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We have used renormalized viscosity derived using ‘self-consistent’ recursive

renormalization-group method to perform large eddy simulations (LES) of decaying

homogeneous and isotropic turbulence inside a periodic cubical box on coarse grids

(323, 643 and 1283) at initial Taylor Reynolds number, Rλ = 315. The results from

LES were compared against direct numerical simulation (DNS) results (5123 grid) at

the same initial Rλ. There is a good agreement between the computed quantities for

LES and DNS - temporal evolution of turbulence kinetic energy Et, kinetic energy

spectra Eu(k), kinetic energy flux Πu(k)- and the evolution of large scale structures,

visualized using the velocity magnitude and finite-time-Lyapunov-exponent isosur-

faces, too remain similar for both classes of the simulations. This establishes the

suitability of using recursive renormalization-group based eddy viscosity in perform-

ing large eddy simulations.
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I. INTRODUCTION

Owing to the scaling N ∝ Re9/4, where N is the total number of grid points in a 3-D sim-

ulation and Re is the Reynolds Number, resolution of all the scales in numerical simulations

of turbulent flows, so called direct numerical simulations (DNS), is limited to moderate

Reynolds numbers. Large eddy simulation (LES) is the most efficient technique for simu-

lating high Re flows. In LES, one does not resolves the small dissipating scales (sub-grid

scales) explicitly and hence these must be modeled. There are several sub-grid scale (SGS)

models1. The earliest SGS model used was the Smagorinsky model2 where the effect of

small scales is modeled by using an eddy viscosity.

Certain issues with Smagorinsky model such as unconditional dissipation, neglect of backscat-

ter and empirical nature of the constants involved are addressed in the dynamic version of

the Smagorinsky model3 where an algebraic identity between the sub-grid scale stresses at

two different filtered levels and the resolved turbulent stresses is utilized to evaluate the

model constant and some backscatter is also captured. Dynamic models, however, introduce

numerical instability without proper averaging of the terms involved. This averaging itself

becomes challenging for flows around complex geometries. Another class of models are

scale-similar4 models which presume the similarity between the structure of velocity field

above and below the cutoff used to distinguish sub-grid scales from super-grid scales. Several

other models have emerged, where instead of modeling the SGS tensor, the SGS velocity

field is modeled5–7. In the work of Misra and Pulin7, for example, the SGS structure of the

turbulence is assumed to consist of stretched vortices whose orientations are determined

by the resolved velocity field. The implied velocity field is used to evaluate the SGS stress

tensor. In spite of many such SGS models, no model can boast of accurately capturing the

effect of sub-grid scales for a vast range of flow situations. To remedy this, models which

can better integrate turbulence theory and simulations are constantly sought.

Renormalization-group (RNG), a popular-technique among physicists, has gained attention

in tackling the physics of turbulent flows and looks promising in the development of SGS

models which are better integrated with theoretical arguments in turbulence. Broadly,

one can divide RNG approaches into two categories: ε-expansion method and the recur-

sive method. In the former approach8,9 a zero mean Gaussian random forcing, of the form

F̂(k) = D0k
−d+(4−ε) , is introduced into the Navier-Stokes equations. Here ε is a small param-
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eter introduced in the exponent of the power law. Upon removing the sub-grid wavenumber

shells, higher-order non-linear terms are introduced. For ε� 1, these terms turn out to be

“irrelevant”. Yakhot and Orszag10 evaluated important constants of turbulent flows such as

the Kolmogorov constant, turbulent Prandtl number, Batchelor constant using ε-expansion

approach. Yakhot and Orszag have 11 further used the evaluated eddy viscosity for LES of

wall bounded flows. However, in all this, they used ε = 4 and still do away with the high

order non-linear terms. This is quiet ambiguous and mathematically inconsistent. Eyink12

has further shown that such high-order nonlinear terms are not “irrelevant” but marginal

by power counting and can not be neglected even for small ε.

