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A spectral analysis of the energy cascade in magnetohydrodyndhMidb) is presented using
high-resolution direct numerical simulation of decaying isotropic turbulence. The Fourier
representations of both the velocity and the magnetic fields are split into subsets that correspond to
shells of wave vectors. A detailed study of the shell-to-shell interactions is performed and a
comparison with theoretical prediction based on field-theoretic method is proposed. Two different
definitions for the forward and backward energy transfers are suggested. They provide diagnostics
that can be used in order to assess subgrid-scale modeling in large eddy simulation for turbulent
MHD systems. ©2005 American Institute of PhysidDOI: 10.1063/1.1867996

I. INTRODUCTION turbulence by Zhod,and Domaradzki and Roga’rl%using
eddy-damped quasinormal MarkovieEDQNM) calculation
Magnetohydrodynamic(MHD) turbulence in three- and numerical simulations. They reported the energy trans-
dimensional systems shares many features with hydrodyfers to be mostly local. Pouquet, Frisch, and Lébraave
namic turbulence. For instance, in high Reynolds numbestudied the energy transfers between various scales in MHD
flows, a large number of length scales are dynamically activeéurbulence using EDQNM calculation. They reported nonlo-
and the nonlinear interactions are dominant in both the largecal interactions and interpreted them as a consequence of a
scale and the inertial-range dynamics. The dissipation is acnean magnetic fieldAlfvén effect and of helicity. Dar,
tive mainly on the small scales of motion. There are alsoverma, and Eswardnnumerically computed the shell-to-
important differences with Navier—Stokes turbulence such ashell energy transfers for two-dimensional MHD turbulence.
the number and the nature of the quadratic ideal invariantsRecently, Verma and Ayy&fhave computed the above quan-
In MHD the invariant quantities are the total energy, thetities using a field-theoretic calculation.
magnetic helicity, and the cross helicity, whereas in fluids  The objective of this paper is to propose a detailed
only energy is conserved. The description of the energy casnalysis of the nonlinear triad interactions in MHD turbu-
cade from the largest scale of the turbulent system towardgnce and more specifically of shell-to-shell interactions. The
the small dissipative scales is usually done in terms of theoncept of shell variables is naturally introduced when a
energy flux through a given scale. Because of energy conseFourier decomposition of the fields is adopted. However, a
vation, this flux is supposed to be constant in the inertiakeal space version can be defined by considering the parts of
range. Using a Fourier representation for both the velocitythe velocity and magnetic fields that correspond to structures
and the magnetic fields, a finer description of the cascade camith a given length scale. Since the conserved energy has
also be achieved by computing the energy transfers betwedwo components in MHD, shell-to-shell interactions are ex-
subsets of modes with wave vectors that belong to a shell gfected to yield energy fluxes between the shells of velocity
the Fourier space. and magnetic fields. The definition of these shell-to-shell en-
Although the properties of energy fluxes in fluid turbu- ergy transfer rates and their links with the triad interactions
lence have been studied in great details starting fronin the MHD equations are presented in details in Sec. Il. In
Kolmogorov (Lesieuf and references therginthis subject particular, the shell-to-shell interactions are decomposed into
has not received much attention in MHD turbulence. Verm&orward (from large to small scalé¢sand backward(from
et al,®> and Dar, Verma, and EswarAarmomputed energy small to large scalesnergy transfers. It is pointed out that
fluxes in two-dimensional MHD turbulence using numerical such a decomposition is not unique and two possible strate-
simulations. Frick and Sokolofevaluated these fluxes using gies to identify the energy backscatter are suggested. They
shell model. Analytically, the energy fluxes in MHD turbu- provide diagnostics that are expected to be relevant in the
lence have been studied by Vel‘?ﬁajsing field-theoretic ar- development of subgrid-scale models for large eddy simula-
guments, and by Goldreich and Srid*hasing kinetic theory. tions (LES).
Shell-to-shell energy transfers have been computed in fluid In numerical simulations, only moderate Reynolds num-
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bers have been achieved. In Sec. lll, a simulation of isotropic ~ The evaluation of shell-to-shell transfers may have some
decaying MHD turbulence using 53Fourier modes is dis- implications on the strategies adopted in turbulence model-
cussed. The energy fluxes as well as the shell-to-shell energyg, especially in the framework of subgrid-scale modeling
transfers between the velocity and the magnetic fields arin large eddy simulation®* For this reason, it is also inter-
computed from this simulation. They are presented in detailgsting to discuss the real space representation of the shell
in Sec. IV. A comparison with the theoretical estimates ob-decomposition defined as

