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Abstract. Power spectra of solar wind magnetic field and velocity fluctuations
more closely resemble those of turbulent fluids (spectral index of —5/3) than
they do predictions for magnetofluid turbulence (a —3/2 index). Furthermore,
the amount the solar wind is heated by turbulence is uncertain. To aid in the
study of both of these issues, we report numerically derived energy cascade rates
in magnetohydrodynamic (MHD) turbulence and compare them with predictions
of MHD turbulence phenomenologies. Either of the commonly predicted spectral
indices of 5/3 and 3/2 are consistent with the simulations. Explicit calculation of
inertial range energy cascade rates in the simulations show that for unequal levels of
fluctuations propagating parallel and antiparallel to the magnetic field, the majority
species always cascades faster than does the minority species, and the cascade rates
are in better agreement with a Kolmogoroff-like MHD turbulence phenomenology
than with a generalized Kraichnan phenomenology even in situations where the
fluctuations are much smaller than the mean magnetic field. The “Kolmogoroff
constant” for MHD turbulence for small normalized cross helicity is roughly 6.7 in
two dimensions and 3.6 for one calculation in three dimensions. For large normalized
cross helicity, however, none of the existing- models can account for the numerical

results, although the Kolmogoroff-like case still works somewhat better than the
Kraichnan-like. In particular, the applied magnetic field has much less influence
than expected, and Alfvénicity is more important than predicted. These results
imply the need for better phenomenological models to make clear predictions about

the solar wind.

Introduction

Hot high-speed solar wind streams tend to contain
highly Alfvénic fluctuations (i.e., the magnetic and ve-
locity fluctuations are nearly equipartitioned in energy
and are highly correlated in direction) and are heated
as they move outward in the heliosphere (see Tu and
Marsch [1995] and Goldstein et al. [1995] for recent
reviews). The Alfvénic character of most flows van-
ishes at large distances from the Sun, and in the process
the power spectrum of the magnetic and velocity fields
becomes Kolmogoroff-like with a —5/3 spectral index
[Matthaeus and Goldstein, 1982; Tu et al., 1990]. This
slope is contrary to the expectation of Iroshnikov [1964]
and Kraichnan [1965], who predicted —3/2 for the spec-
tral index of magnetohydrodynamic (MHD) turbulence.
These characteristics of the spectral evolution, heating,
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and spectral indices of the solar wind then lead natu-
rally to the question of the proper theoretical treatment
of MHD turbulence and its dissipation.

We will be working in the framework of the standard
MHD equations. Throughout the paper, in place of u
and B, we use Elsésser variables [Elsdsser, 1950, 1956]
z*, defined as u & B, with B = B’/\/47p where u and
B’ are velocity and magnetic field, and p is the den-
sity. The fluctuations z* represent the Alfvén “waves”
traveling “antiparallel” and “parallel” to the mean mag-
netic field respectively. (The quotes indicate that the
waves are not traveling strictly antiparallel and paral-
lel, but have positive and negative correlations between
their velocity and magnetic field fluctuations.) These
waves couple nonlinearly. Elsisser variables are useful
for describing incompressible MHD because in the ideal,
nonexpanding limit, either z* or z= = 0 is an exact so-
lution. The dissipationless momentum and induction
equations in the original variables are

Ou
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%—?——Fu~VB=B-Vu (2)

where p is the thermal pressure. When written in terms
of the Elsasser variables, these become

+
%z’t— = —zF . Vzt + By - Vzt — %Vp (3)
where By is the mean magnetic field. Note that if either
zt or z~ is zero, there are no nonlinear interactions.
The nonlinear terms serve to couple different scales or
wave vectors. We assume incompressibility with p =
const and V - z% = 0.

