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Nonclassical viscosity and resistivity of the solar wind
plasma
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Abstract. In this paper we have estimated typical viscosity and resistivity of the
solar wind using turbulence phenomenology rather than Branskii’s [1965] formalism.
Since the solar wind is a collisionless plasma, in this paper we have assumed that
the dissipation in the solar wind occurs at the proton gyroradius through wave-

particle interactions. Using this dissipation length scale and the dissipation rates

calculated using MHD turbulence phenomenology [Verma et al., 1995], we estimate
the viscosity and resistivity. The resisitivity has been recalculated using anomalous
scattering time. We find that all of our transport quantities are several orders of
magnitude higher that those calculated using classical theories of Branginskii [1965].

1. Introduction

The solar wind is a collisionless plasma; the distance
traveled by the solar wind protons between two consecu-
tive Coulomb collisions is approximately 3 AU [Barnes,
1979]. Therefore the dissipation in the solar wind in-
volves wave-particle interactions rather than particle-
particle collisions.. (For the observational evidence of
the wave-particle interactions in the solar wind refer to
the review articles by Gurnett [1991] and Marsch [1991,
and references therein].) For these reasons, while calcu-
lating the transport coefficients in the solar wind, the
scales of wave-particle interactions appear more appro-
priate than those of particle-particle interactions [Bra-
ginskii, 1965]. This is the main point of this paper.

Earlier Montgomery [1983] calculated the transport
coeflicients in the solar wind using Braginski’s [1965]
formalism, which is based on particle-particle collision.
In this formalism the ion’s kinematic viscosity vy is

3 T

m=—_ 1
T 10 wirm; (1)
and the resistivity is
2
mec
A= —— 2
4mrne2r, (2)

where T; is the ion temperature, w; is the ion gyrofre-
quency, 7; 1s the ion-ion collision time, m; and m, are
the masses of the ions and electrons respectively, ¢ is
the speed of light, n is the number of particles per cm3,
and 7. is the electron-proton collision time. For typ-
ical values of the solar wind parameters, Montgomery
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[1983] found both kinematic viscosity and resistivity to
be of the order of 10~% km? s~!. Using the velocity of
the large eddies as 20 km s~! and length scale as 108
km, he obtained the Reynolds number to be of the order
of 103, Note that Montgomery [1983] used v; of Bra-
ginskii [1965] rather than vg. This is consistent with
Hollweg’s [1985] result where he showed that the vg
terms are fully accounted for by the diagonal pressure
tensor.

In fluid turbulence the dissipation length scale (Kol-
mogorov’s microscale) /;, kinematic viscosity, and dis-
sipation rates are related by [Lesieur, 1989]

()" o

The solar wind fluctuations have been observed to be
turbulent, and their energy spectra follow approximately
k=5/3 power law [Matthaeus and Goldstein, 1982]. Mo-
tivated by this observation we attempt to estimate the
viscosity and resistivity using turbulence phenomenol-
ogy. The phenomenology of magneto-hydrodynamic
(MHD) turbulence is not as developed as fluid turbu-
lence phenomenology. At this moment it is not clear
what would be the corresponding formula for viscosity
in MHD turbulence. In this paper we have obtained
a formula similar to equation (3) for MHD turbulence
using simplified assumptions (see appendix).

For the solar wind, if we substitute in equation (3),
a typical kinematic viscosity obtained by Montgomery
[1983], and the dissipation rate obtained by Tu [1988]
and Verma et al. [1995] (1073 km?s~3), we find that
lg ~ 10 cm. This is much smaller than the proton gyro-
radius (100 km) where, according to the observations,
transition from inertial range to dissipation range takes
place. In this paper we argue that the dissipation length
scale for the solar wind should be determined by the
scale at which the wave-particle interaction occurs. We
find that these estimates are consistent with the solar
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wind observations. Using this scale and the dissipation
rate estimates, we obtain typical kinematic viscosity of
the solar wind. We have also calculated resistivity from
the scales obtained by turbulence phenormenologies.

