and Verma [43] for further details. In the next subsection, we will study variable
energy flux of quasi-static MHD turbulence.

7.5. Quasi-static MHD turbulence

In quasi-static (QS) MHD, which is applicable to liquid metals, the nonlinear term of the
induction equation is ignored because RePm → 0, where Pm is the magnetic Prandtl number
[27, 28]. For such flows, under a strong mean magnetic field B0, the Lorentz force is
approximated by the following expression [27, 28]:

Fu(k) = −[N(U/L) cos2 θ]u(k), (159)

where θ is the angle between wavenumber k and B0; U, L are the large-scale velocity and
length respectively; and N = B2

0L/(Uκ) is the interaction parameter with κ as the magnetic
diffusivity.

The effects of the Lorentz force in QS MHD turbulence is an important topic of research.
Laboratory experiments [145–149] and numerical simulations [150–153] of QS-MHD turbu-
lence reveal that for small interaction parameters (N � 1), the Lorentz force has a weak effect
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on the flow, thus yielding a weak steepening of the energy spectrum from k−5/3. However,
for larger N, Eu(k) steepens significantly with the spectral index approaching as low as −5 for
N ≈ 30 [146, 147]. For very large N, Eu(k) ∼ exp(−bk) with b as a positive constant [28, 152].

Several models have been constructed to explain the steepening of the energy spectrum in
QS MHD turbulence [26, 27, 29, 145, 147, 148, 154–156]. In particular, many researchers
invoked two-dimensionalization of the flow to explain the steepened Eu(k) [26, 148, 154, 155].
However, in the following discussion we present how variable energy flux can explain the
steepening of the spectrum [28, 29, 156]. In QS-MHD turbulence, the energy injected by the
Lorentz force gets converted to heat by the Joule dissipation DJ(k) (see equation (159)) as
shown below:

Fu(k) = R[Fu(k) · u∗(k)] = −[2N(U/L) cos2 θ]Eu(k) = −DJ(k). (160)

In addition, the modal energy spectrum is not isotropic. However, the shell spectrum and energy
flux, which is averaged over polar angle, obey the following equation [28, 156]:

d
dk

Πu(k) = −[2νk2 + 2c2N(U/L)]Eu(k), (161)

where c2 is a constant.
Anas and Verma [29] solved equation (161) by making an assumption similar to that by Pao

[35] for 3D hydrodynamic turbulence and derived the following formulas for the energy flux
and spectrum. For N � 1,

log

(
Πu(k)
Πu(k0)

)
= −3

2
KKo[(k/kd)4/3 − (k0/kd)4/3]

+ 3c2KKo

[
(k/kd2)−2/3 − (k0/kd2)−2/3

]
, (162)

Eu(k) = KKoΠu(k)ε−1/3k−5/3, (163)

and for N � 1,

Eu(k) = A exp(−k/k̄d), (164)

Πu(k) = A
[
2νk̄d(k2 + 2kk̄d + 2k̄2

d) + 2(NU/L)c2k̄d

]
exp(−k/k̄d), (165)

where kd2, A, k̄d are constants.
In figures 21 and 22, the energy flux and energy spectrum are plotted for N = 0, (b) N = 0.1,

(c) N = 0.5, and (d) N = 1.0 [29]. The plots clearly demonstrate steepening of the energy
flux and spectrum with the increase of N. Anas and Verma [29] also simulated the QSMHD
turbulence for the above parameters. As shown in the figures, the model predictions are in
general agreement with the numerical results. It has been also shown that the above formulas
describe the experimental results quite well [28, 153]. Thus, variable energy flux helps describe
the QS MHD turbulence quite well.

For strong magnetic field or large N, the flow is strong anisotropic. Reddy et al [152, 153]
studied ring spectra, ring-to-ring energy transfers, as well as energy exchange between u⊥ and
u‖. For a strong mean magnetic field, using the formalism of section 5, Reddy et al [153]
showed that P(k) of equation (92) is positive, and hence there is an energy transfer from u⊥ to
u‖. In such flows, u⊥ is stronger than u‖. MHD turbulence exhibits a similar behaviour [157].

In the next section we will briefly describe the energy fluxes for a solvent with dilute
polymers.
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Figure 21. The energy spectra for QSMHD turbulence computed using equation (162)
for (a) N = 0, (b) N = 0.1, (c) N = 0.5, and (d) N = 1.0. From Anas and Verma.
Reprinted figure with permission from [29], Copyright (2019) by the American Physical
Society.

8. Variable energy fluxes in a turbulent flow with dilute polymers

In this section, we discuss the energy transfers and drag reduction in a solution of dilute
polymers [158–163]. In such flows, the polymer is often described by finitely extensi-
ble nonlinear elastic-Peterlin (FENE-P) model. The equations for the velocity field and
polymer-conformation tensor ζ of FENE-P model are [164, 165]:

∂ui

∂t
+ u j∂ jui = −1

ρ
∂i p+ ν∂ j jui +

μ

τp
∂ j( f ζi j) + FLS,i, (166)

∂ζi j

∂t
+ ul∂lζi j = ζil∂lu j + ζil∂ jul +

1
τp

[ f ζi j − δi j], (167)

∂iui = 0, (168)

where p is the pressure, ρ is the mean density of the solvent, ν is the kinematic viscosity, μ is
an additional viscosity parameter, τ p is the polymer relaxation time, and f is the renormalized
Peterlin’s function. We also remark that the energetics of polymer turbulence has many sim-
ilarities with those for MHD turbulence. As we describe below, there is a preferential energy
transfer from the velocity field to the polymer, just like the energy transfer from the velocity
field to the magnetic field in dynamos. Refer to deGennes [45], Fouxon and Lebdev [164], and
references therein for details.
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Figure 22. The energy spectra for QSMHD turbulence computed using equation (163)
for (a) N = 0, (b) N = 0.1, (c) N = 0.5, and (d) N = 1.0. From Anas and Verma [29].
Reprinted with permission from APS.

In the above equations, the following forces (apart from constants) associated with u and ζ
induce cross energy transfers:

Fu,i = ∂ j( f ζi j), Fζ,i j = ζil∂lu j + ζil∂ jul. (169)

In Fourier space, the respective energy feed by these forces to the kinetic energy and the tensor
energy are

Fu(k) = −
∑

p

�
[
k j f (q)ζi j(p)u∗

i (k)
]

, (170)

Fζ(k) = −
∑

p

�
[
ζil(q)plu j(p)ζ∗i j(k) + ζil(q)p jul(p)ζ∗i j(k)

]
, (171)

where q = k − p. Both, Fu(k) and Fζ (k) are the convolutions similar to those in MHD turbu-
lence. However, the structure of the nonlinear terms for the polymers is more complex than that
for MHD turbulence. Till date, there are no formulas for the mode-to-mode energy transfers
from u to ζ and vice versa. Yet, the following equations can be used to describe the energy
fluxes from the velocity field to the polymer field.

Πu
ζ<(k0) =

∑
k�k0

Fζ(k); Πu
ζ>(k0) =

∑
k>k0

Fζ(k). (172)

In fact, equations (75)–(78) too are applicable to the turbulent flows with dilute polymers.
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Figure 23. The energy fluxes, energy injected by external force, and dissipation rate
computed by Valente et al for a polymeric flow. See equation (173). Here, P is the total
energy injection by the external force. A fraction of injected energy is transferred to the
polymers as Πu<

ζ (k). From Valente et al. Reprinted from [47], with the permission of
AIP Publishing.

From equation (77), under a steady state, for a wavenumber sphere of radius k,∫ k

0
dk′Fu(k′) = Πu(k) +Πu<

ζ (k) +
∫ k

0
dkDu(k′), (173)

where the first term includes the energy injection rate by large-scale forcing to the modes of the
sphere, while the last term is the total viscous dissipation inside the sphere. The flux Πu<

ζ (k) is
the energy transfer from the large-scale velocity field to ζ. See figure 15(a) for an illustration.
Valente et al [47] simulated the equations for the dilute polymers and then computed the quan-
tities of equation (173). For a generic parameter, these quantities are illustrated in figure 23.
The quantities are normalized with relative to the kinetic energy injection rate by the external
force, which is the maximum value of

∫ k
0 dk′Fu(k′). As shown in the figure, Πu � P, where

P is the total power injected by the external force. In the inertial range, the balance, P −Πu,
is transferred to the polymers as Πu<

ζ . For the full system, the injected energy by the external
force is split between the viscous dissipation and Πu<

ζ . Note that the viscous term becomes
significant in the dissipation range.

The aforementioned energetics of dilute polymers is very similar to that of MHD turbulence.
In the inertial range of both the flows,

Πu<
ζ (k) > 0 ⇒ Πu(k) < εinj. (174)

A physical interpretation of the above result is that in polymeric flows, the velocity field
stretches the polymers [158, 159], similar to the stretching of the magnetic field in MHD tur-
bulence and dynamo. Using equation (174) we deduce that for the same εinj, the kinetic energy
flux in the polymer solution will be reduced compared to hydrodynamic turbulence. There-
fore, the turbulent drag, FD ≈ Πu/U, for a polymeric flow will be lower than its hydrodynamic
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counterpart [48]. Thus, variable energy flux provides interesting insights into the mechanism
of turbulent drag reduction in polymer solution and in MHD turbulence.

9. Variable enstrophy and helicity fluxes

In this section we focus on the enstrophy and kinetic-helicity fluxes of 3D hydrodynamics.Note
that Fu = 0 for pure hydrodynamics. However, we will retain the large-scale forcing (FLS).