In fluid turbulence there is a conservative transport
of energy in wavenumber space that is only stopped
by the formation and dissipation of very small struc-
tures. The Elsisser variables are convenient for the
study of MHD cascades because the energies associ-
ated with them, E* = [ (2%)2%d®x, are individually
conserved and thus we can track their paths through
Fourier space. The Reynolds number R, = UL/v mea-
sures the relative strength of the nonlinear and viscous
stresses at the correlation scale L of the fluctuations
with typical speed U in a fluid with kinematic viscosity
v; as R, increases, the scale for dissipation decreases
such that the rate of energy cascade through the in-
ertial range II is on average equal to the small-scale
dissipation rate € in steady state. (The “inertial range”
consists of those scales much smaller than the largest
“energy containing” eddies, but much larger than the
scale where dissipation is important compared to iner-
tial nonlinear terms.) The cascade rate is thought to
be independent of R., and this assumption yields the
Kolmogoroff spectrum for statistically steady, isotropic
fluid turbulence. In particular, assuming that the cas-
cade rate only depends on the energy per wavenumber,
E}, and the scalar wavenumber k = [k| for an isotropic
shell in the k-space, then the characteristic nonlinear
“eddy turnover time” for fluctuations with velocity am-
plitude vy = (kE)'/? is 75z = 1/(kvk), and thus the
cascade rate can be found from

Mo = exo o~k — /232 (4)
TNL
or
Ey = CxIT2/355/3 (5)

where Cx is a universal “Kolmogoroff constant.” The
large, energy-containing scales may either be stirred at
a rate that determines the level of the fluctuations by
equating the inertial range flux to the energy input rate,
or they may be freely decaying. In the latter case, a
quasi-equilibrium can be set up with the input into the
inertial range given by, for example, the rate of the de-
cay of the large-scale eddies, U3/L [see Batchelor, 1970;
Hollweg, 1986]. A quasi-equilibrium theory for the de-
cay of the large eddies in MHD has recently been de-
veloped by Hossain et al. [1995].
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The situation for a magnetized plasma is more com-
plex than the fluid case, with both By and the cross he-
licity (He = (1/4)[(E*)? - (E~)? = (1/2) [ v - Bd®x)
having possible strong effects on the cascade rate [Irosh-
nikov, 1964; Kraichnan, 1965; Dobrowolny et al., 1980a,
b; Grappin et al., 1982, 1983; Matthaeus and Zhou,
1989; Zhou and Matthaeus, 1990; Tu and Marsch, 1990].
The strength of the background magnetic field controls
the propagation of the waves and may also produce
spectral anisotropies, which we ignore here, although
they must be considered in a more general treatment
[see Shebalin et al., 1983; Carbone and Veltri, 1990;
Oughton et al., 1994; Hossain et al., 1995]. Strong
fields should decrease the interaction time of the ed-
dies [Kraichnan, 1965], as can be seen as follows: If
TN is the time for the nonlinear term to change the
velocity substantially in the absence of magnetic fields
(as above), and if one assumes that the field is strong,
then Alfvénic propagation limits the interaction time
to 74 = 1/(kV,4) where Vy is the Alfvén speed, equal
to the applied field By in our units. It would take
TNL/Ta coherent interactions each of time 74 to pro-
duce the same change as 7y without the field, but if
we suppose that each interaction is independent of the
others, it will take (7nyz/7a)? interactions (N? steps
to move by N in a random walk). This means the
time for spectral transfer will be increased from 7nf,
to 7, = (74)(TnL/Ta)? = TNL(TNL/TA) SO that the cas-
cade rates will become smaller by 74/7nr. Thus, for
the standard Kraichnan phenomenology,

.
Mg, x —2Tg, = (1/Va)k*E} (6)
TNL
or
By, = AV, k% (7)

where A is the “Kraichnan constant.” This equation
predicts that a magnetofluid with a strong mean field,
such as the solar wind, will have a —3/2 spectral index,
contrary to solar wind observations (see above). Note
that the first part of (6) determines the relationship
between the fluxes in a self-similar inertial range for a
given wavenumber and power level; the actual spectral
levels will be determined for real cases by the energy in-
put at large scales [Hossain et al., 1995; Matthaeus and
Zhou, 1989] or by a relaxation from initial conditions
[Tu et al., 1984; Tu, 1988].

The nonlinear times for the Elsésser variables are
T, = 1/(k*EF)1/2 because, according to (3), it is z*
that convects z~ and visa versa. This gives, for small
By and thus large 74,

= kEp _ 5/2 k[ E\1/2
KoO(TT_k E; (EY) (8)
NL
Assuming, for simplicity (and in accord with observa-
tions for well-developed spectra [e.g., Tu et al., 1990],

as well as the simulations below), that the spectra E,:f
have the same power law, this becomes
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B = OISR, 2K, (9)
For small normalized cross helicity o, = (E*—E~)/(Et+
E~) we expect C* ~ C~, and as a test of the simplest
case, we will make predictions with this always the case.