tained by Verma and Ayyé% is also presented. Section V

contains conclusion and a discussion on the possible impor-  ny) = 1 Jdk u"(k)etikx, (8)
tance of the present results in the modeling of MHD turbu- (2m)®
lence. These definitions imply the following identities:
u(x) = u"(x), b(x) =2 b"x), 9
IIl. ENERGY TRANSFERS IN MHD TURBULENCE n n
A. Definitions
: : : u(k) =2 u"(k), b(k)= 2> b"Kk). (10
The equations for the incompressible MHD turbulence n n
are
The total energy is the sum of the energy in each shell. In-
7,
Eu+(u-V)u=—Vp+(b-V)b+vV2u, (1) deed,
1
b E'= 52 lu(k)|?
U V)b=(b- V)u+ 7V, ) “
1 1
=52 2 [utP=22 X uk)?= 2 By, (11)
V-u=V :b=0, (3) n kes, n k n

where v and 7 are the fluid viscosity and the resistivity, and using the Parseval’'s theorem the shell en&ig also
respectively, ang is the total(thermal+magneticpressure ~ given by

field divided by the density, which has been taken to be a 1

constant. The magnetic field has been represented in the Eg:—fdx u"(x) - u"(x). (12
Alfvén units and has the dimension of velocity. In incom- 2V

pressible flows, the pressure is supposed to adapt instantgpg eyolution equations for the shell energies in the ideal
neously to the velocity and magnetic field fluctuations injiit are given by

order to maintain the divergence-free condition. It is then the

solution of the Poisson equation: EY=> T + > ngf’n, (13)
Vzp:_&i&j(Uin _b|bJ) (4) m m
Th_e pr_imary objective of this section is to establish a Eﬁ=2 Tﬁ'”m+2 TE% (14)
formalism in which the energy transfer between structures of m m
different sizes can be evaluated easily. The spectral represen-
tation of the fields are given by WhereT:{ﬁ(q is the energy transfer from the fieklin the shell
Sy to the fieldY in the shells,. The shell-to-shell transfers
u(k) = f dx u(x)e (5) Trx give a more refined picture of the energy transfer pro-
cesses than the energy fluxes through a given wave number.

It is, however, worth computing these energy fluxes because
they are one of the most important quantities in the inertial
range. In MHD turbulence four types of energy fluxes are

- _ o ~present. They are defined as
For shell decomposition, the Fourier space is divided into

shellss, defined as the sets of wave vectdks such that Héi(ke) => > X, (15)
Kn_1=Kog" 1< k| <k,=ko @". In this definition,g>0 andn n=¢(m<t

=1, while kg is the smallest relevant wave number in the -
These fluxes correspond to energy transfer from the inside of

problem. The geometric growth of the shell boundaries ISQe wave number spheteadiusk,) of field X to the outside

chosen because of the existence of power laws in the ene@ . £ th h £ fievd Furth X Ki
spectra. The shell decomposition for the velocity field is de- gion ot (n€ same sphere of Nield Furthermore, since ki-

fined as follows: netic and magnetic energies are not conserved separately,

b(k) = f dx b(x)e k*, (6)

nontrivial fluxes of energy inside a wave vector domain can
uk) if k ; .
u(k) = {O( ) OtheeriSSne o also be definedfor X # Y):
o o (k) =2 2 T, (16)
The same decomposition will be used for the magnetic field. n<{ m<¢
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Viseous @f‘tm PY ik, S u@bm +ik, S b@up). (20

u-sphere 1R ot k=p+q k=p+q

Multiplying Eg. (19) by u;(-k) and Eq.(20) by b;(-k) and
averaging the resulting equations yield

u <

(% + 2yk2>%(|u(k)|2> = > {-Im{k -u(q]

IIZ: k+p+q=0
X[u(p) -u(k)]) + Im(k - b(q)]

X[b(p) -u(k) D}, (21)

b <y

b-sphere s - \

Resistive dissipation

<§+2nk2>%<|b(k)|2>: S - m(k - u(@)]

k+p+g=0
FIG. 1. Various energy fluxes in MHD turbulend& represents energy flux X[b(p) -b(k)]) + Im({k -b(qg)]
from the inside ofX sphere to the outside of sphere.

X[u(p) - b(k) D}, (22)

where Im stands for the imaginary part of the argument. Note

N v X that there is no contribution from the pressure field in Eq.