The vorticity field, ω = ∇× u, plays an important role in hydrodynamic turbulence. The
dynamical equation of ω is [6, 8, 9]

∂ω

∂t
= ∇× (u × ω) + Fω,LS + ν∇2ω, (175)

or
∂ω

∂t
+ (u · ∇)ω = (ω · ∇)u + Fω,LS + ν∇2ω, (176)

where Fω,LS = ∇× FLS. The total enstrophy, Eω = 1
2

∫
drω2, and the modal enstrophy,

Eω(k) = 1
2 |ω(k)|2, are important quantities of hydrodynamics. The evolution equation for the

latter is

d
dt

Eω(k) =
∑

p

{
�
[
{k · u(q)}{ω(p) · ω∗(k)}

]
−�

[
{k · ω(q)}{u(p) · ω∗(k)}

]}

+ Fω,LS(k) − 2νk2Eω(k), (177)

where

Fω,LS(k) = R[ik × Fu,LS(k) · ω∗(k)] = k2
R[u∗(k) · FLS(k)] (178)

is the enstrophy injection rate by FLS. In equation (177), the first term in the right-hand-side
represents the advection of the vorticity field by the velocity field, while the second term rep-
resents vortex stretching. For inviscid and force-free 3D hydrodynamics, Eω is not conserved
due to the vortex stretching by the velocity field [6, 8, 9]. Note however that Eω is conserved
in 2D hydrodynamics; this issue will be discussed in section 10.

9.1. Variable enstrophy flux

When we compare equation (176) with (52) for the secondary vector ζ, we obtain the following
correspondence

ζ → ω; Fζ → Fω = (ω · ∇)u, (179)

and

Fω(k) =
∑

p

−�
[
{k · ω(q)}{u(p) · ω∗(k)}

]
; Fu(k) = 0. (180)

Here, Fω(k) induces enstrophy enhancement via vortex stretching by the velocity field. This
process is similar to the magnetic field stretching by the velocity field in MHD turbulence (see
section 7), first proposed by Batchelor [141].

The vorticity field does not appear explicitly in the NS equation. This is unlike the appear-
ance of the magnetic field as (ζ · ∇)ζ in the velocity equation of MHD (see equation (120)).
Thus, the vorticity field does not back-react on the velocity field, unlike the back-reaction of
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the magnetic field on the velocity field in MHD turbulence. Note however that vorticity plays
an important role in the evolution of the velocity field, but energetically, it does not back-react
on the velocity field. Such comparisons between the vorticity and magnetic fields were made
by Batchelor [141] and others.

By making an analogy with MHD turbulence, we define the following enstrophy fluxes for
a wavenumber sphere of radius k0 (see section 7):

Πu
ω<(k0) =

∑
k�k0

Fω(k); Πu
ω>(k0) =

∑
k>k0

Fω(k). (181)

Here, Πu
ω<(k0) (Πu

ω>(k0)) represents the net enstrophy gain by the vorticity modes within
(outside) the sphere due to the nonlinear interactions with the velocity modes. Following
equation (73), we deduce that the net enstrophy enhancement rate due to the vortex stretching
is

Πu
ω<(k) +Πu

ω>(k) = Fω = const. (182)

The sum in the above equation is independent of k even though its constituents, Πu
ω<(k) and

Πu
ω>(k), may vary with k.
Since Fu(k) = 0 (no back reaction from the vorticity to the velocity field), both Πω

u<(k) and
Πω

u>(k) are zeros. Hence, the vortex dynamics is similar to that of kinematic dynamo where
the magnetic field does not back-react on the velocity field [24]. Note however that in MHD
turbulence, the magnetic field back-reacts on the velocity field. Also note that the enstrophy and
kinetic energy have different dimensions, unlike MHD where the kinetic energy and magnetic
energy have dimension of energy.

The term (u · ∇)ω provides advection to the vorticity field, analogous to the advection of the
secondary vector by the term (u · ∇)ζ (see section 4). Consequently, following equation (58),
we define the mode-to-mode enstrophy transfer from ω(p) to ω(k′) with the mediation of u(q)
as [14, 166]

Sωω(k′|p|q) = −�
[
{k′ · u(q)}{ω(p) · ω(k′)}

]
. (183)

Hence, the enstrophy flux is (see equation (62))

Πω(k0) =
∑
k′>k0

∑
p�k0

Sωω(k′|p|q). (184)

Now, following equations (67) and (74), we deduce that during a steady state, in the inertial
range,

d
dk

Πω(k) = Fω(k) = − d
dk

Πu
ω>(k) =

d
dk

Πu
ω<(k). (185)

Therefore,

Πω(k) +Πu
ω>(k) = C3; Πω(k) −Πu

ω<(k) = C4, (186)

where C3, C4 are constants. Since Πu
ω>(k) and Πu

ω<(k) are nonzero, we conclude that Πω(k)
varies with k, unlike Πu(k) (of hydrodynamic turbulence), which is constant in the inertial
range. The above arguments and equation (182) yields C3 − C4 = Fω.

We derive several new formulas by making an analogy between the vorticity field and the
magnetic field. For example, a comparison of vorticity dynamics with equations (130) and
(131) yields the following formulas for the mode-to-mode enstrophy transfers:

Suω(k′|p|q) = 0, (187)
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Figure 24. For the numerical simulations by Sadhukhan et al, plots of enstrophy fluxes
and the conserved flux of equation (190). From Sadhukhan et al. Reprinted figure with
permission from [166], Copyright (2019) by the American Physical Society.

Sωu(k′|p|q) = �
[
{k′ · ω(q)}{u(p) · ω(k′)}

]
. (188)

Vanishing of Suω(k′|p|q) results from lack of explicit appearance of ω in the NS equation.
Based on the mode-to-mode enstrophy transfers, analogous to MHD fluxes, we can define

four enstrophy fluxes: Πu<
ω<, Πu<

ω>, Πu>
ω<, Πu>

ω>. See figure 17 of section 7 for an illustration. Note
that

Πu
ω<(k) = Πu<

ω<(k) +Πu>
ω<(k); Πu

ω>(k) = Πu<
ω>(k) +Πu>

ω>(k). (189)

Substitutions of these relations in the identity of equation (182) yields the following relation
[166]:

Πu<
ω<(k) +Πu>

ω<(k) +Πu<
ω>(k) +Πu>

ω>(k) = Fω. (190)

The above sum is constant in k (both in inertial and dissipation range), akin to equation (141)
for MHD turbulence.

Sadhukhan et al [166] performed numerical simulations of hydrodynamic turbulence
and computed the aforementioned enstrophy fluxes, as well as the conserved quantity of
equation (190). These quantities are exhibited in figure 24. Note that the individual fluxes may
vary with k due to cross transfers, but the sum of equation (190) is a constant. Interestingly,
Πω(k) ∼ k2 and Πu<

ω>(k) ∼ k for small and intermediate wavenumbers. Verma [14] argued that
Πω(k) ∼ k2 due to the term ω(p) · ω(k′) of Sωω(k′|p|q). At small wavenumbers, Πu>

ω>(k) is the
most dominant among all the fluxes implying that the intermediate and small-scale vortices are
stretched most significantly.

We summarise the similarities and dissimilarities between the vorticity field and magnetic
field in table 2. A major difference between the two fields is the back-reaction on the velocity
field—vorticity does not back-react, but magnetic field does. Hence, enstrophy dynamics is
similar to that of kinematic dynamo where the magnetic field does not affect the velocity field.
Note that enstrophy fluxes do not have a relation equivalent to the conservation of total energy
flux in MHD turbulence (equation (144)).

In the next subsection, we will the describe variable kinetic-helicity flux.

49



J. Phys. A: Math. Theor. 55 (2022) 013002 Topical Review

Table 2. Similarities (first nine rows) and dissimilarities (last two rows) between the
energy transfers in magnetic and vorticity fields.

Magnetic field Vorticity

Sζζ Sωω

Sζu Sωu

Πζ Πω

Πu
ζ Πu

ω

Stretching of magnetic field lines Vortex stretching
u-to-ζ transfer u-to-ω transfer
Growth of magnetic field Enhancement of enstrophy
ζ-to-ζ transfer (forward for nonhelical) ω-to-ω transfer (forward)
No dynamo in 2D No vortex stretching in 2D

Suζ �= 0 Suω = 0
ζ-to-u transfer (back-reaction) except for No ω-to-u transfer (no back-reaction)
kinematic dynamo where Suζ = 0

9.2. Flux of kinetic helicity

Kinetic helicity, which is defined as HK = 1
2

∫
dr(u · ω), plays a major role in the growth of

vorticity and magnetic fields [6, 9, 24]. Using equations (1) and (175) we can show that for
ν = 0, Fu = 0, FLS = 0, and periodic or vanishing boundary condition, the total kinetic helicity
is conserved in 3D hydrodynamics [6, 8, 9]; this is in addition to the conservation of total kinetic
energy.

The evolution equation for the modal kinetic helicity, HK(k) = 1
2R[u(k) · ω∗(k)], is

[6, 8, 9, 14]

d
dt

HK(k) =
∑

p

R[u(k − p) · {ω(p) × ω∗(k)}] + FHK,LS(k) − 2νk2HK(k), (191)

where FHK,LS(k) = R[ω∗(k) · FLS(k)] is the kinetic helicity injection rate by FLS. Based on
equation (191), researchers have derived various formulas for the kinetic helicity flux. For
example, Müller et al [167] argued that the kinetic flux is given by

ΠHK (k0) =
∑
k>k0

{ik × [u × ω](k)} · u∗(k) + c.c., (192)

where c.c. stands for the complex conjugate. In the following discussion we will describe
additional flux formulas for the kinetic helicity.

