
Energy fluxes and shell-to-shell transfers in three-dimensional decaying
magnetohydrodynamic turbulence

Olivier Debliquy
Statistical and Plasma Physics, Université Libre de Bruxelles, CP231, Campus Plaine,
1050 Brussels, Belgium

Mahendra K. Verma
Department of Physics, Indian Institute of Technology, Kanpur 208016, India

Daniele Carati
Statistical and Plasma Physics, Université Libre de Bruxelles, CP231, Campus Plaine,
1050 Brussels, Belgium

sReceived 31 August 2004; accepted 12 January 2005; published online 30 March 2005d

A spectral analysis of the energy cascade in magnetohydrodynamicssMHDd is presented using
high-resolution direct numerical simulation of decaying isotropic turbulence. The Fourier
representations of both the velocity and the magnetic fields are split into subsets that correspond to
shells of wave vectors. A detailed study of the shell-to-shell interactions is performed and a
comparison with theoretical prediction based on field-theoretic method is proposed. Two different
definitions for the forward and backward energy transfers are suggested. They provide diagnostics
that can be used in order to assess subgrid-scale modeling in large eddy simulation for turbulent
MHD systems. ©2005 American Institute of Physics. fDOI: 10.1063/1.1867996g

I. INTRODUCTION

MagnetohydrodynamicsMHDd turbulence in three-
dimensional systems shares many features with hydrody-
namic turbulence. For instance, in high Reynolds number
flows, a large number of length scales are dynamically active
and the nonlinear interactions are dominant in both the large-
scale and the inertial-range dynamics. The dissipation is ac-
tive mainly on the small scales of motion. There are also
important differences with Navier–Stokes turbulence such as
the number and the nature of the quadratic ideal invariants.
In MHD the invariant quantities are the total energy, the
magnetic helicity, and the cross helicity, whereas in fluids
only energy is conserved. The description of the energy cas-
cade from the largest scale of the turbulent system towards
the small dissipative scales is usually done in terms of the
energy flux through a given scale. Because of energy conser-
vation, this flux is supposed to be constant in the inertial
range. Using a Fourier representation for both the velocity
and the magnetic fields, a finer description of the cascade can
also be achieved by computing the energy transfers between
subsets of modes with wave vectors that belong to a shell of
the Fourier space.

Although the properties of energy fluxes in fluid turbu-
lence have been studied in great details starting from
Kolmogorov1 sLesieur2 and references thereind, this subject
has not received much attention in MHD turbulence. Verma
et al.,3 and Dar, Verma, and Eswaran4 computed energy
fluxes in two-dimensional MHD turbulence using numerical
simulations. Frick and Sokoloff5 evaluated these fluxes using
shell model. Analytically, the energy fluxes in MHD turbu-
lence have been studied by Verma6,7 using field-theoretic ar-
guments, and by Goldreich and Sridhar8 using kinetic theory.
Shell-to-shell energy transfers have been computed in fluid

turbulence by Zhou,9 and Domaradzki and Rogallo10 using
eddy-damped quasinormal MarkoviansEDQNMd calculation
and numerical simulations. They reported the energy trans-
fers to be mostly local. Pouquet, Frisch, and Léorat11 have
studied the energy transfers between various scales in MHD
turbulence using EDQNM calculation. They reported nonlo-
cal interactions and interpreted them as a consequence of a
mean magnetic fieldsAlfvén effectd and of helicity. Dar,
Verma, and Eswaran4 numerically computed the shell-to-
shell energy transfers for two-dimensional MHD turbulence.
Recently, Verma and Ayyer12 have computed the above quan-
tities using a field-theoretic calculation.

The objective of this paper is to propose a detailed
analysis of the nonlinear triad interactions in MHD turbu-
lence and more specifically of shell-to-shell interactions. The
concept of shell variables is naturally introduced when a
Fourier decomposition of the fields is adopted. However, a
real space version can be defined by considering the parts of
the velocity and magnetic fields that correspond to structures
with a given length scale. Since the conserved energy has
two components in MHD, shell-to-shell interactions are ex-
pected to yield energy fluxes between the shells of velocity
and magnetic fields. The definition of these shell-to-shell en-
ergy transfer rates and their links with the triad interactions
in the MHD equations are presented in details in Sec. II. In
particular, the shell-to-shell interactions are decomposed into
forward sfrom large to small scalesd and backwardsfrom
small to large scalesd energy transfers. It is pointed out that
such a decomposition is not unique and two possible strate-
gies to identify the energy backscatter are suggested. They
provide diagnostics that are expected to be relevant in the
development of subgrid-scale models for large eddy simula-
tions sLESd.

In numerical simulations, only moderate Reynolds num-
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bers have been achieved. In Sec. III, a simulation of isotropic
decaying MHD turbulence using 5123 Fourier modes is dis-
cussed. The energy fluxes as well as the shell-to-shell energy
transfers between the velocity and the magnetic fields are
computed from this simulation. They are presented in details
in Sec. IV. A comparison with the theoretical estimates ob-
tained by Verma and Ayyer12 is also presented. Section V
contains conclusion and a discussion on the possible impor-
tance of the present results in the modeling of MHD turbu-
lence.