In turbulence phenomenology it is argued that at the
dissipation scale the smallest coherent fluid parcels dis-
perse, that is, the fluid and the magnetic energies af-
ter this scale are zero. Here we refer to the dissipa-
tion scale as the transition scale between inertial and
dissipation range. Also, note that the dissipation rate
is the amount of energy supplied to the fluid at large
scales; hence it can be determined by the large-scale
forcing processes or from the energy spectra in the in-
ertial range using the universal scaling laws. In work
by Verma et al. [1995] the dissipation rates were deter-
mined from the energy spectra in the inertial range us-
ing the Kolmogorov-like MHD turbulence plienomenol-
ogy [Marsch, 1990; Matthaeus and Zhou; 1989; Zhou
and Matthaeus, 1990]. The turbulence phenomenolo-
gies also enable us to obtain transport coefficients as
mentioned above. The advantage of these arguments is
that the transport coefficients can be calculated without
any reference to the dissipation mechanisms. (For dis-
cussion on dissipation processes in the solar wind refer
to Marsch et al. [1982] and Marsch, [1990, and ref-
erences therein].) The transport coefficients calculated
here could find applications in modeling of solar wind
evolution. Note, however, that the viscosity and resis-
tivity calculated in this paper are to be used in fluid
models of the solar wind.

Marsch et al. [1982] and Gary [1993] have calcu-
lated the damping rates of waves in space plasma using
Vlasov theory (for further references, refer to reviews by
Marsch [1991] and Gurnett [1991]). These calculations
involve detailed nonthermal and highly non-Maxwellian
distribution functions of particles and a variety of mi-
croinstabilities. The turbulent pulsation occurring as a
result of plasma microinstabilities leads to an increased
flux of particles and heat across the magnetic field that
is confining the plasma; this phenomenon is referred to
as anomalous diffusion and thermal conduction. R. Z.
Sagdeev, unpublished notes, has shown that the anoma-
lous diffusion coefficient due to microinstabilities is of
the same order of magnitude as Bohm’s diffusion. The
viscosity and the resistivity calculated in this paper are
not directly related to the transport because of microin-
stabilities, and hence they are not same as the anoma-
lous diffusion coefficients referred to in the kinetic the-
ory of fusion or space plasma. The viscosity and the
resistivity calculated in this paper are basically fluid
transport quantities. We use the scale of wave-particle
interaction to estimate the length scale where the fluid
and the magnetic energies disperse, as explained in the
previous paragraph.

Note that the viscosity in a turbulent fluid is scale
dependent [Lesieur, 1989]. The viscosity discussed in
most of this paper is the one at the dissipation length
scale, not at a large or intermediate length scale. The
viscosity at large scale is called turbulent eddy viscosity;
it is briefly discussed at the end of section 2. Note that
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the transport quantities in the solar wind vary with
distance. In this paper we estimate these quantities at
1 AU.

In section 2 we will estimate the length scale at which
wave-particle interactions take place. This will be the

dissipation length scale for our calculation of the trans-
port coefficients. Using the dissipation rates calculated
earlier [Tu, 1988; Verma et al., 1995] , we then estimate
the kinematic viscosity and resistivity at the dissipation
length scales. Toward the end of section 2, we also es-
timate the eddy viscosity of the solar wind. Section 3
contains conclusions.

2. Calculation

Verma et al. [1995] have calculated the dissipation
rates in the solar wind streams using the Kolmogorov-
like MHD turbulence pheniomenology [Marsch, 1990;
Matthaeus and Zhou, 1989; Zhou and Matthaeus, 1990].
The choice of this phenomenology over Kraichnan’s
[1965] phenomenology or Dobrowolny et al.’s [1980] gen-
eralization of Kraichnan’s phenomenology is motivated
by the fact that the observed solar wind energy spectra
tend to be closer to Kolmogorov’s k=5/3 power law than
Kraichnan’s k=3/2 power law [Matthaeus and Goldstein,
1982]. Also, the temperature evolution study of Verma
et al. [1995] shows that the predictions of the temper-
ature evolution using the Kolmogorov-like model are in
closer agreement with the observations than with those
using Kraichnan’s [1965] or Dobrowolny et al.’s [1980]
models. The reader is also referred to Tu [1988] for the-
oretical studies of turbulent heating in the solar wind.