When the Alfvénic decorrelation time is small, by the
same reasoning as above,

T. -
—A Tk, = A"2(1/VA)K*E} E;

+ _
HK'r -
TNL

(10)
which, under the assumption of the same power laws for
the two species of fluctuations, gives the same spectral
equation as before because the cascade rates of 2% are
always the same as each other. (We ignore the possibil-
ity of differing A%, as with C*.) By contrast, from (9)
we find (with Ct = C™)

m-\2

o+) -

which implies unequal cascade rates whenever the spec-
tra of z* differ in amplitude. We will also use this equa-
tion to test whether the predictions of the Kolmogoroff-
like model agree with simulation results. Dobrowolny et
al. [1980a, b] were the first to make the arguments for
cascade rates involving cross helicity, and they used (10)
for cascade rates to argue that solar wind fluctuations
will have increasing cross helicity if they are predomi-
nantly of one sign initially (“dynamic alignment”). This
does not occur in the solar wind due to the small cross
helicity at large scales [Roberts et al., 1987, 1992].

Matthaeus and Zhou [1989] and Zhou and Matthaeus
[1990] generalized the Kolmogoroff-like and Dobrowolny
et al.’s generalized Kraichnan model and obtained

E~ (k)

(11)

E+(k)

[t _ ATZEY(RE-(RF°
© Ca+VEEF(k)

Matthaeus and Zhou’s model leads to Kolmogoroff-like
or Kraichnan-like models in the limits mentioned above.
We will only consider the limiting cases here; consider-
ation of intermediate cases does not change the basic
results. Grappin et al. [1982, 1983] generalized Kraich-
nan’s model using Eddy-Damped Quasi Normal Marko-
vian (EDQNM) closure calculations. They found that
m+* +m~ = 3 where Ef = D*k~™" . The difference
in the two slopes is probably quite small except when
the cross helicity and Reynolds numbers are very high.
Such cases will be left for future work.

(12)

Simulations

A number of researchers have performed numerical
simulations and compared the results with the spectral-
index predictions from the above mentioned models.
Biskamp and Welter [1989)], using 1024 x 1024 mode sim-
ulations, found spectral indices close to —3/2. However,
they also observed that the indices are approximately
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—5/3 in states in which turbulence concentrated in re-
gions of weak magnetic field. Pouguet et al. [1988] and
Politano et al. [1989] found that at low normalized cross
helicity, it was difficult to discriminate between k—5/3
and k~3/2 energy spectra; however, as the cross helicity
increased, the spectral indices m* and m~ of E* and
E~ became somewhat different but their sum remained
close to three.

Since —5/3 and —3/2 are difficult to distinguish, here
we numerically study the energy cascade rates in two
and three dimensions and compare them with the pre-
dictions of the models. Most of the runs were per-
formed in two dimensions because of the expense as-
sociated with large three-dimensional runs. The above
phenomenological arguments do not depend on dimen-
sionality, and general arguments predict a forward cas-
cade of total energy in both two and three dimensions
[Matthaeus et al., 1984; Matthaeus and Montgomery,
1984], so that restricting most of our analysis to two di-
mensions should not significantly affect our conclusions.
However, some quantitative differences are expected in
two and three dimensions; for example, the constants
C* may depend on dimensionality, and we plan to con-
tinue our studies of the three-dimensional case.

We solve the incompressible MHD equations (1) —
(3) using a pseudospectral method with introduction
of hyperviscosity and hyperrestivity [e.g., Biskamp and
Welter, 1989]. The viscous and resistive terms added
to the momentum and induction equations are