Following the structure of the nonlinear term of equation (191), Verma [14], Sadhukhan
et al [166], and Plunian et al [168] showed that the mode-to-mode kinetic helicity transfer
from wavenumber p to wavenumber k′ with the mediation of wavenumber q is

SHK(k′|p|q) = R[u(q) · {ω(p) × ω(k′)}]. (193)

In terms of SHK(k′|p|q), the kinetic helicity flux for a wavenumber sphere of radius k0 is

ΠHK (k0) =
∑
p�k0

∑
k′>k0

SHK (k′|p|q). (194)
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Following the same lines of arguments as in section 3, we obtain

d
dk

ΠHK (k) = FHK,LS(k) − DHK (k), (195)

where DHK (k) = 2νk2HK(k) is the dissipation rate of kinetic helicity in shell k, andFHK,LS(k) is
the kinetic helicity injection rate due to the force FLS. In the inertial range, FHK,LS(k) = 0 and
DHK (k) = 0, hence ΠHK (k) = εHK = constant, where εHK is the total dissipation rate of kinetic
helicity. Note that kinetic helicity is conserved for inviscid and force-less hydrodynamics
becauseFHK (k) = 0 and DHK (k) = 0 for all k, and that

∑
k

∑
pR[u(k − p) · {ω(p) × ω∗(k)}]

is identically zero (see equation (191)). On the other hand, in a turbulent flow, the kinetic helic-
ity flux in the inertial range is constant becauseFHK,LS(k) = 0 and DHK (k) = 0 here. This is the
connection between the conservation of kinetic helicity and its constancy in the inertial range.
Note that kinetic helicity is not conserved in MHD because the Lorentz force induced a new
term in the right-hand-side of equation (191). For the same reason, the kinetic helicity flux is
not constant in the inertial range of MHD turbulence.

Using the constancy of ΠHK (k), dimensional analysis and field-theoretic arguments, the
following inertial-range spectrum for kinetic helicity has been derived [6, 169, 170]:

HK(k) = KHεHK(εu)−1/3k−5/3, (196)

where KH is a nondimensional constant, whose value has been estimated to be of the order
of unity. The above scaling has been verified in many numerical simulations [6, 166, 171].
Interestingly, Sadhukhan et al [166] also modelled the kinetic helicity spectrum and flux in the
inerital–dissipation range using a generalized Pao’s model [35].

The helical turbulence is also described using Craya–Herring and helical basis [70, 116,
168, 172, 173]. In Craya–Herring basis [6, 10, 23, 116, 174, 175], the unit vectors for a
wavenumber k are

ê3(k) = k̂; ê1(k) =
k̂ × n̂

|k̂ × n̂|
; ê2(k) = ê3(k) × ê1(k), (197)

where k̂ is the unit vector along wavenumber k, and n̂ could be along any direction, but it
is typically chosen along the anisotropy direction. We denote the velocity components along
ê1(k), ê2(k), ê3(k) as u1(k), u2(k), u3(k) respectively. Among them u3(k) = 0 due to incom-
pressibility, hence u(k) = u1(k)ê1(k) + u2(k)ê2(k). In this basis, the mode-to-mode kinetic
energy transfer from wavenumber p to wavenumber k with the mediation of wavenumber q is

Suu(k′|p|q) = Su1u1 (k′|p|q) + Su2u2 (k′|p|q), (198)

where

Su1u1 (k′|p|q) = k′ sin β̄ cos γ̄�{u1(q)u1(p)u1(k′)}, (199)

Su2u2 (k′|p|q) = −k′ sin β̄�{u1(q)u2(p)u2(k′)}, (200)

with ᾱ, β̄, γ̄ as the internal angles across k, p, q of the triangle formed by the wavenumbers
(k′, p, q) [5, 14].

Another useful basis called helical basis [6, 10, 116] is constructed using the Craya–Herring
vectors. In this basis, the unit vectors are

êsk (k) =
1√
2

[ê2(k) − iskê1(k)], (201)
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where sk takes values +1 or −1. In terms of these unit vectors, the velocity field is u(k) =
u+(k)ê+(k) + u−(k)ê−(k), where

usk (k) =
1√
2

[u2(k) + isku1(k)]. (202)

In the helical basis, the mode-to-mode kinetic energy transfer from u(p) to u(k′) with the
mediation of u(q) is

Suu(k′|p|q) =
∑
sp ,sk′

Suu
sk′ sp

(k′|p|q), (203)

where Suu
sk′ sp

(k′|p|q), the kinetic energy transfer from mode usp(p) to usk′ (k
′) with the mediation

of u(q), is [14]

Suu
sk′ sp

(k′|p|q) = −�
[
{k′ · u(q)}usp(p)usk′ (k

′){êsp (p) · êsk′ (k
′)}

]
= −k′

2
sin β̄(1 + spsk′ cos γ̄)�{u1(q)usp(p)usk′ (k

′)}. (204)

Similarly, the mode-to-mode kinetic helicity transfer from wavenumber p to wavenumber k′

with the mediation of wavenumber q is [14]

SHK(k′|p|q) =
∑
sp ,sk′

SHK
sk′ sp

(k′|p, q), (205)

where SHK
sk′ sp

(k′|p, q), the elemental helicity transfer from usp (p) to usk′ (k
′) with the mediation

of u(q), is

SHK
sk′ sp

(k′|p, q) = −1
2

pk′[sk′ sin β̄ + sp sin ᾱ]�{u1(q)usp(p)usk′ (k
′)}

+
1
2

pk′ sin γ̄R{u2(q)usp(p)usk′ (k
′)}. (206)

The kinetic energy flux from helical mode usg to mode usr , where sg and sr are the signs of giver
and receiver modes respectively, can be written as

Π
usg<
usr>

(k0) =
∑
p�k0

∑
k′>k0

Suu
sgsr

(k′|p|q). (207)

The corresponding kinetic helicity flux is

Π
HKsg
HKsr

(k0) =
∑
p�k0

∑
k′>k0

SHK
sr,sg

(k′|p|q). (208)

Alexakis and Biferale [70] and Sahoo et al [173] constructed another set of formulas for the
energy flux, which is

Πs1s2s3
u =

〈
u<k · P s1 [us2 × ωs3 ]

〉
, (209)

where si takes values±1 depending on the sign of kinetic helicity, andP s1 represents projection
along ês1 . The above flux formula is related to equation (204).

As described earlier in this section, for large-scale external force, the energy and helic-
ity spectra exhibit k−5/3 spectra and constant fluxes [6, 8]. However, the energy transfers
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become more complex when the external force is employed at intermediate scales, or when
only homochiral modes (modes with same sign of kinetic helicity) are present. Biferale
et al [176] showed that the nonlinear interactions among homochiral modes yield an inverse
cascade of kinetic energy in 3D hydrodynamic turbulence. Sahoo et al [177] varied the
strengths of different triadic interactions involving helical modes and observed a discontin-
uous transition from inverse energy cascade to forward energy cascade. Plunian et al [178]
performed numerical simulations with realistic helical modes (rather than homochiral modes)
and obtained similar results as Sahoo et al [177]. Thus, injection of kinetic helicity at inter-
mediate scales affects the turbulence dynamics as well as kinetic energy spectrum and flux.
Detailed discussions on these issues are beyond the scope of this review. For details, refer to
references [70, 172, 173, 178–180].

We close this subsection with a comment that the secondary fields also induces kinetic helic-
ity. For example, bouyancy and Lorentz force induce kinetic helicity. These topics, however,
are too complex to be discussed here. Refer to the references [6, 10, 14, 116] for further details.

In the next section, we describe energy transfers and 2D and quasi-2D turbulence.

10. Brief review of variable energy fluxes in 2D and quasi-2D turbulence

In this section, we present a brief review of variable energy fluxes in 2D and in quasi-2D
turbulence. The latter is observed in buoyancy-driven, rotating, and MHD turbulence. We start
with a description of the energy and enstrophy fluxes of 2D hydrodynamic turbulence.

10.1. Fluxes of 2D hydrodynamic turbulence

For a 2D flow field u = ux x̂ + uyŷ, the vorticity field ω = ωẑ = (∂xuy − ∂yux )̂z is perpendicu-
lar to the plane of the flow. Hence, equation (176) yields the following evolution equation for
2D vorticity:

∂ω

∂t
+ (u · ∇)ω = Fω,LS + ν∇2ω. (210)

Note the absence of vortex stretching term in the above equation. For a 2D field, the total
enstrophy, Eω =

∫
dr 1

2ω
2, is conserved [6, 8, 9], which is in addition to the conservation of

total energy. Note that in 2D hydrodynamics, the total kinetic helicity vanishes identically
because u and ω are perpendicular to each other.

In 2D hydrodynamics, Πu
ω>(k) = Πu

ω<(k) = 0 due to the absence of ω · ∇u term in
equation (210) (see section 9.1). Here, we assume that the external force supplies kinetic
energy and enstrophy at large scales (see equation (178)). Following equation (186), we deduce
that Πω(k) is constant in the inertial range, and it equals the enstrophy dissipation rate (εω).
This is in contrast to 3D hydrodynamic turbulence where Πω(k) varies with k due to the vari-
ability of Πu

ω<(k) and Πu
ω>(k). Kraichnan [181] showed that the above enstrophy flux yields

Eω(k) ∼ ε
2/3
ω k−1 in the inertial-range. Note that Πu(k) is small in the inertial range with con-

stant enstrophy flux [38, 70, 182]. The above picture is a part of Kraichnan [181]’s framework
for 2D turbulence that will be described below.