HP(W)‘E{ mg( Tom: (17) (21). Indeed, in incompressible flows, the pressure force
o kp(k) is always perpendicular to the velocity field

The energy flux through the wave number sphere of rakjius ~KP(k)-u(k)=0. The pressure may however indirectly influ-

is defined as ence the evolution of the enerdlyi(k)[?). Indeed, Eq(21) is
not closed and is only the first equation of a hierarchy which
(k,) = Hﬂi(ke) + Hgi(kg) + Hﬂi(ke) +HE§(k€) also contains dynamical equations for the higher-order mo-
ments of the velocity field. The pressure will appear in these
=> > (Tﬁ:%+TE:%+TE:%+T2:%)- (18) higher order moment equations. We also stress that in com-
n=¢ m<( pressible flows, the pressure force is not perpendicular to the

velocity and it directly enters the equation fgu(k)|?).

The energy transfer among the velocity modes has been
_ _ studied by many authofs**>*°In the present paper the en-
=Kmax (the maximum relevant wave number in the flow o fiuxes and the shell-to-shell energy transfer rates are

u< : —_— :
ITp=(kmay) is the total kinetic to magnetic energy transfer. ¢, e using the formalism of Dar, Verma, and Eswéran.
Relations(15)—(17) show that the energy fluxes can be Ole'The details of this formalism is given in Dar, Verma, and

rived from the shell-to-shell energy transfer. Using the tradi-cq\\ararft and Verma’ The four terms in the right-hand
tional terminology of subgrid-scale modeling, the energygiqes are callednode-to-mode energy transfer ratéem
fluxes characterize the transfer of energy from resolved tQ 1, andb-to-u [in Eq. (21)], andb-to-b andu-to-b [in Eq.

unresolved fields. The shell-to-shell energy transfers, how 22)]. They are represented b$"(k|p|q), S(k|p|q)
ever, characterize the transfer of energy between large-sc b(k|p|q), andS*(k|p|q), respectively, i.e. ' '
turbulent structures of size k{ and small-scale turbulent ’ ' S

These various energy fluxes are illustrated in Fig. 1.
By definition, all the fluxes exceplly= vanish atk,

structures of size X, assumingk,<k,. Some important S*"(k[p|a) = = Im{[k - u(q)][u(p) - u(k)1}, (23

properties of the shell-to-shell energy transfers are discussed

in the following section. S*(k|p|) = Im{k - b(a)][b(p) - u(k)]}, (24)
S*(klplg) = = Im{[k - u(q)][b(p) - b(k)1}, (25

B. Mode-to-mode transfers

S(k|pla) = Im{[k - b(q)][u(p) - b(K)T}. (26)
Before discussing the shell-to-shell transfers, it is inter- , v
esting to come back to some well-known properties of thedY convention, S"(k|plq) represents the energy transfer

mode-to-mode interactions. The formulas for mode-to-modérorg tkhefr?oltgjep Orf] ﬁlfld X (the secorr:d ar%umento the
interactions are derived from the invisoid=0) and nonre- Medek of field Y (the first argument The modeq acts as a

sistive (=0) incompressible MHD equations in Fourier mediator. The functionsS"(k|p|q) have many interesting
space given below properties. For instance, the energy transfer rate fKqm)
' to Y (k) is the opposite of that fronY (k) to X(p), i.e.,

aui (k _
%:—ikip(k) —iky S u(@)up) S™{Kk|pla) = - S(plkla). (27)
k=p*q Here X,Y stand foru or b fields.
+ik; 2 by(q)bi(p), (19  In the presence of a mean magnetic figlgl the equa-
k=p+q tions for both the velocity and the magnetic fields have ad-

Downloaded 03 Apr 2005 to 203.197.196.1. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



042309-4 Debliquy, Verma, and Carati Phys. Plasmas 12, 042309 (2005)

ditional terms which readiBg-k b(k) and -Bg-k u(k), re- TYX () = [ SYX(k 1 31
spectively. These terms do not contribute to the global nm (ko kezsn _pEESm A |p|q)_ D)
(kinetic+magnetit energy equation. However, like the pres-

sure force, they will indirectly affect the evolution of the &1

energy thro_ugh the higher order equations. This has_to b_e TI,})&E;)): SIS S™Klpla) | , (32)
expected since the presence of a mean magnetic field is kes, | pes B
known to have a strong influence on the dynamics of MHD )
turbulence. where the operators--], and[---]_ are defined by
In the following section we discuss shell-to-shell trans- . x if x>0 . 0 ifx>0 .
X+ = . X[-= .
fers in wave number space. We also construct formulas to 0 if x=0, x if x<0.