The Kolmogorov-like phenomenology provides the en-
ergy spectra of fluctuations z* = u + b/\/4mp, where u
is the velocity field fluctuation, b is the magnetic field
fluctuation, and p is the density of the plasma. The
quantities z* represent the amplitudes of Alfvén waves
having positive and negative velocity-magnetic field cor-
relations, respectively. The energy spectra according to
this phenomenology are

EX(k)=C* (Cd:)4/3 (ex)—2/3 k=503, (4)

where €* are the dissipation rates of z* fluctuations,
and C* are Kolmogorov’s constants for MHD turbu-
lence. According to Verma et al. [1995], the dissipation
rates per unit mass in the solar wind streams are of the
order of 1073 km? s—3. .

As mentioned in the introduction, we estimate the
dissipation length scale from the theories of wave-particle
interactions. The process by which Alfvén waves might
be damped has been a subject of considerable research.
It has been shown that the wave-particle resonance be-
tween MHD waves and ions occurs either in the form of
the Doppler-shifted cyclotron resonance,

+

w-—]C”U” =nf;(n==%1,42,--)) (5)
or in the form of the Landau resornance
W — lc“v” = 0, (6)

where €; is the cyclotron frequency of the ions, w is the
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wave frequency, and k| and v) are the parallel compo-
nents along the mean magnetic field of the wave num-
ber and the ion velocity vector, respectively [Stiz, 1962;
Barnes, 1979]. The question now arises whether the
fluctuations in the solar wind can be damped by the
above mechanisms.

For the solar wind, at 1 AU the cyclotron frequency
Q; of the ions is of the order of 0.1 s~1, and the thermal
speed v is of the order of 50 km s~! [Barnes, 1979)].
Typical Alfvén speed V4 = w/k at 1 AU is also 50
km s~!. Also, note that the solar wind fluctuations
are dominated by Alfvén waves; the compressive waves
are damped at the early stages of its transit. Since
w/k ~ 50 km/s ~ v, it appears that the Alfvén waves
can be Landau damped. However, Barnes and Suf-
folk [1971] and Barnes [1979] argue against this. They
show that the transverse Alfvén waves are exact so-
lutions of the Vlasov-Maxwell equations for arbitrary
amplitude, hence it cannot be damped. However, that
is not correct either. It has been shown that all hy-
dromagnetic waves, except the Alfvén mode with pre-
cise circular polarization, steepen and evolve into other
modes or collisionless shocks [Tidman and Krall, 1971].
Sagdeev and Galeev [1969] showed that a linearly po-
larized Alfvén wave is unstable and that it decays to
a backscattered Alfvén wave and magnetosonic waves.
The magnetosonic waves thus generated get damped
by Landau damping (see Barnes [1979, and references
therein] for discussion on Landau damping of magne-
tosonic waves). Hollweg [1971] has obtained similar
results. Hence the Alfvén waves in the solar wind can
get damped by decaying to a magnetosonic waves which
in turn gets damped by Landau damping.

Now the question arises, which waves in the solar
wind are affected by the above process? The energy
from the small and intermediate & (large wavelength)
waves cascades to larger k£ waves due to nonlinear inter-
action arising from the z¥ - Vz* term of MHD equation
[Kraichnan, 1965], and these waves do not get damped.
At the dissipation scale the energy cascade stops. We
conjecture that the decay of Alfvén waves to magne-
tosonic waves and the damping of the generated mag-
netosonic waves occur near the ion gyroradius r = 100
km. Therefore kg ~ 10~2 km~!.