II. ENERGY TRANSFERS IN MHD TURBULENCE

A. Definitions

The equations for the incompressible MHD turbulence
are

]u

]t
+ su · = du = − = p + sb · = db + n=2u, s1d

]b

]t
+ su · = db = sb · = du + h=2b, s2d

= ·u = = ·b = 0, s3d

where n and h are the fluid viscosity and the resistivity,
respectively, andp is the totalsthermal+magneticd pressure
field divided by the density, which has been taken to be a
constant. The magnetic field has been represented in the
Alfvén units and has the dimension of velocity. In incom-
pressible flows, the pressure is supposed to adapt instanta-
neously to the velocity and magnetic field fluctuations in
order to maintain the divergence-free condition. It is then the
solution of the Poisson equation:

¹2p = − ]i] jsuiuj − bibjd. s4d

The primary objective of this section is to establish a
formalism in which the energy transfer between structures of
different sizes can be evaluated easily. The spectral represen-
tation of the fields are given by

uskd =E dx usxde−ik·x, s5d

bskd =E dx bsxde−ik·x. s6d

For shell decomposition, the Fourier space is divided into
shells sn defined as the sets of wave vectorshkj such that
kn−1=k0g

n−1ø uk u,kn=k0 gn. In this definition,g.0 andn
ù1, while k0 is the smallest relevant wave number in the
problem. The geometric growth of the shell boundaries is
chosen because of the existence of power laws in the energy
spectra. The shell decomposition for the velocity field is de-
fined as follows:

unskd = Huskd if k P sn

0 otherwise.
J s7d

The same decomposition will be used for the magnetic field.

The evaluation of shell-to-shell transfers may have some
implications on the strategies adopted in turbulence model-
ing, especially in the framework of subgrid-scale modeling
in large eddy simulation.13,14 For this reason, it is also inter-
esting to discuss the real space representation of the shell
decomposition defined as

unsxd =
1

s2pd3 E dk unskde+ik·x. s8d

These definitions imply the following identities:

usxd = o
n

unsxd, bsxd = o
n

bnsxd, s9d

uskd = o
n

unskd, bskd = o
n

bnskd. s10d

The total energy is the sum of the energy in each shell. In-
deed,

Eu =
1

2o
k

uuskdu2

=
1

2o
n

o
kPsn

uuskdu2 =
1

2o
n

o
k

uunskdu2 = o
n

En
u, s11d

and using the Parseval’s theorem the shell energyEn
u is also

given by

En
u =

1

2V
E dx unsxd ·unsxd. s12d

The evolution equations for the shell energies in the ideal
limit are given by

Ėn
u = o

m

Tn,m
u,u + o

m

Tn,m
u,b , s13d

Ėn
b = o

m

Tn,m
b,u + o

m

Tn,m
b,b , s14d

whereTn,m
Y,X is the energy transfer from the fieldX in the shell

sm to the fieldY in the shellsn. The shell-to-shell transfers
Tn,m

Y,X give a more refined picture of the energy transfer pro-
cesses than the energy fluxes through a given wave number.
It is, however, worth computing these energy fluxes because
they are one of the most important quantities in the inertial
range. In MHD turbulence four types of energy fluxes are
present. They are defined as

PY.
X,

sk,d = o
nù,

o
m,,

Tn,m
Y,X. s15d

These fluxes correspond to energy transfer from the inside of
the wave number spheresradiusk,d of field X to the outside
region of the same sphere of fieldY. Furthermore, since ki-
netic and magnetic energies are not conserved separately,
nontrivial fluxes of energy inside a wave vector domain can
also be definedsfor XÞYd:

PY,
X,

sk,d = o
n,,

o
m,,

Tn,m
Y,X, s16d
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PY.
X.

sk,d = o
nù,

o
mù,

Tn,m
Y,X. s17d

The energy flux through the wave number sphere of radiusk,

is defined as

Psk,d = Pu.
u,

sk,d + Pu.
b,

sk,d + Pb.
u,

sk,d + Pb.
b,

sk,d

= o
nù,

o
m,,

sTn,m
u,u + Tn,m

u,b + Tn,m
b,u + Tn,m

b,b d. s18d

These various energy fluxes are illustrated in Fig. 1.
By definition, all the fluxes exceptPb,

u, vanish atk,

=kmax sthe maximum relevant wave number in the flowd.
Pb,

u,skmaxd is the total kinetic to magnetic energy transfer.
Relationss15d–s17d show that the energy fluxes can be de-
rived from the shell-to-shell energy transfer. Using the tradi-
tional terminology of subgrid-scale modeling, the energy
fluxes characterize the transfer of energy from resolved to
unresolved fields. The shell-to-shell energy transfers, how-
ever, characterize the transfer of energy between large-scale
turbulent structures of size 1/kn and small-scale turbulent
structures of size 1/km assumingkn,km. Some important
properties of the shell-to-shell energy transfers are discussed
in the following section.