v <V2u + Elg—qV‘lu) (13)
A (V2B + L viB (14)
k2,

The viscous and resistive terms thus have a higher or-
der wavenumber dependence; the hyperviscous term
v(k*/k2,)u becomes dominant only at large wavenum-
bers (k > k.q) and forces the energy spectra to become
small at these wavenumbers. This minimizes aliasing
and ensures the development of a clearly discernible in-
ertial range. In two dimensions we choose v = 5.0x107°
and keg = 10.0 which yields Reynolds numbers (given
simply by the inverse of the multiplier of k? in the dis-
sipation term in wavenumber space) of approximately
2 x 10% at large scales and 500 at small scales. In three
dimensions v = 5.0 x 1078, but k., = 2.0, which im-
plies that the Reynolds number at the largest scales is
about 2 x 10%, but at small scales it decreases to 200.
Note that, as shown below, the dissipation scales are
nonetheless resolved and the dissipation term is domi-
nant at high k; this discrepancy is due to the misleading
nature of a freqeuntly used definition of the Reynolds
number (see the discussion of this point by Ghosh, et al.
[1996]). The maximum resolution of our simulation in
2-D is 5122, whereas in 3-D it is 1283. The runs we con-
sider have (By,o.) = (0, 0), (0, 0.25), (0, 0.9), (1, 0), (1,
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Table 1. Comparison of IT* From the Simulations With the
Predictions From the Turbulence Phenomenologies.

Run Hsz’m HKO/Hsim* HKT/Hsim* (E- /E+)
By o, + - + -  + -  (O-/Ih)?
0 0.00 0.015 0.020 0.82 0.79 1.00 0.75 1.0
1 0.00 0028 0032 111 112 223 195 1.0
0 025 0015 0.010 0.90 090 050 0.75 1.0
1 025 0040 0.030 133 126 1.75 233 0.9
5 025 0.060 0040 085 1.1 011 0.16 1.7
0 0.90 0.028 0.002 050 1.74 0.19 2.39 11
1 090 0.033 0004 066 157 042 3.50 5.9
5 090 0045 0.015 1.00 0.93 004 0.11 0.9
0 0.25°P 0.021 0006 094 1.09 0.19 0.66 1.4

* For the Kolmogoroff-like model, the constant C' = 6.7 for 2-D
and 3.6 for 3-D. For the generalized Kraichnan model A = 2.0.

0.25), (1, 0.9), (5, 0.25), (5, 0.9) in the two-dimensional
runs, and (0, 0.25) in three dimensions. (The o, values
are for T = 0.) In two dimensions the mean magnetic
field is in the plane of fluctuations.

The simulations were initialized with a block spec-
trum out to k = 4 in two dimensions for By = 0.0 and
1.0, and a k™! spectrum out to k¥ = 15 in the three-
dimensional run and in two dimensions for By = 5.0.
In these units, the initial magnetic and velocity fluctu-
ations have root-mean-square amplitudes of unity, and
thus By = 1 implies equipartition between mean field
. and fluctuating energy. The initial o, is shown in Ta-
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Figure 1. (a) E*(k)k® versus k for a 2-D run with
By = 0.0 and 0. = 0.0, and, (b), Bp = 1.0 and o, =
0.9. The solid (E*) and dashed (E~) correspond to
a = 5/3, and chained (E+) and dotted (E~) correspond
to a = 3/2.

ble 1. The kinetic and (fluctuating) magnetic energy
are chosen to be equal at ¢ = 0. We find that after ap-
proximately 10 eddy turnover times (defined in terms of
the initial velocity perturbation) the system reaches a
fully developed turbulent state, i.e., the energy spectra
E*(k) exhibit approximate power laws (see Figure 1)
with approximately constant inertial range fluxes across
a portion of the spectrum (Figure 2). We obtained the
spectral indices by fitting a straight line in the inertial
range, which we take to be where the spectrum is a
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Figure 2. (a) Cascade rates II*(k) versus k (solid for
plus and chained for minus) for a two-dimensional run
with By = 0.0 and o, = 0.0, and (b), the same quanti-
ties plotted for a run with By = 1.0 and 0. = 0.9. The
dashed lines are viscous dissipation rate, and the dotted
lines are the rate of energy loss in a sphere of radius K

in Fourier space given by —(9/0t) fOK E*(k,t)dk.
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power law and the flux is nearly constant, and found
that it was difficult to distinguish between the spectral
indices of —3/2 and —5/3. To calculate the energy flux
II* leaving a sphere of radius K in wavenumber space
from the simulation, we used