measure forward energy transfer and backscatter in MHD

turbulence. In the above definitions, the additional superscriptor —
corresponds to forward transfer and backscatter of energy.
The additional subscrigt is required since these definitions

C. Forward shell-to-shell energy transfer and are not necessarily the same in Fourier space and in real

backscatter space, as it will be shown below. Unfortunately,
The shell-to-shell energy transfer rates can be expressed Tot # = Thtio - (34)
in t f th de-to-mode transf follows: _
N terms ot the mode-to-mode fransiers as Toflows We expect thall) > and T»") must be equal and oppo-
=2 2 S™Klpla). (28)  site. This problem is solved by introducing the following
ke S pesn definitions for the forward and backward energy transfers:
As a consequence of the symmetry propé#y), the shell- 1
to-shell transfer rates satisfy the relation TI?;EE)) = 5( > [ > SYX('<|P|Q)]
Y. X X,Y kesh Lpesm +
Tom="Tmn: (29
’ ' Y
. . o -2 | 2 sXkpla) | ). (35)
This has important consequences and in partlcl]]%i(ke) pesy | kes, ~

=T14=(k,)=0 andTIpZ (k) =TT"Z (k,)=0. Also, Eq.(29) im-
plies thatTha=TE2=0. Note, however, thalh is not zero. A vxi 1
real space representation of the shell-to-shell transfers can Tn,’ngk)): 5( > [ > SYX(k|p|Q)]

easily be derived. As an example, the real space version of kesh Lpesm
expression28) for u-to-u energy transfer is given by -> [ > SYX(k|p|q)] > (36)
Pesy Lkes, +

uu — n (M )
Thm= f A U003 (U () ()) (30) With these definitions, the amount of backscatter from shell

o ] o ) n to shellmis indeed equal to the amount of forward transfer
Using integration by part, it is easy to show that it also sat+om shellm to shelin.
isfies the symmetry properfr,=~Tp.. _ The above definitions are intrinsically based on the Fou-
In Kolmogorov's turbulence phenomenology, energy iSigr representation of velocity and magnetic fields. It is inter-
transferred from small wave number shells to the large wav@siing to provide equivalent diagnostics based on the real
number shells, that isT,m>0 for n>m, and vice versa. gpace version of the fields. Obviously, it is also desirable to
Recent simulations however predict a certain amount of eMimpose the same symmetry condition for the real space rep-

ergy backscatter. In a mode-to-mode interaction, the defini;agentation of forward and backward energy transfers:
tion of backscatter is unambiguous. Indeed, wheris VX5 XY.)

smaller tharp andS"(k|p|q) <0, it is natural to refer to this Tomio =~ T - (37)
situation as energy backscattéom the large wave vectqr
mode of variableX to the small wave vectok mode of
variableY). In a shell-to-shell description, the definitions o
forward and backward energy transfers are not unique. One 1

could of course consider that backscatter should correspond  Tnm= > f dx[ul'(x) (U () u; (X))

to TX'<0; however, the shell-to-shell transfer contains a

large number of mode-to-mode interactions that sometimes = U"(x) 3, (U )y (x) ] (38)

correspond to forward transfer and sometimes to energ . . . .
backscatter. It is thus interesting to splif}y, into forward Bbviously, integration by part shows that the definiti68@

and backward contributions. Such a separation is unavoiand(ss) are equivalent. Moreover, expressi@s) allows us
o define shell-to-shell forward and backward transfers as

ably quite arbitrary. Two possible representations are pre-

Such a property is easily imposed when the following defi-
N nitions are adopted:

sented here. s L iU m
In Fourier space, it would be tempting to define the for- nmx) = 5 XU () 45 (U () U5 (x)
ward and backward energy transfers from shelio shelln
(m<n) as follows: = u"(0) (U ) U (%)) 1., (39
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1
o= [ o005 000w vod
- 00,00 ) -, (40) S od N
which satisfy the property given by E¢87. E o :\ o N
It is important to note, however, that in geneﬂ'#!ﬁ:;’(&)) £ ‘\\"\\
#Tﬁ“m(&)) This shows that the definition of shell-to-shell 2 0.2 ~~.“~ _________________
backscatter is not unique and, as will be shown in the fol- o T

lowing section, the properties Gﬁ;(&)) andTm% appear to
be quite different.