B. Mode-to-mode transfers

Before discussing the shell-to-shell transfers, it is inter-
esting to come back to some well-known properties of the
mode-to-mode interactions. The formulas for mode-to-mode
interactions are derived from the inviscidsn=0d and nonre-
sistive sh=0d incompressible MHD equations in Fourier
space given below,

]uiskd
]t

= − ikipskd − ikj o
k=p+q

ujsqduispd

+ ikj o
k=p+q

bjsqdbispd, s19d

]biskd
]t

= − ikj o
k=p+q

ujsqdbispd + ikj o
k=p+q

bjsqduispd. s20d

Multiplying Eq. s19d by uis−kd and Eq.s20d by bis−kd and
averaging the resulting equations yield

S ]

]t
+ 2nk2D1

2
kuuskdu2l = o

k+p+q=0
h− Imkfk ·usqdg

3fuspd ·uskdgl + Imkfk ·bsqdg

3fbspd ·uskdglj, s21d

S ]

]t
+ 2hk2D1

2
kubskdu2l = o

k+p+q=0
h− Imkfk ·usqdg

3fbspd ·bskdgl + Imkfk ·bsqdg

3fuspd ·bskdglj, s22d

where Im stands for the imaginary part of the argument. Note
that there is no contribution from the pressure field in Eq.
s21d. Indeed, in incompressible flows, the pressure force
kpskd is always perpendicular to the velocity field
−kpskd ·uskd=0. The pressure may however indirectly influ-
ence the evolution of the energykuuskdu2l. Indeed, Eq.s21d is
not closed and is only the first equation of a hierarchy which
also contains dynamical equations for the higher-order mo-
ments of the velocity field. The pressure will appear in these
higher order moment equations. We also stress that in com-
pressible flows, the pressure force is not perpendicular to the
velocity and it directly enters the equation forkuuskdu2l.

The energy transfer among the velocity modes has been
studied by many authors.2,4,15,16In the present paper the en-
ergy fluxes and the shell-to-shell energy transfer rates are
computed using the formalism of Dar, Verma, and Eswaran.4

The details of this formalism is given in Dar, Verma, and
Eswaran,4 and Verma.17 The four terms in the right-hand
sides are calledmode-to-mode energy transfer ratesfrom
u-to-u andb-to-u fin Eq. s21dg, andb-to-b andu-to-b fin Eq.
s22dg. They are represented bySuusk upuqd, Subsk upuqd,
Sbbsk upuqd, andSbusk upuqd, respectively, i.e.,

Suusk upuqd = − Imhfk ·usqdgfuspd ·uskdgj, s23d

Subsk upuqd = Imhfk ·bsqdgfbspd ·uskdgj, s24d

Sbbsk upuqd = − Imhfk ·usqdgfbspd ·bskdgj, s25d

Sbusk upuqd = Imhfk ·bsqdgfuspd ·bskdgj. s26d

By convention, SYXsk upuqd represents the energy transfer
from the modep of field X sthe second argumentd to the
modek of field Y sthe first argumentd. The modeq acts as a
mediator. The functionsSYXsk upuqd have many interesting
properties. For instance, the energy transfer rate fromXspd
to Yskd is the opposite of that fromYskd to Xspd, i.e.,

SYXsk upuqd = − SXYspuk uqd. s27d

HereX,Y stand foru or b fields.
In the presence of a mean magnetic fieldB0, the equa-

tions for both the velocity and the magnetic fields have ad-

FIG. 1. Various energy fluxes in MHD turbulence.PY
X represents energy flux

from the inside ofX sphere to the outside ofY sphere.
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ditional terms which read −iB0·k bskd and −iB0·k uskd, re-
spectively. These terms do not contribute to the global
skinetic+magneticd energy equation. However, like the pres-
sure force, they will indirectly affect the evolution of the
energy through the higher order equations. This has to be
expected since the presence of a mean magnetic field is
known to have a strong influence on the dynamics of MHD
turbulence.

In the following section we discuss shell-to-shell trans-
fers in wave number space. We also construct formulas to
measure forward energy transfer and backscatter in MHD
turbulence.

C. Forward shell-to-shell energy transfer and
backscatter

The shell-to-shell energy transfer rates can be expressed
in terms of the mode-to-mode transfers as follows:

Tn,m
Y,X = o

kPSn

o
pPSm

SYXsk upuqd. s28d

As a consequence of the symmetry propertys27d, the shell-
to-shell transfer rates satisfy the relation

Tn,m
Y,X = − Tm,n

X,Y. s29d

This has important consequences and in particularPb,
b,sk,d

=Pu,
u,sk,d=0 andPb.

b.sk,d=Pu.
u.sk,d=0. Also, Eq.s29d im-

plies thatTn,n
u,u=Tn,n

b,b=0. Note, however, thatTn,n
b,u is not zero. A

real space representation of the shell-to-shell transfers can
easily be derived. As an example, the real space version of
expressions28d for u-to-u energy transfer is given by

Tn,m
u,u =E dx ui

nsxd] j„ui
msxdujsxd…. s30d

Using integration by part, it is easy to show that it also sat-
isfies the symmetry propertyTn,m

u,u =−Tm,n
u,u .