+ o % . -
I (K)=—&/O E (k,t)dk—Q/0 vgk*E*(k,t)dk,

~ (15)
where vg = vo[l + (k/keg)?]. The first term in the
right hand side is the rate of energy loss in the sphere,
whereas the second term is the negative of the viscous
dissipation rate in the sphere; the flux flowing out of the
sphere to neighboring wavenumbers is the sum of these.
In Figure 2 we show the flux II* versus k along with
the other two terms in the above equation. That the
energy fluxes are very approximately constant in the
intermediate range of k and are equal to the overall dis-
sipation rates shows that the simulations are consistent
with these phenomenologically assumed properties and
indicate a quasi-steady state cascade. Because there is
no forcing, this situation is not a true cascade, but it
does reflect the situation in the solar wind. However,
note that because of the low resolution and the inherent
randomness of the flow, the relative fluctuation in the
inertial range flux determined by averages at neighbor-
ing time steps is as much as 25%, hence the error in
results is approximately 25%. The values used for the
simulation quantities in Table 1 were found from taking
averages in time and wave number for the wavenumbers
where fluxes and slopes were judged to be sufficiently
constant. No detailed fitting procedure was used since
there were no obvious simple criteria for achieving this.
As will be seen, the errors involved in this procedure
have no effect on the conclusions of this study.

We now compare the predictions of energy fluxes
by MHD turbulence phenomenologies with the simula-
tion results computed at times corresponding to Fig-
ures 1 and 2 (T = 10 — 13). Table 1 contains en-
ergy fluxes, the ratios of predicted (Ilx, and Ilk,) to
simulated (Ilg;,) energy fluxes with cascade constants
chosen to give good agreement at low o., and the ra-
tio (Ej /E;)/(II-/II*)? from the simulations. In our
simulations the mean magnetic field (or the magnetic
field of the largest eddies for the Kraichnan-like case
with By = 0) were at least ~ 1, whereas the ampli-
tudes of the largest z* fluctuations in the inertial range
(k > 10) were 0.2 to 0.5 (the initial fluctuating magnetic
and kinetic energy were 0.5 in dimensionless units).
Hence 2* < C4, and according to the assumptions of
the phenomenological models, we expect the general-
ized Kraichnan model to be applicable with ITT ~ I1~.
However, the simulation results show that the flux of
the majority species (greater of Et and E~) is always
greater than that of the minority species (see Table 1).
Therefore the predictions of the Kraichnan-like model
are inconsistent with the numerical simulations even for
Cy ~ 102t (By =5 in Table 1).
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The Kolmogoroff-like phenomenology predicts that
(see (11)), (E; /EF)/(II=/II*)? = 1. Our numerical
results (see Table 1) are consistent with this prediction
for low cross helicity. However, for large o, the equality
does not hold in the simulations, indicating an inconsis-
tency with the Kolmogoroff-like phenomenology when
o. is large, although this model’s predictions for IT*
are generally within a factor or two of the simulations.
Overall, our results indicate that for large o, none of
the phenomenologies work well. For relatively large av-
erage magnetic fields (By = 5.0), the Kolmogoroff-like
phenomenology appears to be closer to the truth, even
for large o.. This is surprising because the larger the
average magnetic field, the more accurate Kraichnan’s
model should be. At present, it is not clear at what
value of V4 /2% Kraichnan’s model might become appli-
cable, if any (but see the discussion by Matthaeus and
Zhou [1989]). We find that the mean field suppresses
the cascade rate much less than predicted, even in two
dimensions; perhaps this is due to preferential couplings
transverse to the magnetic field [Shebalin et al., 1983;
Carbone and Veltri, 1990; Oughton et al., 1995; Hossain
et al., 1995]. Both models underestimate the cascade
rate of the majority species. Correcting this requires
more than a change in the cascade constant because
the two species behave differently, and thus this implies
that the “constants” must depend on both the species
and the net o.. For the relatively low resolution three-
dimensional simulation with o, = 0.25, we found that
the Kolmogoroft-like phenomenology worked well with
Ckg = 3.6.