In the next two sections we will describe the numericalF!G. 2. Temporal evolution of the normalized total enefgy), magnetic
method and results regarding the shell-to-shell energy trang"e'9y(---, kinetic energy(-—--), and Alfven ratio(-----).
fer rates and fluxes for decaying three-dimensional MHD
turbulence.

Ill. SIMULATION DETAILS The increase in the normalized cross helicity has been seen
in earlier numerical simulations. This phenomena, called
“dynamic alignment,” has been discussed by Matthaeus and
H/Tontgomeryz,o and others. In addition, the magnetic and ki-
etic helicities are negligible in the simulation.

The direct numerical simulatio(DNS) described in the
preceding section is performed using a pseudospectral code.

The numerical simulation used for evaluating the shell-
to-shell transfers has been done using a fully-dealiased pse
dospectral code on a 518rid. The initial energy spectrum
for both the velocity and the magnetic fields were generate(r:i1
with the function

_ak P Both the shell-to-shell transfer rates in real spﬁﬁﬁ;&ﬁ) and
(k) = T exp(— bk®), (41) _ _ ) i (x _
(K*+q) in Fourier spaceTn:n;v(‘k) have been computed quite easily

with a=10.6,q=1.5,b=0.02, «=1.233, andB=1.1. It was  from the DNS code by following the procedure described by
done in order to match the spectra measured in th&omaradzki and Rogall) and Dar, Verma, and Eswardn.
Comte-Bellot—Corrsitf experiment at stage 1. The initial The computation of these quantities, however, requires an
phases were randomly generated. Physically acceptabigtensive postprocessing and the results presented in the fol-
phases were built up using an initialization procedure durindgowing are limited to a single frame corresponding tfo
which the flow is evolved according to the MHD equations=1.74. At this time, a significant fraction of the total initial
but rescaled at each time step to match the experiment&nergy has been dissipated and the initial condition is not
spectrum. This procedure was applied until the skewness @fxpected to influence the profiles of shell-to-shell energy
the velocity derivative reached a quasiconstant value ofransfer. Figure 3 illustrates the compensated kinetic, mag-
-0.26. The resulting fields are considered as the initial conretic, and total energy spectEdk)k®° att"=1.74. As previ-
ditions for the MHD turbulence simulation. ously observed by Miiller and Biskamipthe total energy
The Reynolds numbeR, (based on Taylor’s microscale spectra in the inertial range are fitted reasonably well by a
for the initial field was 159. The initial values of global vari- power law fork=(10—25. The inertial range is quite nar-
ables ar€e'=EP=31.2. The cross helicity as well as the mag-row. However, this narrow range is very useful for deriving
netic helicity, though not exactly zero, can be considered asome important properties of self-similar shell-to-shell inter-
negligible in the simulation. The geometry is(2m7)® box,  actions. The energy spectra at other times are similar.
and both viscosity and resistivity were set to<3073. A
third-order Runge—Kutta scheme is used to integrate the
MHD equations. The time stegt was computed automati-
cally using the Courant-Friedrichs—Lewy criterion, and it
was of the order of X 10°3. The simulation was evolved up
to nondimensional time*:t/teddy: 1.74, where

teddy: Eo/eo, (42)

E, andeq being, respectively, the total energy and dissipation
rate att"=0. Figure 2 shows the decay of kinetic, magnetic,
and total energies and the evolution of Alfvén ratig
=EY/EP. The Alfvén ratio decreases along with energy and 10
approaches 0.41 at the final time. Note that in many com-
puter simulations and solar wifftimeasurements the Alfvén 10° 10! 102
ratio decreases and saturates around 0.5. k

The normalized Cross he”City. increas_es very SIOV.VWFIG. 3. Compensated spectgk)k®? of total energy(—), magnetic energy
from near 0 to=0.1, and it can be ignored in our analysis. (----), and kinetic energy----) att =1.74.

10

10°
10!

102y

Energy spectra

104
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0 50 100 , 150 200 250

FIG. 4. Energy fluxes v&: g (—), 7S (=), 7S (-==-), 7h (-++-1),

T (=), mE (=), and 722 (—). Top—t'=0.12,1,=0.75; middle—¢
=0.40,r,=0.63; bottom—=1.73,r,=0.41.