Two-dimensional turbulence gets more complex when it is forced at an intermediate
wavenumber k f . Using conservation laws and field-theoretic tools, Kraichnan [181] con-
structed a phenomenology for such a scenario. In the inertial range of k < k f region,

Πu(k) = −εu and Eu(k) = K2Dε
2/3
u k−5/3, where εu is the magnitude of the kinetic energy flux,

and K2D is a constant whose numerical value is observed in the range 5.5 and 7.0. However,
in the inertial range of k > k f regime, Πω(k) = εω > 0 and Eu(k) = K′

2Dε
2/3
ω k−3, where K′

2D
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Figure 25. For 2D turbulence, (left panel) schematic illustrations of energy and entropy
spectra; (right panel) energy and enstrophy fluxes. Note that kin ≡ k f , kν ≡ kd, and
ΠZ(k) ≡ Πζ (k). From Alexakis and Biferale. Reprinted from [70], Copyright (2018),
with permission from Elsevier.

is another constant whose numerical value lies in the range of 1.3 and 1.7. See figure 25 for
an illustration. The results of many experiments (see [183–186] and references therein) and
numerical simulations (see [186, 187], and references therein) are consistent with the above
predictions. We do not detail these results here.

Sharma et al [49] and Gupta et al [38] extended Kraichnan’s phenomenology [181] beyond
the inertial range by extrapolating Pao’s model [35] to 2D turbulence. In the following we
extend their calculations by including Ekman friction. For a steady state, away from the forcing
band, the kinetic energy and enstrophy fluxes obey the following equations:

d
dk

Πu(k) = −2(νk2 + α)Eu(k), (211)

d
dk

Πω(k) = −2(νk2 + α)Eω(k) = −2(νk2 + α)k2Eu(k). (212)

For k < k f , it is assumed that Eu(k)/Πu(k) depends only on the kinetic energy dissipation rate
(εu) and k, but not on ν. Hence,

Eu(k)
Πu(k)

= −K2Dε
−1/3
u k−5/3, (213)

where εu = −Πu(k0) with k0 being a wavenumber near k f . Substitution of the above in
equation (211) and integration from k to k0 yields

Πu(k) = −εu exp

(
3
2

K2D[(k/kd)4/3 − (k0/kd)4/3]

)

× exp

(
−3αK2D

νk2
d

[(kd/k)2/3 − (kd/k0)2/3]

)
, (214)

Eu(k) = −K2DΠu(k)ε−1/3
u k−5/3, (215)

where kd = (εu/ν
3)1/4 is Kolmogorov’s wavenumber for 2D turbulence. Interestingly,Πu(k) →

0 as k → 0 due to the Ekman friction. Substitution of the above Eu(k) in equation (212) yields
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the following enstrophy flux:

Πω(k) = Πω(k0) + 2K2Dε
1/3
u

∫ k

k0

(νk′2 + α)Πu(k′)k′1/3dk′. (216)

Anas and Verma [29] derived the energy spectrum and flux for k > k f region. We reproduce
their result here. For k > k f , following Pao [35], it has been argued that Eω(k)/Πω(k) depends
only on the enstrophy dissipation rate (εω) and k, but not on ν. Hence,

Eω(k)
Πω(k)

= K′
2Dε

−1/3
ω k−1. (217)

Under this assumption, using equation (212) we obtain

Πω(k) = Πω(k0)

(
k
k0

)−2αK′
2Dε

−1/3
ω

exp

(
−K′

2D

k2
d2D

(k2 − k2
0)

)
, (218)

where kd2D = ε
1/6
ω /

√
ν, and Πω(k0) is the reference value of the enstrophy flux at k = k0

[29, 34]. We choose k0 ≈ k f and Πω(k f ) ≈ εω , where εω is the enstrophy injection rate.
Substitution of the above in the equations for variable flux yields

Eu(k) = K′
2Dε

2/3
ω k−3

(
k
k0

)−2αK′
2Dε

−1/3
ω

exp

(
−K′

2D

k2
d2D

(k2 − k2
0)

)
, (219)

Πu(k) = K′
2D exp(x0)

εω
k2

d2D

∫ ∞

x

1
x′

(
1 +

β

x′

)(
x′

x0

)−β

exp(−x′)dx′, (220)

where x = K′
2D(k/kd2D)2, x0 = K′

2D(k0/kd2D)2, and β = K′
2Dα/νk2

d2D. Note that Eu(k) is steeper
than k−3 due to the Ekman friction and the viscous dissipation. Asymptotically,

Πu(k)
εω

≈ K′
2D

k2
d2D

E1(K′
2D(k/kd2D)2) � 1. (221)

That is, Πu(k) � εω for k � k f , and Πu(k) ∼ log k for α = 0.
The aforementioned scaling relations are consistent with the analytical results of Gotoh

[182], numerical results of Gupta et al [38] and Anas and Verma [29], as well as the experimen-
tal results of Boffetta et al [33]. In particular, Boffetta et al [33] performed experiments on a thin
layer of electrolyte solution with an electromagnetic driving for α = 0.037, 0.059, and 0.069.
As shown in figure 26, they observed an steepening of the energy spectra with the increase of
α. Interestingly, as demonstrated by Anas and Verma [29], the above experimentally-observed
energy spectra are described by equation (219) to a good accuracy. The differences between
the model predictions and the experimental results are possibly due to bottleneck effects.

Thus, the above phenomenology describes how the viscous and Ekman dissipation steep-
ens the 2D energy spectrum beyond the inertial range scaling. Variable energy flux formalism
captures some of these features quite well.

10.2. Fluxes in quasi-2D turbulence

Strong rotation, gravity, magnetic field, and shear tend to make the flows quasi-2D with dom-
inant velocity field perpendicular to the direction of the external field. Note that the above
flows are stably stratified. However, unstable stratification, as in thermal convection, tends
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Figure 26. The energy spectra for 2D turbulence with Ekman friction with (a)
α = 0.037, (b) α = 0.059, and (c) α = 0.069. The experimental results of Boffetta et al
[33] are shown as red dotted curves, while the model predictions of equation (219) are
shown as solid blue curves. From Anas and Verma [29]. Reprinted figure with permission
from [29], Copyright (2019) by the American Physical Society.

to strengthen the parallel component of the velocity field. In such flows, pressure facilitates
energy exchange between the parallel and perpendicular components of the velocity fields
(see section 5). In this subsection, we sketch some past work in this area without getting into
complex details.

For fast rotation, researchers have reported strong two-dimensionalization of the flow
[49, 188, 189]. Such flows contain strong vortical structures. They exhibit inverse energy
cascade at small wavenumbers and forward energy cascade at large wavenumbers [49, 190].
Similar energy transfers and fluxes are observed in liquid-metal MHD turbulence under strong
external magnetic field [26–28, 153, 191]. MHD turbulence too exhibits similar anisotropic
behaviour under similar circumstances [157, 191–193]. In contrast, buoyancy destabilizes con-
vective flows and generates plume structures; here, the velocity field parallel to buoyancy is
stronger than the perpendicular component.

Boffetta et al [87] and Bartello [194] studied the energy fluxes of stably-stratified turbu-
lence; they observed an inverse cascade of kinetic energy and a forward cascade of potential
energy. They termed these forward and backward fluxes as a flux-loop. Kumar et al [124]
simulated 2D stably-stratified turbulence and observed variety of flow patterns. Falkovich and
Kristsuk [88] studied compressible turbulence and observed that planar structures and wave
turbulence exhibit inverse and forward energy cascades respectively. In an another develop-
ment, Biferale et al [195] showed how flows transform from 2D to quasi-2D turbulence when
the helical modes are truncated.

In the above examples, variations of certain parameters lead to transition from 3D turbulence
to quasi-2D turbulence. The control parameters for stably stratified turbulence and rotation are
Richardson number and Rossby number respectively. Another way to make the above transition
is by decreasing the height of the box. See Alexais et al [70, 196] for further discussion on this
topic, which has been termed as dimension transition.

In all such flows, pressure plays an important role in the energy transfer between the parallel
and perpendicular components. In addition, there are interesting works on 2D turbulence with
buoyancy and MHD turbulence. However, these topics have been skipped in this review.

11. Variable energy flux in dissipationless turbulence

11.1. Hydrodynamic systems

An inviscid or dissipationless fluid flow is described using Euler equation, which
is NS equation with ν = 0. Euler turbulence exhibits either zero kinetic energy flux
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[6, 12, 43, 60, 61, 70] or a combination of nonzero and zero fluxes [62]. Passive scalars tur-
bulence and MHD turbulence without dissipation too exhibit similar properties. We describe
these systems in the present section.

In the following discussion, we will focus on the properties of truncated Euler turbulence
in which Fourier modes beyond certain wavenumber are absent. Kraichnan [61] and Lee [60]
showed that the Liouville theorem is applicable to the phase space formed by the Fourier modes
of truncated Euler turbulence. Based on the fact that Gibbs measure is invariant measures of
systems satisfying Liouville’s theorem (similar to that of equilibrium thermodynamics), and
using conservation of kinetic energy and kinetic helicity, Kraichnan [61] and Lee [60] showed
that Eu(k) and HK(k) are random variables with the following probability distribution:

P(Eu(k), HK(k)) =
1
Z

exp[−βEu(k) − γHK(k)], (222)

where Eu(k) and HK(k) are the modal kinetic energy and kinetic helicity respectively, and Z is
a prefactor.