In the recursive approach13, however, one successively eliminates the sub-grid wavenumber

shells to obtain an integro-difference recursive relation for the eddy viscosity in the super-

grid range. Upon application of RNG to this recursive relation, the eddy viscosity tends

to a wavenumber dependent fixed point. In doing so, unlike the ε-expansion RNG scheme,

no expansion parameter ε is needed and hence the ambiguity involved in eliminating the

high order non-linear terms while keeping a high value of the perturbation parameter is

not tackled. Thus, the recursive RNG approach sounds mathematically more consistent in

tackling turbulent flows. Motivated by the success of Yakhot and Orszag’s11 simulations

using ε-expansion based renormalized viscosity and the mathematical consistency of recur-

sive RNG approach, one is tempted to use renormalized viscosity, calculated using recursive

method, for LES. McComb and Watt14 too had suggested such an approach. However, apart

from a preliminary investigation of Shishir and Verma15, no detailed investigation into this

issue has been performed. In the present work, we have performed such an investigation

and have used renormalized viscosity derived using the recursive RNG method to perform

LES of decaying, homogeneous and isotropic turbulence inside a periodic cubical box.

The outline of the paper is as follows: In Sec. II we discuss the details regarding the govern-

ing equations and the renormalized viscosity used in LES. Computational methodologies are

discussed in Sec. III. Results obtained from LES and DNS are discussed in Sec. IV. Finally,

we summarize our results in Sec. V.
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II. MATHEMATICAL FORMULATIONS

For turbulence in a cubical box with side L, the real-space velocity u(x, t) and pressure

p(x, t) can be written in Fourier-space as,

u(x, t) =
∑
k

û(k, t)eik.x (1)

p(x, t) =
∑
k

p̂(k, t)eik.x (2)

Here, wavenumber vectors k are integral multiples of k0 = 2π/L. Using the above for-

mulations, the Navier-Stokes equations, for incompressible flows, in Fourier space can be

written as16,

(
d

dt
+ ν0k

2)ûj(k, t) = −iklPjk(k)
∑
k′,k′′

δk,k′+k′′ ûj(k
′)ûk(k

′′) (3)

where Pjk(k) = −(δjk − kjkk
k2

) is the projection tensor and right hand side of Eq. 3 rep-

resents the triadic interactions among the wavenumbers k′,k′′,k such that k′ + k′′ = k.

Kroneckar Delta δk,k′+k′′ takes care that only such traidic interactions are captured.

For a sharp spectral filter with cutoff wavenumber kc, the Fourier coefficients of the filtered

velocity field are,

ˆ̄u(k, t) = H(kc − k)û(k, t), (4)

where H represents Heaviside function, k = |k| is the magnitude of wavenumber. The Fourier

series for the filtered velocity is then,

ū(x, t) =
∑
k

eik.xˆ̄u(k, t) =
∑
|k|<|kc|

eik.xû(k, t) (5)

Once we substitute for the filtered velocities, we obtain a finite set of ordinary differential

equations (k < kc), from the preceding infinite set of Eq. 3, given as,

(
d

dt
+ ν0k

2)ˆ̄uj(k, t) = −iklPjk(k)
∑
k′,k′′

δk,k′+k′′H(kc − k)ûk(k
′, t)ûl(k

′′, t) (6)

Note here that this is not a closed system of equations since it includes unknown Fourier

coefficients ûk(k
′, t) and ûl(k

′′, t) for |k′| > kc or |k′′| > kc. LES in wavenumber space aims

at modeling these terms. For the large eddy simulations presented in this paper, the effect
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of such truncated modes on the lower wavenumber modes is accounted for by using renor-

malized viscosity17, derived using recursive renormalization-group formalism and is given

as,

νr(kc) = (K0)
1/2Π1/3k−4/3c ν∗ (7)

Here νr stands for renormalized viscosity, K0 is the Kolmogorov constant, Π is the kinetic

energy flux in the inertial range of wavenumbers and ν∗, as given in Shishir and Verma15, is

assigned a value of 0.38. Note that renormalized viscosity is a function of cutoff wavenumber.