In Kolmogorov’s turbulence phenomenology, energy is
transferred from small wave number shells to the large wave
number shells, that is,Tnm.0 for n.m, and vice versa.
Recent simulations however predict a certain amount of en-
ergy backscatter. In a mode-to-mode interaction, the defini-
tion of backscatter is unambiguous. Indeed, whenk is
smaller thanp andSYXsk upuqd,0, it is natural to refer to this
situation as energy backscattersfrom the large wave vectorp
mode of variableX to the small wave vectork mode of
variableYd. In a shell-to-shell description, the definitions of
forward and backward energy transfers are not unique. One
could of course consider that backscatter should correspond
to Tn,m

X,Y,0; however, the shell-to-shell transfer contains a
large number of mode-to-mode interactions that sometimes
correspond to forward transfer and sometimes to energy
backscatter. It is thus interesting to splitTn,m

X,Y into forward
and backward contributions. Such a separation is unavoid-
ably quite arbitrary. Two possible representations are pre-
sented here.

In Fourier space, it would be tempting to define the for-
ward and backward energy transfers from shellm to shelln
sm,nd as follows:

Tn,m,skd
Y,X,s+d = o

kPsn
F o

pPsm

SYXsk upuqdG
+

s31d

and

Tn,m,skd
Y,X,s+d = o

kPsn
F o

pPsm

SYXsk upuqdG
−

, s32d

where the operatorsf¯g+ and f¯g− are defined by

fxg+ = Hx if x . 0

0 if x ø 0,
J fxg− = H0 if x . 0

x if x ø 0.
J s33d

In the above definitions, the additional superscript1 or 2
corresponds to forward transfer and backscatter of energy.
The additional subscriptk is required since these definitions
are not necessarily the same in Fourier space and in real
space, as it will be shown below. Unfortunately,

Tn,m,skd
Y,X,s+d Þ − Tm,n,skd

X,Y,s−d. s34d

We expect thatTn,m,skd
Y,X,s+d andTm,n,skd

X,Y,s−d must be equal and oppo-

site. This problem is solved by introducing the following
definitions for the forward and backward energy transfers:

Tn,m,skd
Y,X,s+d =

1

2S o
kPsn

F o
pPsm

SYXsk upuqdG
+

− o
pPsm

F o
kPsn

SYXsk upuqdG
−
D , s35d

Tn,m,skd
Y,X,s−d =

1

2S o
kPsn

F o
pPsm

SYXsk upuqdG
−

− o
pPsm

F o
kPsn

SYXsk upuqdG
+
D . s36d

With these definitions, the amount of backscatter from shell
n to shellm is indeed equal to the amount of forward transfer
from shellm to shelln.

The above definitions are intrinsically based on the Fou-
rier representation of velocity and magnetic fields. It is inter-
esting to provide equivalent diagnostics based on the real
space version of the fields. Obviously, it is also desirable to
impose the same symmetry condition for the real space rep-
resentation of forward and backward energy transfers:

Tn,m,sxd
Y,X,s+d = − Tm,n,sxd

X,Y,s−d. s37d

Such a property is easily imposed when the following defi-
nitions are adopted:

Tn,m
u,u =

1

2
E dxfui

nsxd] j„ui
msxdujsxd…

− ui
msxd] j„ui

nsxdujsxd…g. s38d

Obviously, integration by part shows that the definitionss30d
ands38d are equivalent. Moreover, expressions38d allows us
to define shell-to-shell forward and backward transfers as

Tn,m,sxd
u,u,s+d =

1

2
E dxfui

nsxd] j„ui
msxdujsxd…

− ui
msxd] j„ui

nsxdujsxd…g+, s39d
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Tn,m,sxd
u,u,s−d =

1

2
E dxfui

nsxd] j„ui
msxdujsxd…

− ui
msxd] j„ui

nsxdujsxd…g−, s40d

which satisfy the property given by Eq.s37d.
It is important to note, however, that in generalTn,m,sxd

u,u,s+d

ÞTn,m,skd
u,u,s+d . This shows that the definition of shell-to-shell

backscatter is not unique and, as will be shown in the fol-
lowing section, the properties ofTn,m,sxd

u,u,s+d andTn,m,skd
u,u,s+d appear to

be quite different.
In the next two sections we will describe the numerical

method and results regarding the shell-to-shell energy trans-
fer rates and fluxes for decaying three-dimensional MHD
turbulence.