Regarding the cyclotron resonance, the small k Alfvén
wayves of the solar wind cannot be damped by this mech-
anism because w < ; and kv < Q; when k is small
(see equation (5)). Typical kmin in the solar wind is
10-" km~!, w ~ kVy4 is 1075 s=!, and Q; ~ 0.1 s~ 1.
However, when k becomes large, it is possible for the
waves to get damped by cyclotron damping. The ap-
proximate value of k where cyclotron resonance could
occur 18

Qi 0.1 s°1
Va—V; 50km/s
Hence the dissipation length scale for the cyclotron
damping is again of the order of 100 km. Therefore

the dissipation wave number is kg ~ 10~2 km~!. The
solar wind observations show that at 1 AU the tran-

kq ~2x 103 km™!.  (7)
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sition from inertial range to dissipation range occurs
at around a length scale of 400 km (D. A. Roberts, pri-
vate communication, 1995), a result consistent with our
above arguments. In this paper we assume that the dis-
sipation length scales for the fluid energy, the magnetic
energy, and the energy of the Alfvén waves are all same
(see appendix).

In the appendix we derive an expression for the vis-
cosity v in terms of dissipation rate ¢ and dissipation
length scale (k;') to be

1/3
€
V~/\~<k—3’) .

Here we assumed that the fluid and magnetic energies
are approximately equal and also that E* (k) ~ E~ (k).
Under this condition, v ~ A. We use this formula for
our estimation of viscosity in the solar wind. Substi-
tution of € ~ 1073 km? 53 and k; ~ 1072 km~?! in
the above equation yields v ~ 50 km? s~!. This result
is very different from the one obtained by Montgomery
[1983]. Note that the above viscosity is the ion viscos-
ity. It is interesting to note that our estimate of the ion
viscosity is close to Bohm’s diffusion coefficient [Chen,
1974], which is

(8)

kgTec
"~ 16eB ©)
where kp is the Boltzmann constant, 7" is the proton
temperature, c is the speed of light, e is the electronic
charge, and B is the mean magnetic field. It is not
surprising that equation (8) with ¢ = 1073 km? s=3
yields

y ekgTe 1/3 kgTec
eB eB

Dp ~ 100 km?s~!

kBTC

eB D

(10)

~

because ekpTc/eB ~ 1. However, if (eIcBTc/eB)l/3
deviates far away from 1, then v will have a depen-
dence on ¢; this feature of equation (8) is different from
Bohm'’s diffusion formula. Note that Bohm’s diffusion
coefficient is called anomalous diffusion coefficient and
is used in estimation of diffusion in fusion reactors.
The Reynolds number with v = 50 km?s~!, the mean
speed U = 20 km s~!, and the length scale of 107 km is

rRe=YL 410 (11)
v
The dissipation timescale is
T, ! ! ~ 200 s (12)

d~ kdvd ~ (kg€)1/3

where v4 is the velocity at the dissipation scale. For the
above expression we assumed that the Kolmogorov-like
MHD turbulence phenomenology (equation (4)) is valid
until k = kg, therefore, vy ~ (E(ka)ka)'/? ~ (ka/€)*/3
~ 2 km/s [Lesieur, 1989].

At this point we can compare Montgomery’s [1983]
classical kinematic viscosity with our nonclassical vis-
cosity. Montgomery’s vy is basically 0.3(27)%r2 /7,
where 7, is the proton gyroradius, and 7,, is the proton-
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proton collision time. Hence, typically, v; ~ 106
km?/s. However, using ¢ ~ v3/ly [Lesieur, 1989] and
formula (8), we obtain v ~ v4ly ~ 100 km?/s. The
ratio of Vnonci/¥1 ~ (vaTpp/7p), which is much bigger
than 1.

The magnetofluid viscosity is dominated by ion vis-
cosity. Therefore the viscosity estimated in the above
discussion is primarily ion viscosity. The arguments in
the appendix indicate that the resistivity may be of the
same order as kinematic viscosity. Hence

v ~ X~ 50km?/s (13)

Now we estimate the resistivity of the solar wind. The
resistivity A of magnetofluid is defined as [Braginskii,
1965]

mec?