For completeness, we note that the fluctuating energy
decays by about 50% in the runs with low cross helic-
ity and by only 20% in those with high cross helicity.
The decay is somewhat faster in cases with a small By,
but this effect is much smaller than the effect of the
cross helicity. The magnetic and kinetic enstrophies
(the mean of the square of the current and vorticity,
respectively) both increase by at least an order of mag-
nitude in all cases, implying the strong development
of small-scale structures. The increase in enstrophies
is initially quite rapid, and it is followed at late times
by a very slow decay such that the final state in the
run still has high enstrophies. The value of o, remains
low for the cases starting with o, = 0, whereas it in-
creases somehwat for the nonzero initial cross-helicity
cases. The o, = 0.9 case becomes nearly “dynamically
aligned” with o, near 1 (e.g., 0.98). The implications
of this wil be left for other work.

Conclusions

From our simulations it is not possible to distinguish
between spectral indices of —5/3 and —3/2. The cas-
cade rate studies, however, provide additional insights
into MHD turbulence phenomenologies. For small o,
the cascade rates of the majority species are greater
than those of minority species, and agree better with the
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Kolmogoroff-like MHD turbulence phenomenology than
with the Kraichnan-like model even when 2+ <« Cy.
These results are contrary to the assumptions of the
existing phenomenologies, but are in agreement with
the solar wind observations which show k~%/3 energy
spectra although 2+ < C,4. (Intermittency may affect
the spectral slopes in this case, but it is difficult to be-
lieve that the very close agreement with =%/ found for
data sets carefully selected to be stationary [Matthaeus
and Goldstein, 1982] are the result of a precise change
from k~3/2 due to intermittency.) The superiority of the
Kolmogoroff-like compared to the Kraichnan-like mod-
els is also found for the decay of the energy containing
scales [Hossain et al., 1995]. From the simulation re-
sults we calculate the Kolmogoroff’s constant for MHD
turbulence and find that for small o, it is approximately
6.7 in two dimensions and 3.6 in three dimensions. For
large o, however, none of the existing phenomenologies
can account for the simulation results, indicating that
modifications to the existing models are required.

Recently, Verma and Bhattacharjee [1996] have cal-
culated C* using the Direct Interaction Approxima-
tion (DIA) under the assumption that the energy spec-
tra E*(k) follow the Kolmogoroff-like phenomenology.
They showed that the constants C* are not univer-
sal, but depend on the Alfvén ratio (ratio of kinetic
and magnetic energy) and the normalized cross helic-
ity. For small o, they find that C =~ 5.4 in two dimen-
sions and C =~ 4 in three dimensions, in fairly good
agreement with the values found here. Preliminary
DIA calculations with larger o, show that C~ > C*
if Et(k) > E~(k), similar to what we find in our sim-
ulations. The DIA results for large mean fields are not
in agreement with the simulations, and the reason for
this is not yet known. The difficulty of performing these
calculations for a sufficiently broad parameter range has
precluded, thus far, a complete calculation of a new phe-
nomenology.

The above considerations apply to quasi-steady state
turbulence, whereas, in contrast to these simulations,
significant spectral evolution occurs in the solar wind
le.g., Tu and Marsch, 1995]. The simplest model for
nonsteady cases is to assume that the cascade rate is
determined by the steady rate associated with the level
of the turbulence in the relevant range in Fourier space
and to use this to find the changes in the spectrum with
time (see Goldstein et al. [1995] for a discussion and ref-
erences). Simulations with more solar-wind-like initial
conditions than those in the present study [Roberts et
al., 1991] also show strong spectral evolution. While
these ideas have had some success, it remains to be de-
termined if the nonsteady cascades behave in the same
way as the steady ones. Simulations to test this are at
the outer limits of what is possible on present comput-
ers, and we plan to work in this direction. Efforts to
study solar wind heating due to turbulent cascades [Tu,
1988; Verma et al., 1995] have shown promise, but de-
tailed predictions require refinement of the present de-
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velopment. In particular, Verma et al. [1995] find that
Kolmogoroff-like phenomenology provides a better de-
scription of the temperature evolution in the solar wind
than does the Kraichnan-like, but that neither is wholly
adequate. If the nonsteady cases can be treated suc-
cessfully by a general phenomenology developed from
quasi-steady state simulations, then we will be able to
predict with confidence the role of turbulent heating in a
wide variety of situations, from solar loops, to the outer
heliosphere, to more distant astrophysical objects.
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