III. SIMULATION DETAILS

The numerical simulation used for evaluating the shell-
to-shell transfers has been done using a fully-dealiased pseu-
dospectral code on a 5123 grid. The initial energy spectrum
for both the velocity and the magnetic fields were generated
with the function

Eskd =
ak4

sk4 + q4d1+a exps− bkbd, s41d

with a=10.6, q=1.5, b=0.02, a=1.233, andb=1.1. It was
done in order to match the spectra measured in the
Comte-Bellot–Corrsin18 experiment at stage 1. The initial
phases were randomly generated. Physically acceptable
phases were built up using an initialization procedure during
which the flow is evolved according to the MHD equations
but rescaled at each time step to match the experimental
spectrum. This procedure was applied until the skewness of
the velocity derivative reached a quasiconstant value of
−0.26. The resulting fields are considered as the initial con-
ditions for the MHD turbulence simulation.

The Reynolds numberRl sbased on Taylor’s microscaled
for the initial field was 159. The initial values of global vari-
ables areEu=Eb=31.2. The cross helicity as well as the mag-
netic helicity, though not exactly zero, can be considered as
negligible in the simulation. The geometry is as2pd3 box,
and both viscosity and resistivity were set to 3310−3. A
third-order Runge–Kutta scheme is used to integrate the
MHD equations. The time stepdt was computed automati-
cally using the Courant–Friedrichs–Lewy criterion, and it
was of the order of 2310−3. The simulation was evolved up
to nondimensional timet* = t / teddy=1.74, where

teddy= E0/«0, s42d

E0 and«0 being, respectively, the total energy and dissipation
rate att* =0. Figure 2 shows the decay of kinetic, magnetic,
and total energies and the evolution of Alfvén ratiorA

=Eu/Eb. The Alfvén ratio decreases along with energy and
approaches 0.41 at the final time. Note that in many com-
puter simulations and solar wind19 measurements the Alfvén
ratio decreases and saturates around 0.5.

The normalized cross helicity increases very slowly
from near 0 to<0.1, and it can be ignored in our analysis.

The increase in the normalized cross helicity has been seen
in earlier numerical simulations. This phenomena, called
“dynamic alignment,” has been discussed by Matthaeus and
Montgomery,20 and others. In addition, the magnetic and ki-
netic helicities are negligible in the simulation.

The direct numerical simulationsDNSd described in the
preceding section is performed using a pseudospectral code.
Both the shell-to-shell transfer rates in real spaceTn,m,sxd

u,u,s±d and

in Fourier spaceTn,m,skd
u,u,s±d have been computed quite easily

from the DNS code by following the procedure described by
Domaradzki and Rogallo,10 and Dar, Verma, and Eswaran.4

The computation of these quantities, however, requires an
intensive postprocessing and the results presented in the fol-
lowing are limited to a single frame corresponding tot*

=1.74. At this time, a significant fraction of the total initial
energy has been dissipated and the initial condition is not
expected to influence the profiles of shell-to-shell energy
transfer. Figure 3 illustrates the compensated kinetic, mag-
netic, and total energy spectraEskdk5/3 at t* =1.74. As previ-
ously observed by Müller and Biskamp,21 the total energy
spectra in the inertial range are fitted reasonably well by a
power law fork<s10–25d. The inertial range is quite nar-
row. However, this narrow range is very useful for deriving
some important properties of self-similar shell-to-shell inter-
actions. The energy spectra at other times are similar.

FIG. 2. Temporal evolution of the normalized total energys—d, magnetic
energys-·-·-d, kinetic energys----d, and Alfvèn ratios¯¯··d.

FIG. 3. Compensated spectraEskdk5/3 of total energys—d, magnetic energy
s----d, and kinetic energys-·-·-d at t* =1.74.
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IV. NUMERICAL RESULTS

A. Energy fluxes

The energy fluxes defined by the relations15d can be
derived from the shell-to-shell energy transfers. It is, how-
ever, interesting to analyze these fluxes first since they pro-
vide a global picture of the various energy exchanges that
influence the MHD turbulence. The energy fluxes depend on
the wave number as well as on time. These dependencies are
illustrated on Fig. 4 in which the wave number dependency
is shown at three different times in the energy decay.

A small range of wave numbers neark=10–25 where
the energy fluxes are somewhat flat is identified as the iner-
tial range. This is approximately the same range found in the
analysis of the energy spectra. Within this range, the fluxes
are almost wave number independent and it is convenient to
introduce the following nondimensional quantities,

pY
X =

PY
Xsk P inertial ranged

P
, s43d

whereP=Pu.
u,+Pb.

u,+Pu.
b,+Pb.

b, is the total flux in the in-
ertial range. The values of these quantities are shown in
Table I.

Figure 5 shows the evolution of the normalized inertial-
range fluxes. Interestingly, all the normalized inertial-range
fluxes exceptpb,

u, are approximately time independent. Time
is however not the most relevant parameter and it is conve-
niently replaced by the Alfvén ratio. The quantitypb,

u, de-
creases from 0.22 atrA near 1 to<−0.12 nearrA=0.4 and is
reasonably well fitted by a linear relation:

pb,
u, < g1srA − rA

* d. s44d

This result indicates that forrA. rA
* <0.63, large-scale ki-

netic energy is transferred to large-scale magnetic energy.
The direction of transfer is reversed forrA, rA

* smore mag-
netically dominated regimed. The best fit givesg1=0.56. Fur-
ther studies are definitively required to determine whether
the values ofg1 and rA

* are universal or dependent on the
initial condition.