It is convenient to write down distribution functions for the helical energy spectra, Eu±(k),
where u± are the helical variables discussed in section 9.2 [14, 116]. These distribution
functions are

P(Eu+(k), Eu−(k)) = β+β− exp[−β+Eu+(k) − β−Eu−(k)] (223)

that lead to 〈Eu±(k)〉 = 1/β± (because u± are independent variables). Using a change of
variable, β± = β ∓ γk, we obtain [60, 61],

〈Eu(k)〉 =
〈
Eu+ (k)

〉
+ 〈Eu−(k)〉 = 2β

β2 − γ2k2
, (224)

〈HK(k)〉 = k(
〈
Eu+ (k)

〉
− 〈Eu−(k)〉) = 2γk2

β2 − γ2k2
. (225)

One-dimensional shell spectrum, Eu(k), is a sum of the modes in a shell of radius k. Therefore,
in 3D, Eu(k) is proportional to k2 for small and moderate k’s, but it gets an upward bend for large
k’s [60, 61, 70]. The above forms of energy and kinetic helicity arise due to the conservation
laws.

Detailed balance is an important property of systems under equilibrium. Consequently,
under equilibrium, we expect no energy exchange among the Fourier modes and, hence, the
energy flux Πu(k) = 0 (see figure 27(a)). This observation is consistent with the fact that the
phases of the Fourier modes of a turbulent flow are random [63] 1. Contrast the above property
with that of Kolmogorov’s theory of turbulence where Πu(k) = C > 0 and the phases of the

1 The mode-to-mode energy transfer from mode u(p) to u(k) with the mediation of u(q) in Craya–Herring basis is
(see section 9.2)

〈Su1u1 (k|p|q)〉 = k sin β̄ cos γ̄ 〈�[u1(p)u1(q)u∗
1(k)]〉

= k sin β̄ cos γ̄ 〈|u1(p)u1(q)u∗
1(k)| sin(φ1p + φ1q − φ1k)〉 ,

〈Su2u2 (k|p|q)〉 = −k sin β̄ 〈�[u1(p)u2(q)u∗
2(k)]〉

= −k sin β̄ 〈|u1(p)u2(q)u∗
2(k)| sin(φ2p + φ1q − φ2k)〉 ,

where φ1k and φ2k are the phases of modes u1(k) and u2(k) respectively. These energy transfers become zero for
random phases.
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Figure 27. Schematic energy spectra and fluxes for various flows: (a) Euler-1: unforced
Euler turbulence exhibiting k2 for delta-correlated noise as an initial condition. (b) K41:
turbulent flow of Kolmogorov model. Such flows with small viscosity are forced at large
scales. (c) Euler-2: unforced Euler turbulence with large-scale Taylor–Green vortices
as an initial condition. (d) Kolmogorov-flow: a flow that is forced at an intermediate
scale. The yellow, green, and blue colours represent inertial, dissipative, and equilib-
rium ranges respectively. The orange colour represents the thermal or microscopic scales
where particles move randomly.

Fourier modes are correlated (see figure 27(b)). Hence, the phase space for flows satisfying
Kolmogorov’s theory is not expected to be ergodic.

A number of numerical simulations have been performed to verify the equilibrium spectra
of equations (224) and (225). Cichowlas et al [62] were the first to simulate Euler turbulence
with large-scale Taylor–Green vortices as initial condition. They observed a combination of
Kolmogorov’s k−5/3 spectrum in the intermediate range and k2 spectrum in the dissipative
range, as shown in figure 27(c). Over time, the k−5/3 regime shrinks at the expense of k2 regime.

58



J. Phys. A: Math. Theor. 55 (2022) 013002 Topical Review

Asymptotically, at large times, the whole range of spectrum is expected to become k2, consis-
tent with the predictions of Lee [60] and Kraichnan [61]. This is the process of thermalization
[62, 68, 197]. Recently, Verma et al [63, 64] simulated Euler turbulence using white noise as
an initial condition and observed k2 spectrum throughout the duration of the simulation.

Note that the energy flux vanished identically for k2 spectrum, in line with the arguments
of Lee [60] and Kraichnan [61]. However, as transient, the energy flux is nonzero for the k−5/3

regime due to the energy cascade from the large-scale structures to the intermediate scales. The
asymptotic state of Cichowlas et al [62] exhibits k2 spectrum and zero energy flux, which is
the property of equilibrium state.

Connaughton and Nazarenko [198] started with Leith’s equation and constructed a mix-
ture of constant-flux Kolmogorov solution and flux-less thermodynamic solution, which is
also called warm cascade. Numerical solution of Leith’s equation with appropriate constants
yielded the above mixed solution (a mixture of k−5/3 and k2 spectra), which is similar to the
numerical solution of Cichowlas et al [62]. Shukla et al [199] also worked on a similar theme;
they simulated time-reversible NS equation and tuned the solutions using a nondimensional
control parameter Rτ = f0l f /E0, where f0 is the forcing amplitude, l f is the energy injec-
tion length scale, and E0 is the total energy. In Shukla et al [199]’s simulations, warm solution
(Eu(k) ∼ k2) was obtained for small values of the control parameter, but Kolmogorov’s cascade
was observed for large values of the control parameter.

Kolmogorov flow, which is forced at intermediate length scales (k ≈ k f ), also exhibits equi-
librium behaviour for k � k f . For such flows, Prasath et al [200], Dallas et al [201], and Alex-
akis and Biferale [70] showed that Eu(k) ∼ k2 and Πu(k) ≈ 0 for k < k f , and Eu(k) ∼ k−5/3

and Πu(k) ≈ const. > 0 for k > k f . These authors argue that the modes in k < k f regime are
in absolute equilibrium. See figure 27(d) for an illustration. Note that in Kolmogorov flow,
the large scales, rather than small scales, are in equilibrium. This is in contrast to flows corre-
sponding to K41 and Euler-2 of figure 27 where the modes at small scales are in equilibrium.
Recently, Alexakis and Brachet [202] showed that the nature of forcing can strongly affect the
behaviour of the large scales. They observed that spectrally dense forcing with long correla-
tion times may yield spectrum different from the k2 energy spectrum, while forcing with short
correlated time scale is likely to reproduce the thermal spectrum.

Thus, Euler turbulence provides valuable insights into the thermalization process, which
is an important area of research in quantum and classical physics. In Euler-2 and K41 flows,
the energy at large scales cascades to intermediate and dissipation ranges. The energy flux
of the dissipative scale is transferred to the thermal energy of the particles, who move ran-
domly. In Euler-2 flow, thermal energy of the particles appear as k2 spectrum, but thermal
spectrum is not present in the K41 flow. We present various regimes in figure 27 using different
colours. The yellow, green, and blue colours represent the inertial, dissipative, and equilibrium
regimes respectively, while the orange colour represents the thermodynamic regime or micro-
scopic scales where the particles are in equilibrium. Interestingly, Eu(k) of Cichowlas et al [62]
exhibits a small exponential transition regime (similar to that of hydrodynamic turbulence)
between the k−5/3 and k2 regimes.

Based on these examples, it has been argued that in 3D hydrodynamics, thermalization
occurs via a multiscale energy transfer from large and intermediate scales (noequilibrium)
to small scales (equilibrium). Here, the coherent fluid energy of inertial-dissipative regime is
converted to the thermal energy of constituents molecules. This mechanism provides a scenario
for the emergence of friction or dissipation in generic systems, including Hamiltonian and
quantum systems [203].

The above formalism for Euler turbulence has been extended to secondary fields advected
by the velocity field. For diffusionless passive scalar turbulence, conservation of

∑
k Eζ(k)
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leads to the following distribution for Eζ(k):

P(Eζ(k)) = βζ exp[−βζEζ(k)] (226)

that leads to 〈Eζ(k)〉 = 1/βζ [6, 8]. The formulas for inviscid MHD turbulence are more com-
plex due the conservation of total energy, cross helicity, and magnetic helicity. The reader is
referred to the original papers by Frisch et al [65] and Stribling et al [66]. For these systems too,
the equilibrium spectra and fluxes are easier to obtain using white noise as an initial condition.
Burgers turbulence too exhibits similar properties during thermalization [204].

The energy flux vanishes in the equilibrium regime of hydrodynamic turbulence. It is impor-
tant to contrast this effect from the suppression of the net energy flux by two opposite fluxes,
as observed in quasi-2D stably stratified turbulence [87] and in compressible turbulence [88].
In the latter systems, the detailed balance of energy transfers is broken by opposing energy
fluxes, called flux loops.

In addition to Euler turbulence and other dissipationless turbulent systems, many energy-
conserving nonequilibrium systems exhibit strong fluctuations or turbulence, which will be
described below.

11.2. Thermalization in miscellaneous dissipationless systems

In this section, we describe some generic properties of thermalization in Hamiltonian sys-
tems and dissipationless partial differential equations. But, first we discuss the dynamics of
dissipationless Burgers equation.

For a wave (e.g. sin(x)) as an initial condition, one-dimensional dissipative Burgers equation
yields shocks [205]. Such flows exhibit k−2 spectrum followed by a dissipative spectrum [206].
In contrast, Frisch et al [69] and Ray et al [204] studied thermalization of Burgers equation by
employing a minimal dissipation with small viscosity or hyperviscosity. In these works, they
report a mixed spectrum: k−2 for intermediate wavenumbers (nonequilibrium regime) and k0

for large wavenumbers (equilibrium regime), similar to the findings of Cichowlas et al [62]
for Euler turbulence. Note however that a random initial condition yields an equilibrium state
with E(k) ∼ k0 and zero energy flux throughout the wavenumber range.

For more than half a century, researchers have been studying thermalization in
Fermi–Pasta–Ulam–Tsingou model [207]. In this model, the energy cascades to higher modes
when a large-scale excitation is chosen as an initial condition. The system eventually reaches
a state where the energy is equipartitioned among all the Fourier modes. However, after
some time, the system returns to the initial configuration, consistent with Poincaré recurrence
theorem [208–210]. On the contrary, for random initial condition, the system reaches an equi-
librium state with energy equipartitioned among all Fourier modes [209, 210]. This observation
again demonstrates how random initial condition aids in taking a dynamical system towards
thermalization. Similar behaviour has been observed for the KdV equation, which is related to
the Fermi–Pasta–Ulam–Tsingou model [210].