" 4mnelr, (19)
where m, is the mass of the electron. For the solar
wind typically n ~ 5 ions em™3. Using the electron-
proton collision time for 7., Montgomery [1983] ob-
tained A ~ 10~7 km?2 s~!, which differs from the re-
sistivity of equation (13) by 8 orders of magnitude. In
the following discussion we obtain 7. and subsequently
A from the scales of wave-particle interaction. Schwartz
et al. [1981] showed that waves with frequencies near
the 1on gyro frequencies and wave vectors comparable
with the inverse lon Larmor radii can provide a strong
electron-wave coupling. There are some detailed cal-
culations in this direction (for review and further ref-
erences, refer to Marsch [1991]). We need to estimate
what is the appropriate 7. for equation (14). We would
like to point out however that Coulomb collisions are
important at least for the “core” electrons [Scudder
and Olbert, 1979a, b], and their effect on tempera-
ture anisotropy, heat flux, etc., cannot be neglected.
However, we are primarily interested in transport co-
efficients, and we will ignore Coulomb collisions as an
approximation.

Priest [1982] argues that low-frequency ion-sound
turbulence has an anomalous collision time, and this
anomalous time scale should be used for anomalous con-
ductivity. In this paper we are dealing with Alfvénic
turbulence, and we estimate the anomalous scattering
time in the following fashion: Eddy or kinematic viscos-
ity can be interpreted as diffusion coefficients for coher-
ent fluid parcels. The dissipation length scale discussed
in this paper is the length scale where the smallest co-
herent fluid parcel disperse, that is, the fluid energy
after this scale is zero (refer to Appendix). Similarly,
the coherent magnetic structures are destroyed by resis-
tivity at the dissipation scales. We assume in this pa-
per that the dissipation length scales of both fluid and
magnetic energy are k7'. Therefore 1§ = k7' ~ 100
km. Since electrons are lighter particles, they move
faster than protons; we assume that the relevant speed
of the electrons at dissipation length scale is its ther-
mal speed. Taking the electron temperature as 10° K,
v§ = 1000 km/s. From these two scales, we can obtain
the timescale that is 7, ~ {5/v§ ~ 0.1 s. Our above ar-
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guments are in the same spirit as that of Priest [1982].
Now we can also estimate the resistivity by substi-
tuting the above anomalous scattering time in equation
(14). Substitution of 7. ~ 0.1 s and n = 5 ions cm™3
yields A ~ 100 km? s~!. Note that the resistivity calcu-
lated here is close to the resistivity obtained in equation
(13) using the dissipation rates. The magnetic Reynolds
number will be
ReM:%vax 106. (15)
The solar wind magnetic Prandtl number, defined as
v/ A, appears to be of the order of unity. It is interest-
ing to note that both renormalized viscosity v(k) and
resistivity A(k) are expected to scale as €!/3k2/3, where
€ is the relevant dissipation rate, and k is the wave
number [ Verma and Bhattacharjee, 1995, and references
therein]. Therefore the renormalized magnetic Prandtl
number v(k)/A(k) ~ 1. In this paper we are calculating
A(kg) and v(kg). It is reasonable to expect that Kol-
mogorov’s 5/3 power law continues until k¥ = kq; there-
fore it is not surprising that our magnetic Prandt]l num-
ber A(kq)/v(kq) ~ 1. However, since the above numbers
are only order of magnitude estimates, we can not make
a definite prediction about the magnetic Prandtl num-
ber.

As mentioned in the Introduction, viscosity is scale
dependent. The large-scale viscosity, called eddy vis-
cosity, is vy ~ vpL, where L is the large-scale length
and vy is the large-scale fluctuating speed. Therefore,
for the solar wind, vy ~ 20 km/s x10% km~ 10° km?/s.
This number is 7 orders of magnitude higher than the
viscosity at dissipation length scale. These quantities
could be useful for the study of solar wind evolution.

3. Conclusions

In this paper we have calculated the viscosity and the
resistivity of the solar wind. Our calculation is based on
turbulence phenomenologies. Here these transport coef-
ficients have been estimated using the dissipation length
scale and dissipation rates. The viscosity and the resis-
tivity calculated in this paper are not directly related to
the transport because of microinstabilities, hence they
are not same as the anomalous diffusion coefficients re-
ferred to in the kinetic theory of fusion or space plasma.
The viscosity and the resistivity calculated in this pa-
per are basically fluid transport quantities. We have
used the scales of wave-particle interactions just to es-
timate the length scale where the fluid and magnetic en-
ergies disperse. An important feature of this approach
1s that these calculations are independent of the dissi-
pation mechanisms occurring in the dissipation range.