The fluxesPu.
u,, Pb.

u,, Pu.
b,, andPb.

b, are forward, that is,
from small to large wave numbers. Also,Pu.

b..0. The net
transfer from kinetic energy to magnetic energy is defined by

Pb
u = Pb,

u, + Pb.
u, + Pb,

u. + Pb.
u.. s45d

It is easy to check thatPb
u=Pb,

u,skmaxd. The kinetic-to-
magnetic energy transfer takes place untilrA reaches around
rA= r̄A<0.37. The best fit ispb

u=g2srA− r̄Ad whereg2<0.57.
For rA= r̄A and beyond, the net energy transfer from kinetic
to magnetic is almost zero. Again the universal character of

FIG. 4. Energy fluxes vsk: ptot s—d, pu.
u, s¯¯··d, pb.

b, s----d, pb.
u, s-··-··d,

pu.
b, s-·-·-d, pb,

u, s---d, and pu.
b. s—d. Top—t* =0.12, rA=0.75; middle—t*

=0.40,rA=0.63; bottom—t* =1.73,rA=0.41.

TABLE I. The numericalssimd and theoreticalsthd values of energy fluxes
in MHD turbulence forrA=0.75, 0.6, and 0.41. The theoretical values have
been computed by VermasRef. 7d using field-theoretic techniques.

p / rA 0.75 ssimd 0.75 sthd 0.6 ssimd 0.6 sthd 0.4 ssimd 0.4 sthd

pu.
u, 0.075 0.078 0.073 0.024 0.066 0.024

pb.
u, 0.49 0.38 0.49 0.31 0.49 0.31

pu.
b, 0.12 0.20 0.13 0.40 0.13 0.40

pb.
b, 0.37 0.34 0.36 0.27 0.34 0.27

pb.
u, 0.22 ¯ −0.024 ¯ −0.12 ¯

pb.
u. 0.24 ¯ 0.22 ¯ 0.22 ¯

K+ 2.8 1.53 3.02 1.51 3.0 1.51

Ku 1.1 0.65 1.2 1.50 1.1 1.50

n*
¯ 1.3 ¯ 3.07 ¯ 3.07

h*
¯ 0.63 ¯ 0.40 ¯ 0.40

FIG. 5. Energy fluxes in the inertial range vs time. The fluxes shown are
pu.

u, s¯¯··d, pb.
b, s----d, pb.

u, s-··-··d, pu.
b, s-·-·-d, pb,

u, s---d, andpu.
b. s—d. The

thick s—d line represents the Alfvén ratio.
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the numberr̄A andg2 definitively requires further investiga-
tions. Note that atrA=0.63,Pb,

u,skmaxd.0 ssee Fig. 4d, hence
a net kinetic-to-magnetic energy transfer is taking place even
whenPb,

u,<0 for rA=0.63.
The value ofpu.

u, is quite small, hence theu-to-u transfer
seems to be dominated by theu-to-b transfer in MHD turbu-
lence, at least whenrA,1. In Table I, the numerical values
of normalized energy fluxes are compared with Verma’s the-
oretical predictions7 calculated using field-theoretic method.
It is however important to stress that Verma’s theoretical pre-
dictions are based on several assumptions, e.g., steady state
and Kolmogorov’s spectra in the inertial range that are not
satisfied in the numerical simulation. In addition, Verma’s
theoretical calculations cannot predictpb,

u, and pb.
u.. Com-

parison of numerical and theoretical values, however, shows
a reasonably good agreement. The differences in the values
are the largest forpb.

u, andpu.
b,, which may be due to non-

local interactions as discussed below.

B. Shell-to-shell energy transfer

The data analyzed in the following sections have been
produced by a spectral code with 5123 modes in a cubic
geometry. The largest complete shellsi.e., excluding corner
modesd is thus bounded byk=256. Both the velocity and the
magnetic fields have been decomposed according to the
methodology presented in Sec. II A. The ratio between the
upper and the lower bound of the shell boundaries has been
chosen small enoughsg=21/4d to ensure a fairly refined
analysis of the shell interactions. However, the first shells
corresponding to the lowest wave vectors must be wider.
Otherwise, the first shells contain only few modes and their
statistical analysis becomes meaningless. In the data postpro-
cessing, the first three shells have thus been chosen to be
s1;hkj such that 0,kø2, s2;hkj such that 2,kø4, and
s3;hkj such that 4,kø8. Also, in order to limit the num-
ber of shells, the last shellswhich entirely lies in the dissi-
pation ranged is also widers20;hkj such that 128,kø256.
Betweenk=8 andk=128, the wave number space is split
into shellsn bounded bykn andkn+1 wherekn=2sn+8d/4.

Since we are primarily interested in the self-similar
properties of the shell-to-shell energy transfers, the following
discussion will be limited to the shells that are defined using
self-similar bounds, i.e.,s4–s19. The four normalized shell-
to-shell energy transfersTnm

Y,X/P are computed using the
method described in Sec. II C. The shell-to-shell transfers are
conveniently represented using two-dimensional density plot
corresponding to a matrix of energy transfers. For instance
the total sforward+backscatterd transfers are represented in
Fig. 6.