Thus the equations to be solved for LES are given as,

(
d

dt
+ νek

2)ûj(k, t) = −iklPjk(k)
∑

|k′|,|k′′|<|kc|

δk,k′+k′′H(kc − k)ûk(k
′, t)ûl(k

′′, t) (8)

where the effective viscosity (νe) is the sum of kinematic viscosity (ν0) in Eq. 6 and

renormalized viscosity (νr(kc)). Note that νr(kc) appears in the left hand side of Eq. 8 as a

result of the truncation of modes û(k, t), û(k′′, t) where |k′| > kc, |k′′| > kc.

In Sec III we discuss different computational methodologies associated with our simulations.

III. SIMULATION DETAILS

We solve Eq. 3 for DNS and Eq. 8 for LES inside a periodic cubical box of size 2π×2π×2π

using the pseudo-spectral code Tarang18. The allowed wavenumbers are kx = (−nx/2 : nx/2),

ky = (−ny/2 : ny/2), kz = (−nz/2 : nz/2). Owing to the conjugate symmetry for the Fourier

modes û(k′′, t) = û∗(−k, t), only half of the kz modes (0 : nz/2) are considered. In our

simulations time-marching is done using second-order Runge-Kutta method. Furthermore,

the 2/3 rule19 is used for dealiasing and the Courant-Friedrichs-Lewy condition is used for

determining the time step ∆t. In all the simulations a value of kinematic viscosity, ν0 = 10−3,

is used. Note that the total number of modes left after padding off one-third of the available

modes, for dealiasing through the 2/3 rule, are given as 2
3
× N. For a sharp spectral cutoff,

the cutoff wavenumber is the largest magnitude wavenumber in the low resolution grids and

hence kc = 2
3
× N/2 = N/3.

We have performed LES for three grid resolutions - 322, 643 and 1283. Initial conditions

for all the simulations were obtained by a spectral-reduction of available DNS 5123 data,

for fully developed turbulence at Rλ = 315, to the required grid resolution. Starting with
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FIG. 1. Temporal evolution of turbulence kinetic energy. Note that the evolution is similar for

LES and DNS.

these initial conditions, the turbulence is allowed to decay in DNS 5123 as well as in LES

for the three grid resolutions, till non dimensional time t = 50 when turbulence has decayed

completely and the effective viscosity saturates to a constant value equal to that of kinematic

viscosity.

In the following section we will compare the results obtained from the large eddy simulations

against those obtained from direct numerical simulations.

IV. RESULTS AND DISCUSSIONS

In this section we compare the results obtained from LES and DNS using different Fourier

and real space diagnostics. Note that in Fourier space, the kinetic energy spectrum Eu(k)

is the kinetic energy of the wavenumber shell of radius k and kinetic energy flux Πu(k0) can

be interpreted as the kinetic energy leaving a wavenumber sphere of radius k0 and is given

as20,

Πu(k0) =
∑
k≥k0

∑
p<k0

δk,p+qIm[k.u(q)][u∗(k).u(p)] (9)

Fig. 1 shows the temporal evolution of turbulent Kinetic energy Et for DNS and LES. Note

that the initial energy for lower grid size simulations is small as compared to higher grid

size simulations. This is because of the lesser number of modes in the former. Note that the

evolution of turbulent kinetic energy in LES is similar to that of DNS in time. Fig. 2 shows
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FIG. 2. Temporal evolution of Total dissipation εt. Note that εt increases with decreasing grid

resolution.

10 20 30 40 50
t

0.000

0.002

0.004

0.006

0.008

0.010

ν e

LES 323

LES 643

LES 1283

LES 5123

FIG. 3. Temporal evolution of effective viscosity νe = ν0 + νr. Note that νe increases with decreas-

ing grid resolution.

the evolution of the total dissipation εt for different simulations. Note that εt is higher for

low resolution grids. The total dissipation is given as,

εt =
∑
k

2νek
2E(k) (10)

There will be a little decrease in εt owing to the truncation of modes beyond the cutoff in

LES. The effective viscosity, however, depends on the renormalized viscosity which in turn

is proportional to k
−4/3
c (Eq. 7) and hence increases with a decreasing grid resolution. Thus,
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FIG. 4. Temporal evolution of kmaxη. Note that kmaxη > 1 for DNS as well as LES.

the total dissipation becomes higher for decreasing grid resolution.