IV. NUMERICAL RESULTS

A. Energy fluxes

The energy fluxes defined by the relatiGhb) can be

derived from the shell-to-shell energy transfers. It is, how-

Phys. Plasmas 12, 042309 (2005)

TABLE I. The numerical(sim) and theoreticalth) values of energy fluxes
in MHD turbulence forr,=0.75, 0.6, and 0.41. The theoretical values have
been computed by Vermi@&ef. 7) using field-theoretic techniques.

wlry 0.75(sim) 0.75(th) 0.6(sim) 0.6(th) 0.4(sim) 0.4(th)

s 0.075 0.078 0.073 0.024 0.066 0.024
s 0.49 0.38 0.49 0.31 0.49 0.31
ﬂﬁi 0.12 0.20 0.13 0.40 0.13 0.40
wﬁi 0.37 0.34 0.36 0.27 0.34 0.27
s 0.22 -0.024 .- -0.12

2 0.24 0.22 0.22

K* 2.8 1.53 3.02 151 3.0 1.51
KY 11 0.65 1.2 1.50 11 1.50
v 13 3.07 3.07

7 0.63 0.40 0.40

Figure 5 shows the evolution of the normalized inertial-
range fluxes. Interestingly, all the normalized inertial-range
fluxes exceptry= are approximately time independent. Time
is however not the most relevant parameter and it is conve-
niently replaced by the Alfvén ratio. The quantitf,~ de-
creases from 0.22 aj near 1 to=-0.12 near,=0.4 and is
reasonably well fitted by a linear relation:

e =~ y1(ra=Tp). (44)

This result indicates that forA>r*Ax0.63, large-scale ki-
netic energy is transferred to large-scale magnetic energy.
The direction of transfer is reversed for< r;\ (more mag-
netically dominated regimeThe best fit gives;, =0.56. Fur-
ther studies are definitively required to determine whether
the values ofy, and r; are universal or dependent on the
initial condition.

The fluxesIT'S, I1L<, TIPS, andIIPS are forward, that is,
from small to large wave numbers. AlsH’Z >0. The net
transfer from kinetic energy to magnetic energy is defined by

b= 1= + TIS + TI5Z + 1T (45)
It is easy to check thallp=II;=(Kpna0). The kinetic-to-
magnetic energy transfer takes place ungifeaches around

ever, interesting to analyze these fluxes first since they prd’A:r—AfB?’T The best fit is7y=y,(ra=Ta) wherey,~0.57.
vide a global picture of the various energy exchanges thaf®' 'a=ra @nd beyond, the net energy transfer from kinetic

influence the MHD turbulence. The energy fluxes depend o

fo magnetic is almost zero. Again the universal character of

the wave number as well as on time. These dependencies are

illustrated on Fig. 4 in which the wave number dependency
is shown at three different times in the energy decay.

A small range of wave numbers nelar 10—25 where
the energy fluxes are somewhat flat is identified as the iner-
tial range. This is approximately the same range found in the
analysis of the energy spectra. Within this range, the fluxes
are almost wave number independent and it is convenient to
introduce the following nondimensional quantities,

ITY(k e inertial range
H 1

whereTT=T1US +TTpS + 1105 + 1105 is the total flux in the in-

= (43)

ertial range. The values of these quantities are shown Qs (...
Table I. thick (—) line represents the Alfvén ratio.

Fluxes

)1 ﬂﬁ; (-"')1 Wg;

- wﬁ; (=+=+3
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the number, and vy, definitively requires further investiga-
tions. Note that at,=0.63,IT=(kna0 > O (see Fig. 4, hence

a net kinetic-to-magnetic energy transfer is taking place even
whenTIj=~0 for r,=0.63.

The value ofm')< is quite small, hence theto-u transfer
seems to be dominated by theo-b transfer in MHD turbu-
lence, at least when,<1. In Table I, the numerical values
of normalized energy fluxes are compared with Verma'’s the-
oretical predictionscalculated using field-theoretic method.

It is however important to stress that Verma’s theoretical pre-
dictions are based on several assumptions, e.g., steady state
and Kolmogorov’s spectra in the inertial range that are not
satisfied in the numerical simulation. In addition, Verma’s
theoretical calculations cannot predief= and mj,~. Com-
parison of numerical and theoretical values, however, shows
a reasonably good agreement. The differences in the values

are the largest forr'> and 7=, which may be due to non-

local interactions as discussed below. FIG. 6. Values off44/II (upper lefi, T22/IT (upper righy, T24/IT (lower
left), and T42 /1T (lower righy at timet'=1.74.

,M!