Thermalization processes in quantum systems, such as Bose–Einstein condensate and
superfluids, are more complex [67, 197]. Still, these systems have certain similarities with
Euler turbulence and other related systems. Thus, Euler turbulence provides valuable insights
into the thermalization process. More work is being carried to address the following questions
among others: Do Euler turbulence and related turbulent systems become ergodic under ther-
malization? What are the consequences of Poincaré recurrence theorem on thermalization?
In Euler turbulence with Taylor–Green vortex as an initial condition [62], would the system
return to the initial configuration after thermalization.
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In the next section, we describe the properties of energy flux in quantum turbulence and in
binary-mixture turbulence.

12. Variable energy flux in quantum turbulence and binary-mixtures
turbulence

Bose–Einstein condensates and superfluids, which are quantum systems, exhibit turbulent
behaviour for some set of parameters [53, 211–213]. Binary-mixtures too become turbulent
for some parameters. As we show below, variable energy flux formulation sheds important
light into these complex systems.

12.1. Quantum turbulence

To describe quantum systems, we often employ macroscopic wavefunction ζ(x, t) =
√

n
exp(iS), where n is the number density of atoms and S is the phase. The time evolution of
the wavefunction ζ(x, t) is described using Gross–Pitaevskii (GP) equation [53, 55, 211, 213]:

ih̄
∂ζ

∂t
=

[
− h̄2

2m
∇2 + V(r) + g|ζ|2

]
ζ, (227)

where m is the mass of the quantum particle, V(r) is the external potential, and g is the propor-
tionality constant for the interaction term. The GP equation exhibits many interesting features,
including entangled quantum vortices, Kelvin waves, etc. However, in this subsection we focus
on the energy fluxes of quantum turbulence.

The velocity of a superfluid flow is given by the gradient of its wavefunction, that is,
us = (h̄/m)∇S. In terms of the number density, n, and us, the real and imaginary parts of
the GP equation are [55]

∂n
∂t

+∇(nus) = 0, (228)

∂us

∂t
+ (us · ∇)us = − 1

mn
∇p− 1

m
∇
(

h̄2

2m
√

n
∇2√n

)
− 1

m
∇V. (229)

Note that mn = ρs is the density of the superfluid. In helium-4, the superfluid component coex-
ists with the normal fluid, whose velocity field is denoted by un. The equations for the superfluid
and normal-fluid components are [50, 51]

∂us

∂t
+ (us · ∇)us = − 1

ρs
∇ps −

ρs

ρ
Fns, (230)

∂un

∂t
+ (un · ∇)un = − 1

ρn
∇pn +

ρn

ρ
Fns + FLS + ν∇2un, (231)

where ρn is the density of the normal fluid, ρ = ρs + ρn is the total density of the fluid, FLS is the
large-scale force applied to the normal fluid, and Fns = (B/2)|ω|(us − un) is the mutual fric-
tion. Here ω is the superfluid vorticity, and B is a constant. Note that pn = (ρn/ρ)p+ ρsST and
ps = (ρs/ρ)p− ρsST are partial pressures with S, T , p as the specific entropy, temperature, and
pressure respectively. Also, the relative density ρn/ρs increases with temperature, and helium-4
becomes a normal fluid beyond the critical temperature of 2.17 K. In the following discussion,
for simplification, the fluid densities are assumed to be constant.

Researchers have studied superfluid turbulence using experiments and numerical simu-
lations ([53, 55, 211–213] and references therein). These works show that both superfluid
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and normal fluid exhibit Kolmogorov-like k−5/3 spectra and nearly constant energy fluxes
[53, 211–213]. At very low temperatures, ρn ≈ 0, which is observed in helium-3; for such
flows, vortex reconnections and phonon coupling at small scales provide the necessary dissi-
pation to sustain the k−5/3 spectrum. Also refer to Arnol et al [214] for a recent work on energy
flux in trapped Bose–Einstein condensate.

In the following discussion, we briefly look at the variable energy flux in quantum tur-
bulence. In the turbulent regime, the nonlinear terms of the above equations, (us · ∇)us and
(un · ∇)un, induce the respective energy cascades Πu,s(k) and Πu,n(k) for the two components.
These energy fluxes are affected by the mutual friction. The energy injection rates by Fns to
the normal and superfluid components are (see section 3)

Fu,s(k) = −ρs

ρ
R[Fns(k) · u∗

s (k)]; Fu,n(k) =
ρn

ρ
R[Fns(k) · u∗

n(k)]. (232)

Therefore, the energy fluxes for the two fluids vary with k as

d
dk

Πu,s(k) = Fu,s(k);
d
dk

Πu,n(k) = Fu,n(k) − 2νk2En(k), (233)

where 2νk2En(k) is the dissipation rate for the normal fluid. Roche et al [51] and Wacks and
Barenghi [52] analyzed the above energy transfers using numerical simulations and observed
that Fu,s < 0 and Fu,n > 0. Note however that these quantities depend on the temperature or
ρs/ρn. Based on these observations, we expected thatΠu,n andΠu,s vary with k. These variations
can induce additional k dependence in the energy spectra over Kolmogorov’s k−5/3 spectrum.
These predictions need further examination using experiments and numerical simulations.

Quantum systems are energy conserving. However, sustenance of k−5/3 spectrum requires
dissipation at small scales. It has been argued that the compressible waves produced during
vortex reconnections may provide the required dissipation [53, 203, 211–213]. These issues,
as well as the energy spectrum and fluxes of GP equations, have been studied using numerical
simulations and experiments [53, 54, 67, 199, 211–213].

For quantum turbulence, the energy fluxes have not been studied widely. We believe that
careful analysis of the fluxes will be useful for understanding quantum turbulence.

12.2. Variable energy fluxes in binary-mixture turbulence

In this section, we briefly describe the energy fluxes of binary fluid mixtures [215–218]. We
consider a binary mixture with two components whose relative densities are ζ(r) and 1 − ζ(r).
Researchers describe the dynamics of these fields using time-dependent Ginzburg–Landau
equation and Cahn–Hilliard (CH) equation [58, 59, 78]. Here we illustrate applications of
energy flux for the above equations.

The time-dependent Ginzburg–Landau (TDGL) equation, also called model A, is [59]:

∂ζ

∂t
= ζ − ζ3 +∇2ζ. (234)

The equation for the spectral energy Eζ (k) = 1
2 |ζ(k)|2 is

d
dt

Eζ(k) = −
∑
k1,k2

R[ζ(k1)ζ(k2)ζ(k3)ζ∗(k)] + 2Eζ(k) − 2k2Eζ (k), (235)
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where k3 = k − k1 − k2. In equation (235), the second term in the right-hand-side enhances
Eζ(k), while the last term dissipates Eζ(k). The nonlinear term, the first term in the right-hand-
side of the above equation, induces the following energy flux for a wavenumber sphere of
radius k0:

Πζ (k0) = −
∑
k�k0

∑
k1,k2

R[ζ(k1)ζ(k2)ζ(k3)ζ∗(k)]. (236)

Numerical simulation and analytical studies of TDGL equation reveal that asymptotically
(t →∞), the system exhibits either a constant solution (ζ = 1 or −1) or a train of domains
described by ζ = tanh(x/

√
2) (see [59] and references therein). The above route to structure

formation has been studied in detail, but the formalism of energy flux has not been applied
to this system. In the following discussion we show how the energy flux can explain the
emergence of constant ζ solutions.

The scalar energy Eζ is dissipated strongly at small scales due to the k2 factor in the dissipa-
tion rate. Consequently, a forward cascade of Eζ is set up that transfers the energy of large and
intermediate scales to small scales where it is dissipated. Note however that the mean energy,
Eζ(k = 0), is not dissipated (due to the structure of the dissipation term). Consequently, only
k = 0 mode survives, while the rest of the modes vanish due to the forward cascade and dissipa-
tion. Therefore, the final state is either ζ = 1 or −1 with zero energy flux. It will be interesting
to employ flux arguments to the domain solution (ζ = tanh(x/

√
2)). Thus, the energy flux

provides useful insights into the dynamics of TDGL equation.
Similar analysis is applicable to model B or the Cahn-Hilliard (CH) equation [59], which is

∂ζ

∂t
= −∇2(ζ − ζ3 +∇2ζ). (237)

The evolution equation for the modal energy of the CH equation is

d
dt

Eζ(k) = −k2
∑
k1,k2

R[ζ(k1)ζ(k2)ζ(k3)ζ∗(k)] + 2k2Eζ(k) − 2k4Eζ(k), (238)

while the corresponding scalar energy flux is

Πζ (k0) = −k2
∑
k<k0

∑
k1,k2

R[ζ(k1)ζ(k2)ζ(k3)ζ∗(k)]. (239)

The energetics of CH equation is very similar to that of TDGL: k2Eζ(k) term feeds energy
into the system, while −k4Eζ(k) term dissipates energy. The first term in the right-hand-
side of equation (238) creates forward energy cascade. The cascaded energy is dissipated at
small scales. Asymptotically, we obtain domains separated by domain walls [59]. Detailed
characterization of energy flux is not yet explored for this system.

Inclusion of hydrodynamic effects into CH equation yields the following equations for the
velocity field and ζ [58]:

∂u
∂t

+ (u · ∇)u = −1
ρ
∇p + aζ∇∇2ζ + FLS + ν∇2u, (240)

∂ζ

∂t
+ (u · ∇)ζ = −∇2(ζ − ζ3 +∇2ζ), (241)

∇ · u = 0, (242)
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with corresponding forces as Fu = aζ∇∇2ζ and Fζ = ∇2ζ3. The energy spectra and fluxes of
the above system have been studied in detail by many researchers (see [217, 218] and references
therein).

