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Computation of Kolmogorov's Constant in 
Magnetohydrodynamic Turbulence. 

M. K. VERMA and J. K. BHATTACHARJEE 
Department of Physics, Indian Institute of Technology - Kanpur 808016, India 

(received 23 November 1994; accepted in final form 27 June 1995) 

PACS. 47.65 + a - Magnetohydrodynamics and electrohydrodynamics. 
PACS. 47.27Gs - Isotropic turbulence; homogeneous turbulence. 
PACS. 52.35 - g - Waves, oscillations, and instabilities in plasma. 

Abstract. - In this paper we calculate Kolmogorov's constant for magnetohydrodynamic 
turbulence to one-loop order in perturbation theory using the direct-interaction approximation 
technique of Kraichnan. We have computed the constants for various E " ( k ) / E b ( k ) ,  i .e.  
fluid-to-magnetic energy ratios when the normalized cross helicity is zero. We find that K 
increases from 1.47 to 4.12 as we go from the fully fluid liquid case ( E  * = 0) to a situation when 
E U / E b  = 0.5, then it decreases to 3.55 in a fully magnetic limit (E" = 0). When E u / E b  = 1, we 
find that K = 3.43. 

Kolmogorov [ l ]  hypothesized that the energy spectrum E ( k )  of fluid turbulence in the 
inertial range (i.e. length scale intermediate between the energy feeding and energy 
damping ranges) is a power law with a spectral index of - 513, i.e. 

E(k) = KKo172/3k-5/3 , (1) 

where KKo is a universal constant called Kolmogorov's constant, k is the wave number, and I7 
is the non-linear cascade of energy which is also equal to the dissipation rate of the 
fluid. 

The calculations based on direct-interaction approximations [2,3], renormalization group 
technique [4], self-consistent mode coupling [5] etc. show that KKo = 1.5 in three dimensions 
(3D). However, in two dimensions (2D) Kraichnan [2], Olla[6], and Nandy and Bhatta- 
charjee [7] show that KK,, = 6.4 in the region where inverse cascade of energy occurs. 
Experiments and numerical simulations [8] yield constants approximately equal to those 
predicted by the above calculations. 

Magnetohydrodynamic (MHD) turbulence is more complex than the fluid turbulence. In 
MHD there are the velocity field U and the magnetic field B = Bo + b ,  where Bo is the mean 
magnetic field and b is the fluctuation in the magnetic field. It is customary to use Elsasser 
variables zL = U ? b/& that can be interpreted as AlfvBn waves having positive and 
negative velocity and magnetic-field correlations, respectively. Here ,K is the density of the 
magnetofluid. In this paper we assume incompressible approximation which in most of the 
situations corresponds to a constant density of the fluid. Matthaeus and Zhou, Zhou and 
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Matthaeus, and Marsch [9] constructed a phenomenology when z ' >>Bo 1% where Bo is 
the mean magnetic field or the magnetic field of the largest eddies. In this phenomenology, 
the energy spectra E' (k) of z ' fluctuations are proportional to  k -5/3 and 

where K' are constants, which we will refer to as Kolmogorov's constants for MHD 
turbulence, and 17 ' (k) are the non-linear cascade rates of x ' fluctuations, respectively. The 
normalized cross helicity gC (strictly speaking, spectral normalized cross helicity), defined as 
(E  + (k) - E - ( k ) ) / (E  + (k) + E - (k)), plays an important role in MHD turbulence. In this 
paper, however, we restrict ourselves to zero-normalized cross helicity where, by symmetry, 
II+ = 17- and K +  = K -  = K.  This choice of uc is motivated by the simplicity of the 
calculation and by the fact that in the solar wind most of the fluctuations in the outer 
heliosphere (beyond the Earth) and some of them in the inner heliosphere (from Sun to 
Earth) have negligible gC. There is another important energy called residual energy E R  
defined as the difference between the kinetic ( E " )  and magnetic ( E b )  energies. Note, 
however, that the residual energy is not conserved while both E +  and E -  axe conserved. 

In the other limit, when x ' <<Bo/*, Kraichnan and Dobrowolny et al. [lo] argued 
that 

where A is a constant called Kraichnan's constant. 
The solar-wind observations indicate that it exhibits MHD turbulence. The energy spectra 

of the solar wind has been found to  be closer to k -5/3 than to k -3/2 [ll]. However, it should be 
noted that these exponents are difficult to distinguish. Recently, we have performed direct 
numerical simulations of MHD turbulence [121 in which we could not conclude whether the 
spectral index was 513 or 312. However, the non-linear energy cascade rates 17' appear to 
follow eq. (2) rather than eq. (3). Motivated by the above-mentioned solar-wind observations, 
in this paper we assume that the energy spectra E ' (k) obey Kolmogorov-like phenom- 
enology (eq. (2)) for x ' > Bo. 

We determine for the fwst time the constant K associated with the Kolmogorov spectrum 
in MHD turbulence. To this end, we attempt to find K of eq. (2) using a perturbative 
technique similar to DIA (see Fournier et al. and Camargo and Tasso [13] for the application 
of renormalization group techniques to MHD). In this paper we only discuss the situations 
when E +  (k) = E -  (k) and Bo = 0. However, we vary E " / E b  from 0 to C O ,  i.e. from the 
magnetic case to the fully fluid case. The computation of K' when E - ( k ) /E  + (k) is different 
from unity and when Bo is non-zero is under progress; forthcoming results will be presented 
elsewhere. 