The solar wind plasma is collisionless. Therefore the
wave-particle interactions become important while con-
sidering dissipation mechanisms in the wind. From the
solar wind observations and from the rough estimates of
scales where wave-particles interactions occur, we find
that the dissipation length scale is close to the proton
gyroradius (~ 100 km). In our calculation we also need
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turbulent dissipation rates occurring in the solar wind.
In this paper we take the turbulent dissipation rates
calculated by Verma et al. [1995a).

We find that a typical ion viscosity and resistivity is
50 km? s~1. The corresponding Reynolds number (with
ion viscosity) is around 108. The resistivity calculated
by substituting anomalous scattering time in the resis-
tivity formula is also around 200 km? s~!. The mag-
netic Reynolds number is around 10%. The magnetic
Prandtl number is of the order of unity. The large-
scale (eddy) viscosity of the wind is approximately 10°
km?/s.

All the transport quantities calculated by us are sev-
eral orders of magnitude higher than those calculated
earlier by Montgomery [1983] using the classical trans-
port theory of Braginskii [1965]. Braginskii’s formalism
is based on particle-particle collision and is probably in-
applicable for the solar wind plasma, which is collision-
less. We believe that a formalism based on the wave-
particle interaction should be applicable for the solar
wind. However, we would like to point out that more
work is needed for proper estimation of transport coef-
ficients, for example, evaluation of vy when Et(k) #
E~(k) and E*(k) # E*(k). Also, in our calculation the
dissipation scales for all the energies E*(k), E*(k), and
E*(k) have been assumed to be equal; this assumption
needs closer examination through simulation and the-
ory.

The transport coefficients presented in this paper are
only rough estimates. However, we believe they could
find applications in modeling of the solar wind and in
numerical simulations.

Appendix

We derive an expression for viscosity in terms of en-
ergy dissipation rates and dissipation length scales. We
use energy equations to derive this expression. The in-
compressible MHD equation in the absence of a mean
magnetic field is [Kraichnan, 1965]

%zi = —2F . Vzt - Vp+ v, V%t 41 V2T (Al)

zf=u+b

1
I/i:§(l/2tA)

where u is the fluctuating velocity field, b is the fluc-
tuating magnetic field in velocity units, p is the total
pressure, v i1s the kinematic viscosity, and A is the re-
sistivity. From this equation, under the assumption of
isotropy of fluctuations, one can derive [Orszag, 1977)

(A2)

(A3)

2 EE(k) = —20, k2E* (k)

o %2 [ER (k) — BVR) + TG A
where E£(k) are the energy spectra of z*, E%(k) and
E*(k) are the velocity and magnetic field energy spectra
respectively, and T (k) comes from the nonlinear term
and involves triple correlations of z*. By integrating
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the above equation over the whole spectrum, we obtain

et = —2vy [T k2E*(k)dk
0o 1o T b (A5)
—2w_ [7 k% [E¥(k) — Eb(k)] dk.
The term T*(k) upon integration over the whole spec-
trum yields zero [Orszag, 1977].

We make several assumptions to get an order of mag-
nitude estimate of v. We assume that the third term of
equation (A5) vanishes. This condition will be satisfied
either if v_ = 0 or E%(k) ~ E®(k). Since the spectra
E*(k) are usually strongly damped in the dissipation
range, most of the contribution to the first integral of
equation (Ab) comes from k in the range of 0 to k. We
also make a drastic assumption that E+(k) = E~ (k),
and ¢t = ¢~ = ¢. These assumptions are justified only
because we are making order of magnitude estimation
of v. To obtain precise values of vy, we will have to
analyze equation (Ab5) carefully. Now the substitution
of E*(k) from equation (4) in equation (A5) yields

C\ /3
I/NANV+N<F>
d

Hence, given the dissipation rate ¢ and the dissipation
length scale k(;l, we can estimate v and A.

In this derivation we have also assumed that the
dissipation length scale for all the energies, that is,
Ei(k%,E"(/ﬁ), and E®(k) are the same and >~ _qual
to k.
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