The nonlinear terms (u · ∇)u and (u · ∇)ζ generate the respective fluxes Πu(k) and Πζ(k)
for the kinetic and scalar energies. The force Fu induces variations in Πu(k) due to the energy
injection rate:

Fu(k) = R[Fu(k) · u∗(k)] =
∑

p

�[p2ζ(k − p)ζ(p){p · u∗(k)}]. (243)

Refer to equation (238) for the expression of Fζ(k). Interestingly, hydrodynamic version of
CH equation too exhibits coarsening [217, 218]. Note that the scalar field appears to exhibit
forward cascade. Thus, the coarsening process in binary fluid is not due to any inverse cascade
(as in 2D turbulence), but it is due to the energy injection term of the equation.

In summary, the scalar energy flux provides valuable inputs to the dynamics of coarsening.
However, more work is required for definitive conclusions.

13. Field-theoretic description of energy flux

There are several field-theoretic calculations of turbulence using which we can compute the
energy flux. These are first-principle calculations, typically to first order in perturbation. Field
theory is a complex and vast field that is covered in many books and papers. Hence, it is impos-
sible to summarize it in several pages. Here, we provide a brief summary of the main results
of this topic.

One of first field-theoretic calculations of turbulent flow was by Kraichnan [74] who
employed direct interaction approximation to compute the effective viscosity and energy flux.
Later works in this field include those by Wyld [219], Orszag [12], Yakhot and Orszag [101],
McComb [7, 220], DeDominicis [221], Zhou [222], Adzhemyan et al [223], Zakharov [224],
Nazarenko [79], etc. These works provide renormalized viscosity as well as energy flux; here
we sketch the energy flux aspects of the above works.

Most of the field-theoretic computations of energy flux are based on perturbative expansion
to first order. We start with equation (19) and assume that the Fourier modes are quasi-Gaussian
that yields the following to first order in perturbation [5, 14, 43, 74]:

Πu(k0) =
∑
p�k0

∑
k>k0

�
[
〈{k · u(q)}{u(p) · u∗(k)}〉

]

∼
∑
p�k0

∑
k>k0

∫ t

0
dt′ G(k, t − t′) 〈u(p, t) · u(−p, t′)〉 〈u(q, t) · u(−q, t′)〉

= Πu = const., (244)

where G(k, t − t′) is the Green’s function, and t, t′ are two different times with t > t′. The quasi-
Gaussian nature of the modes yields 〈uuuu〉 ∼ 〈uu〉 〈uu〉. The above integral converges and
yields a constant, which is consistent with Kolmogorov’s theory of turbulence. Interestingly,
for a 3D flow, a substitution of E(k) = k2 in equation (244) leads to vanishing energy flux,
consistent with the theory of dissipationless turbulence [14].

It is very hard to compute the fluctuations in the energy flux or dissipation rate using field
theory. These computations, if successful, would have yielded the intermittency exponents.
In spite of many valiant attempts, there is no fully consistent calculation that achieves this
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objective. Belinicher et al [225] developed a field-theoretic procedure to compute the scaling
exponents ζq of the qth-order structure function. In a series of papers, L’vov and Procaccia
[226–228] employed exact resummation of all the Feynman diagrams of hydrodynamic tur-
bulence and derived scaling relations among the intermittency exponents. Their perturbative
theory is divergence-free both in infrared and ultraviolet regime. These results are summarized
as fusion rules [229]. Fairhall et al [230] showed that the predictions of the fusion rules are in
good agreement with the experimental results of atmospheric turbulence. Another important
and related issue is Euler singularity and dissipative anomaly, which are discussed in Onsagar
[231], Frisch [8], and Eyink and Sreenivasan [232]. Using mode coupling and renormaliza-
tion group method, Das and Bhattacharjee [233] computed 〈Πu(r)Πu(r + l)〉, which is the
correlation of the energy flux.

Gurarie and Migdal [234], and Apolinario et al [235] employed instantons to derive the
exponential tails of the PDF of the velocity gradients of randomly forced Burgers equation.
Similar methods are being applied to hydrodynamic turbulence. The above calculations are
quite complex; the reader is referred to the original paper for details.

Field-theoretic computations have also been applied to other turbulent systems, such as
MHD turbulence ([43] and references therein) and scalar turbulence [236]. These computations
are more complex than its hydrodynamic counterpart due to larger number of variables. For
example, for MHD turbulence, the energy flux for the Elsässer variable z+ is

Πz+ (k0) = S+(k′|p|q) =
∑
p�k0

∑
k′>k0

�
[〈
{k · z−(q)}{z+(p) · z+(k′)}

〉]
. (245)

Verma [43] computed the above to first order in perturbation and showed that〈
S+(k′|p|q)

〉
= −�

∫ t

∞
dt′

∫
dp′ dq′ [k′i(−iMjab(k′))G++(k′, t − t′)

×
〈
z−i (q, t)z−a (q′, t′)

〉 〈
z+j (p, t)z+b (p′, t′)

〉
+ k′i(−iMjab(p))G++(p, t − t′)

〈
z−i (q, t)z−a (q′, t′)

〉
×

〈
z+j (k′, t)z+b (p′, t′)

〉]
, (246)

where Mjab(k′) and Mjab(p) are tensors involving k, p, q.
The above expressions for Πz+ (k0) and S+(k′|p|q) are general, and they are applicable to

both isotropic and anisotropic situations. For the isotropic case, Verma [43] computed the
energy fluxes under the assumption of Kolmogorov-like spectrum. He also computed the flux
for anisotropic turbulence, which is observed in the presence of a strong external magnetic
field. For simplification, it was assumed that 〈Ez+〉 = 〈Ez−〉. For this case, 〈S+(k′|p|q)〉 =
〈S−(k′|p|q)〉. Further details of the calculation are as follows.

In the presence of a strong external magnetic field B0, Green’s function and correlation
function are [43, 237]

G±±(k, t − t′) = θ(t − t′) exp[±ik · B0(t − t′)],〈
z±i (k, t)z±j (k′, t′)

〉
= θ(t − t′)C±±

i j (k, t, t) exp[±ik · B0(t − t′)],

where θ(t) is the step function. The anisotropic correlation correlations C±±
i j (k, t, t) are

approximated as

C±±
i j (k, t, t) = (2π)dδ(k + k′)

[
Pi j(k)C1(k) + P′

i j(k
′, n)C2(k)

]
(247)

65



J. Phys. A: Math. Theor. 55 (2022) 013002 Topical Review

with

P′
i j(k, n) =

(
ni −

n · k
k2

ki

)(
n j −

n · k
k2

k j

)
, (248)

where n is the unit vector along the mean magnetic field, and C11 = C1(k) + C2(k)sin2θ and
C22 = C1(k) are the poloidal and toroidal correlations respectively [43, 237].

The dt′ integral of equation (246) is [237]∫ t

−∞
dt′θ(t − t′) exp[i(−k + p − q) · B0(t − t′)] =

1 − exp i(−q‖B0 + iε)t
i(−2q‖B0 + iε)

= i Pr
1

2q‖B0
+ πδ(2q‖B0), (249)

with Pr representing the principal value and ε > 0 is a constant. The term δ(q‖) in 〈S+(k′|p|q)〉
implies that the energy transfer in weak MHD turbulence occurs in a plane formed by p⊥ and
k⊥. Under this assumption, p′

i j(n, k) = nin j, which leads to

〈
S+(k′|p|q)

〉
=

πδ(q‖)
2B0

k2
⊥(1 − y2)

[
1 + z2 + C2(p)/C1(q)

]
C1(q)

×
[
C1(p⊥) − C1(k⊥)

]
. (250)

Hence,

Π ∼
∫

dk
∫

dq
πδ(q‖)

2B0
k2
⊥(1 − y2)

[
1 + z2 + C2(p)/C1(q)

]
C1(q) [C1(p) − C1(k)]

= k‖

∫
dk⊥

∫
dq⊥ dq‖

πδ(q‖)
2B0

k2
⊥(1 − y2)

[
1 + z2 + C2(p)/C1(q)

]
C1(q)

× [C1(p) − C1(k)] , (251)

that yields

Π ∼ k‖k
6
⊥C2

1(k)/B0. (252)

Using C1(k⊥, k‖) = E1(k⊥)/(2πk⊥k‖), we obtain

E1,2(k⊥) ∼ (ΠB0)1/2k1/2
‖ k−2

⊥ , (253)

which is same as that derived by Galtier et al [237] using Zakharov transforms. Note that the
above spectrum is very different from Kolmogorov’s 5/3 spectrum. Also, the above derivation
uses constancy of energy flux rather than Zakharov transform, which was employed by Galtier
et al [237].

Goldreich and Sridhar [238] performed field-theoretic computation of strong turbulence.
The energy flux in this framework is [43]

Π(k0) ∼
∫

dk′
∫

dp�
[

(−i)k2
⊥ti(v,w)C(q)(C(p) − C(k))

1
−iω(k) + η(k)

]

∼
∫∫

dk⊥ dk‖ dp⊥ dp‖k
3
⊥p⊥C(q)(C(p) − C(k))

1
ω

(η(k)/ω(k))
1 + (η(k)/ω(k))2

. (254)
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with

η(k) = η0k2
⊥
[
k‖E(k, t)

]1/2
, (255)

Using ω ∼ k‖B0 and dimensional analysis it can be deduced that [238]

C(k) ∼ Π2/3k−10/3
⊥ L−1/3 f

(
k‖L1/3

k2/3
⊥

)
. (256)

The above arguments show that we can derive important phenomenological relations using
the field-theoretic computation of energy flux. In the above derivations, the energy fluxes are
constant, but the framework is expected to work for cases when the energy flux are k-dependent.
Such explorations would be interesting.