-0.05

B. Shell-to-shell energy transfer

The data analyzed in the following sections have beerf€gative whem<m. Finally, the dominant shell-to-shell ex-
produced by a spectral code with S1@odes in a cubic changes clearly appearbtt()) be in théo-b Ln_teractl_o_ns. For
geometry. The largest complete shgle., excluding corner ”Leu same shellTy; and Ty vanish, butTyis positive and
modes is thus bounded bik=256. Both the velocity and the Tnn IS N€gative. _ _
magnetic fields have been decomposed according to the It S interesting also fo investigate the same graphs for
methodology presented in Sec. Il A. The ratio between thdhe purely forward contributionfthe backscatter contribu-
upper and the lower bound of the shell boundaries has bedpn are directly obtained from the same graphs using the
chosen small enouglig=2"%) to ensure a fairly refined imposed symmetry proper@4) betweeq forward and back-
analysis of the shell interactions. However, the first shell$catter energy transfrsor instance, Fig. 7 shows that the
corresponding to the lowest wave vectors must be widePurely forward transfer is alsob\{+e)ry much local. However,
Otherwise, the first shells contain only few modes and theifig- 7 reveals that the quantitiy, /I has the largest am-
statistical analysis becomes meaningless. In the data postprphitude, so that the dominant forward shell-to-shell exchange
cessing, the first three shells have thus been chosen to Io& energy is between andb. It is also interesting to notice
s,={k} such that 6<k<2, s,={k} such that k=<4, and that, in order to obtain the best contrast, the scales are not the
s;=1{k} such that 4 k=8. Also, in order to limit the num- same in Figs. 6 and 7. Indeed, the forward transfers are by
ber of shells, the last shelivhich entirely lies in the dissi- definition always positive and the scale has been adapted
pation ranggis also widers,o={k} such that 12& k<=256.  accordingly. However, the amplitude of the forward transfer
Betweenk=8 andk=128, the wave number space is split
into shells, bounded byk, andk,,; wherek,=2"8/4,

Since we are primarily interested in the self-similar
properties of the shell-to-shell energy transfers, the following
discussion will be limited to the shells that are defined using
self-similar bounds, i.e$,—s;o. The four normalized shell-
to-shell energy transferg'mll'[ are computed using the
method described in Sec. Il C. The shell-to-shell transfers are
conveniently represented using two-dimensional density plot
corresponding to a matrix of energy transfers. For instance
the total (forward +backscattertransfers are represented in
Fig. 6.

As expected, these transfers are dominated by the diag-
onal contributions that correspond to local shell-to-shell
transfers, i.e., transfers between neighbor shells. All the val-
ues of the shell-to-shell transfers appear to be negligible for
[n=m|>4, which correspond to interaction between the :
shells characterized by wave vectors with amplitude ratios of 0 0.05 0.1 0.15 0.2
2 or larger. All the four transfers correspond to dir€ir-
ward) cascades of energy. Indeed, the shell-to-shell transfe§G. 7. Values off\") /11 (upper lefy, Too! /1T (upper right, T /11
are systematically positive whem>m and systematically ~(lower lefy, and Tyo:) /1T (lower right at timet’ =1.74.
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(lower left), andTﬁﬁf&’)/H (lower right at timet"=1.74.
-0.1g 5
is significantly larger than that of the total transfer, meaning n-m
that the total transfer contains two important parts corre- 0.1
sponding to forward and backward transfers that largely can-
cel each other.

The picture is drastically different if we consider the real IS) m
space definition of backscatter. Figure 8 shows now that the 28 o |
purely forward transfer defined using formul&@®) and (40) &~ M
is much more nonlocal. A local forward transfer is still
present and is characterized by the diagonal contribution.

However, large values of the forward energy transfer defined
in real space are observed form as large as 10. 0.1z 0 5
n—m
C. Inertial-range analysis FIG. 9. Plots ofT4/II (top), T22/TI (middle), andT“2/TT (bottorm) normal-

ized shell-to-shell energy transfers wsm for n andm in the rangg5,10],
As already mentioned, the existence of an inertial range>, m=5; », m=6; X, m=7; O, m=8; A, m=9; O,m=10.