As expected, these transfers are dominated by the diag-
onal contributions that correspond to local shell-to-shell
transfers, i.e., transfers between neighbor shells. All the val-
ues of the shell-to-shell transfers appear to be negligible for
un−mu.4, which correspond to interaction between the
shells characterized by wave vectors with amplitude ratios of
2 or larger. All the four transfers correspond to directsfor-
wardd cascades of energy. Indeed, the shell-to-shell transfers
are systematically positive whenn.m and systematically

negative whenn,m. Finally, the dominant shell-to-shell ex-
changes clearly appear to be in theb-to-b interactions. For
the same shell,Tn,n

u,u andTn,n
b,b vanish, butTn,n

u,b is positive and
Tn,n

b,u is negative.
It is interesting also to investigate the same graphs for

the purely forward contributionsfthe backscatter contribu-
tion are directly obtained from the same graphs using the
imposed symmetry propertys34d between forward and back-
scatter energy transfersg. For instance, Fig. 7 shows that the
purely forward transfer is also very much local. However,
Fig. 7 reveals that the quantityTn,m,skd

u,b,s+d /P has the largest am-

plitude, so that the dominant forward shell-to-shell exchange
of energy is betweenu andb. It is also interesting to notice
that, in order to obtain the best contrast, the scales are not the
same in Figs. 6 and 7. Indeed, the forward transfers are by
definition always positive and the scale has been adapted
accordingly. However, the amplitude of the forward transfer

FIG. 6. Values ofTn,m
u,u /P supper leftd, Tn,m

b,b /P supper rightd, Tn,m
b,u /P slower

leftd, andTn,m
u,b /P slower rightd at time t* =1.74.

FIG. 7. Values ofTn,m,skd
u,u,s+d /P supper leftd, Tn,m,skd

b,b,s+d /P supper rightd, Tn,m,skd
b,u,s+d /P

slower leftd, andTn,m,skd
u,b,s+d /P slower rightd at time t* =1.74.
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is significantly larger than that of the total transfer, meaning
that the total transfer contains two important parts corre-
sponding to forward and backward transfers that largely can-
cel each other.

The picture is drastically different if we consider the real
space definition of backscatter. Figure 8 shows now that the
purely forward transfer defined using formulass39d ands40d
is much more nonlocal. A local forward transfer is still
present and is characterized by the diagonal contribution.
However, large values of the forward energy transfer defined
in real space are observed forn−m as large as 10.

C. Inertial-range analysis

As already mentioned, the existence of an inertial range
is questionable in the simulation presented here. However,
both the spectra and the flux analysis tend to show the ap-
pearance of a narrow range of wave vectors betweenk<10
andk<25 with properties compatible with an inertial range.
Hence, shellss5–s10 will be considered to belong to the in-
ertial range. Within this range the energy transfers are antici-
pated to be self-similar, i.e., the transfer from shell 6 to shell
8 should be the same as the transfer from shell 7 to shell 9.
This is indeed observed in Fig. 9, in which the normalized
energy transfersTnm

Y,X/P versusn−m are plotted for various
m’s in the inertial ranges5øn,mø10d. These figures also
confirm that the inertial-range shell-to-shell energy transfers
are always from small to large wave numberssforward trans-
ferd. Indeed, they are positive forn.m and negative forn
,m. The dominantu-to-u and b-to-b transfers are to the
neighbor shelln−m=1 and decreases quite rapidly, confirm-
ing that these energy transfers are fairly local. On the con-
trary, the dominantu-to-b transfer is to the same wave num-
ber shelln=m and decays more slowly.

The same graphs are presented in Figs. 10 and 11 for the
forward transfers in wave and real spaces. The energy back-
scatter is readily deduced from these graphs using the sym-
metry propertys34d. Again, these quantities appear to be

self-similar. It is interesting to notice the important differ-
ence betweenTn,m,sxd

X,Y,s+d and Tn,m,skd
X,Y,s+d. By definition, Tn,m,sxd

u,u,s+d and

Tn,m,sxd
b,b,s+d vanish forn=m. Also, they do not rapidly go to zero

for increasingn−m. On the contrary,Tn,m,skd
u,u,s+d and Tn,m,skd

b,b,s+d

reach a maximum forn=m and decay fairly rapidly for large
n−m. These properties confirm the previous remark that the
forward transfers expressed byTn,m,skd

X,Y,s+d are very much local

while those expressed byTn,m,sxd
X,Y,s+d are much more nonlocal.