Note from Fig. 4 that owing to an increase in the net viscosity (νe), there is an increase in

the size of Kolmogorov’s length scale η and hence LES brings about an increase in kmaxη

such that it is greater than 1 for all the simulations.

Fig. 5 and Fig. 6 show the normalized kinetic energy (K.E) spectrum E∗(k) and the kinetic

energy flux Πu(k) respectively at non-dimensional time t=2. Note that there is a good

match between the normalized K.E spectrum obtained from DNS and LES and that LES at

all resolutions captures the expected Kolmogorov’s −5/316 scaling in the inertial regime of

wavenumbers very well. A small hump in the K.E spectrum at high wavenumbers for LES

is due to the “bottleneck effect”21 where the absence of sufficient number of modes impedes

the transfer of turbulent kinetic energy to higher wavenumber modes and hence this energy

accumulates near the cut-off. In Fig. 6, note the drop in Πu(k) for low resolution simulations

(LES). This comes as an effect of increased total dissipation εt and reduced initial kinetic

energy for the LES. Nevertheless, like DNS, the flux remains constant in the inertial range

of wavenumbers for LES.

Fig. 7 and Fig. 8 show the velocity magnitude and finite-time-Lyapunov-exponent(FTLE)

isosurfaces inside the computational domain for DNS 5123 and LES 643. The isosurfaces for

largest values of FTLE also identifies the dominant Lagrangian coherent structures (LCS) in

the flow22. Note from the figures that, apart from sub-grid scale perturbations, which cannot

be captured for a grid resolution as low as 643, the topology and the spatial distribution of
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FIG. 5. Normalized Kinetic Energy E∗(k) = Eu(k)k5/3Π−2/3 Spectrum for DNS and LES at

non-dimensional time t=2
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FIG. 6. Kinetic energy flux for DNS and LES at non-dimensional time t=2.

the large scale structures is predicted fairly well in LES when compared to that in DNS. This

further confirms that the present renormalized viscosity based sub-grid scale model properly

accounts for the effect of the truncated sub-grid modes on the large scale structures and

predicts accurately, the dynamics of decaying turbulence. We remark here that the present

renormalized viscosity is not suitable for computing anisotropic flows. Apart from this, the

present eddy viscosity is entirely dissipative in nature and effects such as backscatter23 are

not accounted for. Anisotropic corrections similar to that in Yakhot and Orszag11 can be
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FIG. 7. Isosurfaces of the magnitude of velocity for (a) DNS 5123 and (b) LES 643 at non-

dimensional time t=2 for a range 1.45-1.75.

FIG. 8. Instantaneous Lagrangian coherent structures based on backward-time finite-time-

Lyapunov-exponent (FTLE) field for (a) DNS 5123 and (b) LES 643 at non-dimensional time

t=2.

introduced for capturing anisotropy in flows. For capturing backscatter, a stochastic force

that is uncorrelated in time can be used24 along with the renormalized viscosity.

V. CONCLUSIONS

We have performed large eddy simulations of decaying homogeneous and isotropic tur-

bulence in a periodic cubical box. LES was performed using renormalized viscosity derived

using recursive renormalization-group scheme. The comparison of results for turbulent ki-
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netic energy flux, kinetic energy spectrum and isosurfaces of the velocity magnitude and

finite-time-Lyapunov-exponent show that the current formulation for renormalized viscosity,

which is mathematically more consistent as compared to ε-expansion RNG based renormal-

ized viscosity, faithfully captures the dynamics of decaying turbulent flows. Building on

the present success in performing LES of decaying turbulence, development of sub-grid scale

models based on the present formulation for renormalized viscosity and capable of accurately

capturing anisotropy and backscatter in turbulent flows can be carried out.
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