is questionable in the simulation presented here. However,
both the spectra and the flux analysis tend to show the ap-
pearance of a narrow range of wave vectors betweei0
andk~ 25 with properties compatible with an inertial range. Self-similar. It is interesting to notice the important differ-
Hence, shellss—s;, will be considered to belong to the in- ence betweeﬁ'ﬁ’:;x)) and T;(,T]EE)) By definition,Tﬁ:‘r;f&)) and
ertial range. Within this range the energy transfers are antic'rfg'gq'(&)) vanish forn=m. Also, they do not rapidly go to zero
pated to be self-similar, i.e., the transfer from shell 6 to shelk, increasingn-m. On the contrary,T”'”’(+) and T2
8 should be the same as the transfer from shell 7 to shell 9. . ~ m( n,m (k)
This is indeed observed in Fig. 9, in which the normalizedreaCh a maximum fon=m and decay fairly rapidly for large

energy transfergmlﬂ versusn—m are plotted for various n—m. These properties confirm thg previous remark that the

m's in the inertial rangg5<n,m=10). These figures also orward transfers expressed B .o are very much local
confirm that the inertial-range shell-to-shell energy transfergvhile those expressed n,ﬁﬁ;} are much more nonlocal.
are always from small to large wave numbé&mward trans- These results show that the choice of the definition of
fer). Indeed, they are positive far>m and negative fon backscatter may quite strongly influence the interpretation of
<m. The dominantu-to-u and b-to-b transfers are to the the diagnostics. This might be seen as an undesirable prop-
neighbor sheln—-m=1 and decreases quite rapidly, confirm- erty. Moreover, in the framework of LES, the arbitrariness
ing that these energy transfers are fairly local. On the conappearing in the definition of backscatter could be consid-
trary, the dominanti-to-b transfer is to the same wave num- ered as a reason to discard this diagnostics in the assessment
ber shelln=m and decays more slowly. of subgrid-scale model. This is not the point of view advo-
The same graphs are presented in Figs. 10 and 11 for theated here. Indeed, when the definition of backscatter has
forward transfers in wave and real spaces. The energy backeen clearly and cleanly given, there is no ambiguity on how
scatter is readily deduced from these graphs using the synte compute the forward and backward energy transfers.
metry property(34). Again, these quantities appear to be These transfers can then be used as valid guides in the de-
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FIG. 10. Plots ofTm( /I (top), Toots)/TI (middle), and Too'e/1T (bot-  FIG. 11. Plots ofT o /T (top), Top/TT (middle), andTﬁm&)/H‘ (bot-
tom) normalized shell-to-shell energy transfersnssm for n andm in the  tom) normalized shell-to-shell energy transfersnvsm for n andm in the

range[5,10], ¢, m=5; *, m=6; X, m=7; 0, m=8; A, m=9; O, m=10. range[5,10], ¢, m=5; %, m=6; X, m=7; 0, m=8; A, m=9; O, m=10.

velopment of subgrid-scale models that are supposed to re-
produce the energy transfers between resolved and unre- The results presented in Sec. IV show that, as usually

solved scales as accurately as possible. anticipated in the analysis of mode interactions in turbulence,
the total (backscatter+forwapdenergy transfers are very
V. DISCUSSION much local. The wave number shells that are characterized

by wave vectors with an amplitude ratio of 2 or more do not

The energy transfer rates between different shells o&xchange significant amount of energy. The result is less ob-
wave vectors have been analyzed in details for turbulent vevious if the forward transfer of energy and the backscatter
locity and magnetic fields by solving the incompressibleare studied separately. First, it is shown that the definition of
MHD equations. This analysis is based on a decompositiobbackscatter is not unique and two possible definitions are
of the fields into modes with characteristic wavelengths corproposed. The pictures obtained with these two representa-
responding to increasingly fine scales. The boundaries dions are fairly different. In the Fourier representation, the
these shells follow a power law, anticipating a self-similarforward and the backward transfers, like the total energy
properties of the shell-to-shell energy exchanges. exchanges, are quite local. On the contrary, the real space

In incompressible MHD turbulence four energy ex- decomposition shows very nonlocal exchanges of energy be-
changes can be identified between two wave number shellsveen the shells.
These energy transfers aneu, u-b, b-u, andb-b. This is in The knowledge of the detailed backscatter and forward
contrast with Navier—Stokes turbulence in which only oneenergy transfers is an interesting guide to describe the phys-
independent flux can be defined. Except for this differenceics of the nonlinear interactions in turbulence. It is also a
the methodology for defining the shell-to-shell transfers isvaluable diagnostics in the framework of subgrid-scale mod-
very much inspired by earlier works on hydrodynamic turbu-eling. Indeed, LES have become more and more popular as a
lence. tool to investigate high Reynolds number flows in
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