These results show that the choice of the definition of
backscatter may quite strongly influence the interpretation of
the diagnostics. This might be seen as an undesirable prop-
erty. Moreover, in the framework of LES, the arbitrariness
appearing in the definition of backscatter could be consid-
ered as a reason to discard this diagnostics in the assessment
of subgrid-scale model. This is not the point of view advo-
cated here. Indeed, when the definition of backscatter has
been clearly and cleanly given, there is no ambiguity on how
to compute the forward and backward energy transfers.
These transfers can then be used as valid guides in the de-

FIG. 8. Values ofTn,m,sxd
u,u,s+d /P supper leftd, Tn,m,sxd

b,b,s+d /P supper rightd, Tn,m,sxd
b,u,s+d /P

slower leftd, andTn,m,sxd
u,b,s+d /P slower rightd at time t* =1.74.

FIG. 9. Plots ofTnm
uu /P stopd, Tnm

bb /P smiddled, andTnm
ub /P sbottomd normal-

ized shell-to-shell energy transfers vsn−m for n andm in the rangef5,10g,
L, m=5; p, m=6; 3, m=7; h, m=8; n, m=9; s,m=10.
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velopment of subgrid-scale models that are supposed to re-
produce the energy transfers between resolved and unre-
solved scales as accurately as possible.

V. DISCUSSION

The energy transfer rates between different shells of
wave vectors have been analyzed in details for turbulent ve-
locity and magnetic fields by solving the incompressible
MHD equations. This analysis is based on a decomposition
of the fields into modes with characteristic wavelengths cor-
responding to increasingly fine scales. The boundaries of
these shells follow a power law, anticipating a self-similar
properties of the shell-to-shell energy exchanges.

In incompressible MHD turbulence four energy ex-
changes can be identified between two wave number shells.
These energy transfers areu-u, u-b, b-u, andb-b. This is in
contrast with Navier–Stokes turbulence in which only one
independent flux can be defined. Except for this difference,
the methodology for defining the shell-to-shell transfers is
very much inspired by earlier works on hydrodynamic turbu-
lence.

The results presented in Sec. IV show that, as usually
anticipated in the analysis of mode interactions in turbulence,
the total sbackscatter+forwardd energy transfers are very
much local. The wave number shells that are characterized
by wave vectors with an amplitude ratio of 2 or more do not
exchange significant amount of energy. The result is less ob-
vious if the forward transfer of energy and the backscatter
are studied separately. First, it is shown that the definition of
backscatter is not unique and two possible definitions are
proposed. The pictures obtained with these two representa-
tions are fairly different. In the Fourier representation, the
forward and the backward transfers, like the total energy
exchanges, are quite local. On the contrary, the real space
decomposition shows very nonlocal exchanges of energy be-
tween the shells.

The knowledge of the detailed backscatter and forward
energy transfers is an interesting guide to describe the phys-
ics of the nonlinear interactions in turbulence. It is also a
valuable diagnostics in the framework of subgrid-scale mod-
eling. Indeed, LES have become more and more popular as a
tool to investigate high Reynolds number flows in

FIG. 10. Plots ofTnm,skd
u,u,s+d /P stopd, Tnm,skd

b,b,s+d /P smiddled, and Tnm,skd
u,b,s+d /P sbot-

tomd normalized shell-to-shell energy transfers vsn−m for n andm in the
rangef5,10g, L, m=5; p, m=6; 3, m=7; h, m=8; n, m=9; s, m=10.

FIG. 11. Plots ofTnm,sxd
u,u,s+d /P stopd, Tnm,sxd

b,b,s+d /P smiddled, and Tnm,sxd
u,b,s+d /P sbot-

tomd normalized shell-to-shell energy transfers vsn−m for n andm in the
rangef5,10g, L, m=5; p, m=6; 3, m=7; h, m=8; n, m=9; s, m=10.
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hydrodynamics.22 In LES, large and small scales of motion
are artificially separated using a local averaging procedure
usually considered to be a filtering operator. The resulting
locally averaged equations for the large scales are solved
numerically. They contain however unknown terms repre-
senting the influence of the smallest scalesssubgrid-scale
termsd. Such a strategy allows for significant savings in com-
puter times as well as in memory requirements. Traditionally,
the subgrid-scale models are assessed using two methods. In
a priori techniques, the model is compared with the real
subgrid-scale terms that are obtained when filtering a large-
scale database obtained by solving directly the Navier–
Stokes equation for a very simple geometrysusually for iso-
tropic turbulence or for the channel flowd. In a posteriori
techniques, the LES equations with a model for the unknown
subgrid-scale terms are solved and their results are compared
to direct numerical simulations or experimental results.
Thesea posteriori techniques are much more costly, espe-
cially in MHD where detailed experimental data are difficult
to collect. It is thus important to havea priori tests that are
as refined as possible. The detailed knowledge of the shell-
to-shell energy transfers definitively provides such a refined
a priori assessment.

Finally, we point out a reasonable agreement between
the shell-to-shell energy transfers determined here from a
numerical simulation of decaying MHD turbulence and the
theoretical predictions of Verma and Ayyer12 who computed
shell-to-shell energy transfers using field-theoretic method.
Despite significant differences between the assumptions re-
quired to perform the theoretical computation and the actual
conditions of the numerical simulation, most of the charac-
teristics of the total energy transfers are well reproduced by
the theory.
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