14. Summary and conclusions

The energy flux is an important quantity in turbulence. The inertial-range energy flux is
constant in hydrodynamic turbulence with large-scale forcing. However, in the presence of
inertial-range energy injection (Fu(k)) and dissipation (Du(k)), the kinetic energy flux becomes
scale-dependent and is described by dΠu(k)/dk = Fu(k) − Du(k). Due to these variations, such
fluxes are referred to as variable energy flux. In this article, we review how the variable energy
flux formalism is useful for modelling many turbulent systems, especially in determining their
energy spectra and fluxes. External force can induce anisotropy in the flow. Yet, the energy
flux and shell spectrum are useful tools for describing multiscale energy transfers in complex
turbulent flows.

A summary of the results presented in the review is as follows.

• Buoyancy driven turbulence: In stably stratified turbulence with moderate stratification,
the kinetic energy is transferred to the potential energy, henceFu(k) < 0. Therefore,Πu(k)
decreases with k in the inertial range itself; in particular,Πu(k) ∼ k−4/5 and Eu(k) ∼ k−11/5,
which is steeper than k−5/3 spectrum [19, 20]. However, Fu(k) > 0 in turbulent thermal
convection. Hence, Eu(k) for thermal convection is expected to be shallower than k−5/3.
Yet, turbulent thermal convection with Pr � 1 has behaviour similar to hydrodynamic
turbulence (nearly constant energy flux and k−5/3 kinetic energy spectrum in the inertial
range). This is due to the fact that for Pr � 1, Fu(k) decreases sharply with k and is
quite weak in the inertial range, similar to that in Kolmogorov’s model for hydrodynamic
turbulence.

• MHD and polymeric turbulence: In MHD turbulence, the nonlinear interactions between
the velocity and magnetic fields cause energy transfers from the velocity field to the mag-
netic field. This conversion mechanism is responsible for the growth of the magnetic field
in astrophysical objects, and for making Πu(k) a decreasing function of k. Similar energy
transfers are observed in turbulent flows with polymers. The suppression of Πu(k) or the
nonlinear term (u · ∇)u is one of the primary causes of drag reduction in such flows. Using
variable energy flux formalism we also derive identities relating various fluxes.

• Dissipation: In turbulence, viscous dissipation suppresses the energy flux in the dis-
sipation range. Using several assumptions, Pao [35, 113] showed that in the iner-
tial–dissipation range of hydrodynamic turbulence, the energy flux and normalized energy
spectrum vary as exp(−(k/kd)4/3), where kd is Kolmogorov wavenumber. Ekman friction
that acts at all scales steepens the inertial-range energy spectrum even more than the k−5/3
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Table 3. Table illustrating 3D turbulent systems along with their forces (Fu(k)), the
kinetic energy injection rates by the forces (Fu(k)), and the nature of kinetic energy
fluxes in the inertial range. For the meaning of the symbols, refer to the discussion in the
paper. IC stands for initial condition.

System Fu(k) Fu(k) Nature of Πu(k)

Kolmogorov’s K41 law 0 0 Const.
QS MHD turbulence −B2

0 cos2 θu(k) −2B2
0 cos2 θEu(k) < 0 Decreases

Ekman friction (3D) −αu(k) −2αEu(k) < 0 Decreases
Stably stratified turbulence −Nζ(k) −NR[ζ(k)u∗z (k)] < 0 Decreases
Thermal convection αgζ(k) αgR[ζ(k)u∗z (k)] > 0 Marginally increases
Unstably stratified turbulence gζ(k) gR[ζ(k)u∗z (k)] > 0 Increases
MHD (dynamo) [J × B](k) R{[J × B](k) · u∗(k)} < 0 Decreases
Dilute polymer μ

τp
∂ j( f ζi j) Complex convolution <0 Decreases

Shear turbulence Shear force Positive Increases
Euler turbulence 0 0 Zero or mixed

depending on IC

power-law. In quasi-static MHD turbulence, the Joule dissipation provides similar steepen-
ing of the kinetic energy spectrum. Pao’s model has been generalized to 2D hydrodynamic
turbulence with Ekman friction.

• Energy flux of a secondary flow ζ: The advection term of a secondary field ζ, (u · ∇)ζ,
has an associated secondary energy fluxΠζ . This flux too exhibits variability: dΠζ(k)/dk =
Fζ(k) − Dζ(k), where Fζ (k) is the secondary energy injection rate, and Dζ (k) is the dif-
fusion rate of the secondary field. Such flux variations are present in MHD turbulence,
stably stratified turbulence, binary-mixture turbulence, and related complex flows.

Thus, variable energy flux is a useful diagnostic for modelling above flows, as well as shear
turbulence, stably and unstably stratified turbulence, Euler turbulence, quantum turbulence,
etc. Energy flux provides inputs for understanding quantum turbulence and the coarsening
processes in time-dependent Ginzburg–Landau and Cahn-Hilliard equations. Interestingly, the
money supply in a free market economy too exhibits a cascade across various income groups;
this cascade has similarities with the energy flux in turbulence [239]. It is also important to
note that the nature of variable energy flux depends on the space dimensionality. In table 3, we
summarise the variable energy fluxes discussed in this review.

For a delta-correlated field as an initial condition, truncated Euler turbulence exhibits equi-
librium behaviour with vanishing kinetic energy flux and nearly k2 energy spectrum in three
dimensions. However, for orderly initial condition, such as Taylor–Green vortex, Euler turbu-
lence yields a mix of nonequilibrium and equilibrium behaviour with a combination of k−5/3

and k2 spectra. Asymptotically, the k2 spectrum is expected for all k’s. Dissipationless MHD
turbulence and passive-scalar turbulence also exhibit similar behaviour. These features of dis-
sipationless turbulence provide interesting clues into the thermalization processes of complex
systems.

There is a large body of works on the real-space description of energy flux and its relation to
the structure functions. The intermittency effects are related to the fluctuations in energy fluxes.
It has been shown that the real-space and Fourier-space formalisms of energy transfers are
related to each other. There are some works that describe structure functions for anisotropic tur-
bulence. However, further investigations are required for a complete understanding of energy
transfers in anisotropic turbulence.
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As discussed in the review, variable energy flux provides a unifying platform for modelling
many turbulent systems. Note, however, that this framework has the following limitations:

(a) In the present formalism, we assumed the flows to be steady. Equation (35) is applicable
to unsteady flows, but general properties of the energy fluxes for such unsteady flows have
not been studied in detail.

(b) Kolmogorov’s theory [1, 2] describes the properties of average energy flux and energy
spectrum of turbulent hydrodynamics. The energy flux fluctuates around the above mean.
These fluctuations are related to the intermittency, which is not covered in this review. Note
that the energy fluxes of buoyant flows, magnetofluids, and more complex flows exhibit
variations in the energy fluxes due to intermittency effects, as well as due to the external
forces.

(c) The energy transfers are anisotropic in the presence of a directional forcing or a mean
field. For example, in MHD turbulence with a constant mean magnetic field, the energy
exchange is dominant near the plane perpendicular to the mean magnetic field [157].
For such systems, the ring-to-ring energy transfer provides valuable insights [18]. How-
ever, the energy flux, which is the net energy transfer from the modes inside a sphere
to the modes outside the sphere, is still defined for a anisotropic system. In addition,
the energy flux represents over-all scale-by-scale energy transfer in such systems. Con-
sequently, a large body of work have employed energy flux for modelling anisotropic
flows. For example, Krachnan [240] and Irishnokov [241] modelled MHD turbulence
using energy flux. Also, Bolgiano [19] and Obukhov [20] employed energy flux for mod-
elling stably-stratified turbulence. In addition, the energy flux is used for characterizing
rotating turbulence.

(d) In this review, we focus on strong turbulence. The energy flux of weak turbulence has not
been discussed here.

As we show in this review, variable energy flux has been studied in some detail for the fol-
lowing systems—dissipative range of hydrodynamics, MHD and buoyancy-driven turbulence,
flows with dilute polymers, Euler turbulence, etc. We believe that this formalism will also be
useful for modelling anisotropic turbulence, quantum turbulence, binary-mixture turbulence,
electron MHDs [242], shell model of turbulence [243], compressible turbulence [244], weak
turbulence [79], and plasma turbulence [245]. We hope that the above issues will be addressed
in near future.
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[236] Falkovich G, Gawȩdzki K and Vergassola M 2001 Rev. Mod. Phys. 73 913–75
[237] Galtier S, Nazarenko S V, Newell A C and Pouquet A 2000 J. Plasma Phys. 63 447–88
[238] Goldreich P and Sridhar S 1995 Astrophys. J. 438 763–75
[239] Verma M K 2019 Hierarchical financial structures with money cascade New Perspectives and Chal-

lenges in Econophysics and Sociophysics ed F Abergel, B Chakrabarti, A Chakraborti, N Deo
and K Sharma (Berlin: Springer)

[240] Kraichnan R H 1965 Phys. Fluids 8 1385–7
[241] Iroshnikov P S 1964 Sov. Astron. 7 566–71
[242] Biskamp D, Schwarz E and Drake J F 1996 Phys. Rev. Lett. 76 1264–7
[243] Plunian F, Stepanov R and Frick P 2012 Phys. Rep. 523 1–60
[244] Galtier S and Banerjee S 2017 Phys. Rev. E 96 053116
[245] Teaca B, Jenko F and Told D 2017 New J. Phys. 19 045001

75