The MHD equations in terms of x ' , in the absence of Bo,  are given by [lo] 

d 
dt 
- Xi' (k, t )  + v + k2Xi' (k, t )  + v - k%iT (k, t )  = 
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where 

v is the kinematic viscosity, c is the speed of light, 5 is the conductivity,f' are the forcings, 
and E is the expansion parameter which is set to  one at the end. We assume in4ependent 
forcing of x * , i .e .  af"1/8f 82 = 8s1s2, where sl, s2 = 2 .  We solve for self-energy Z (a 2 x 2 
matrix), which is defined as 

G = G o  - Go2G , 
- ^ ^  

( 6 )  

to frst order using the technique of Wyld [14] and Leslie [3] (the details of the calculation will 
be presented in[15]). In our calculation we postulate the frequency dependence of the x-x  
correlation functions as [3] 

where vk+ and rj;  are the reciprocal of the mean response time of xk+ and z; fluctuations, 
respectively. The self-energy can be written as the following 2 x 2 matrix: 

dp dw' [ bl (k, p ,  q)(G ' ' ( p ,  w')  + G ' ( p ,  U')) CR(k - p ,  0 - U ' )  t 
w-0 2 

+ b,(k, p ,  q)(G ' ' ( p ,  w ' )  t G ' ( p ,  U')) C T  (k - p ,  - 0') + 

where G is the Green's function, bi(k, p ,  q )  = k- 'Bi(k ,  p ,  q),  and B[s are the functions of 
(x, y, z ) ,  the cosines of the angles between ( p ,  q ) ,  (q ,  k) and ( k , p ) ,  respectively; Bifs are 
given in the appendix of [3]. Substituting 5 of (8) in eq. (6) and ignoring kinematic viscosity 
and resistivity as compared to  i / k 2  yields E :  

- i w  1 - / 2  t 1 + / 2  1- - i w  + r j + / 2  

7 - / 2  i 1 G(k, 0) = 
-w(w + i(?+ t 1 - ) / 2 ) )  

Note that when C +  (k) = C -  (k) = CR (k), i .e. when the magnetic energy is zero, the above 
equations yield 1 + = r j  - = ?fluid. 

As mentioned earlier, in this paper we restrict ourselves to situations when C +  (k) = 
= C -  (k) = C(k) and assume the Kolmogorov scaling law, i.e. E ( k )  are proportional to k -5 /3 .  In 
this situation qk+ = s j ~  by symmetry. Since the energy spectra E@), which are equal to  
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C ( k ) / (  4xk2) ,  are proportional to k - ’ I 3 ,  the correlation functions C * ( k )  and self-energies will 
be [31 

where A is a constant. We denote the ratio CR/C by U .  Using the above quantities and with 
the change of variables p = Ck and q = Kk, we obtain 

-1113 

- A 2  = - 1 IdCdKC k - 2 .  
K 4  ( C 2 1 3  + K 2’3) 

The integrals of eq. (12) suffer from the well-known ((infrared problem. which comes from the 
strong dynamic coupling of fluctuations with widely differing wave numbers. Over the years, 
various techniques have been developed to tackle the difficulty in the context of pure fluid 
turbulence. The earlier methods (essentially the introduction of a cut-off) are discussed in [3 ] .  
Later work involving either renormalization group technique [4 ] ,  or the Lagrangian or 
semi-Lagrangian pictures [ 161, or self-consistent screening [5] shows how the theory can be 
made naturally finite and cut-off independent. The infrared difficulties associated with 
eq. (12) can be similarly avoided. Knowing that the full theory is constrained to be finite, we 
adopt the practical procedure of evaluating the integral in eq. (12) with a cut-off ko = Ak and 
choosing E, = 1 so that the pure fluid values of A 2 / K  are obtained correctly when a = 1 .  
Thereafter A is not varied. With this procedure we obtain A 2 / K  as a function 
of a. For some of the characteristic values of a,  A 2 / K  is listed in table I. 

To obtain the numerical value of K we need another equation involving A and K .  To this 
end, we derive an expression for the energy cascade rate 17 in terms of correlations C ( k )  and 
Green’s functions G ( k ) .  Following an approach similar to that of Leslie [3 ] ,  when C +  ( k )  = 
= C -  ( k )  = C(k) ,  we obtain 

($ + 2 v + k 2  E ( k ) + 2 v - k 2 E R ( k ) = T ( k , t ) .  ( 12) i 
Using T ( k ,  t )  we can write an expression for the energy cascade rate, which is 17 = 

= - f d k ’ T ( k ’ ,  t ) .  Substitution of C’s and 9’s and change of variables k’ = k / u ,  p = w(k/u) ,  

TABLE I. - Kolmogorov’s constant K of MHD turbulence for various values of a = E R I E  (assuming 
E +  = E - ) .  The symbols E ,  E R ,  E U ,  E b  denote the total energy, residual energy, kinetic and magnetic 
energy, respectively. 

0 

E R I E  E u / E b  A 2 / K  A/K2 K 

1 00 

0 1 
- 113 112 
- 213 115 
- 1  0 

0.114 
0.176 
0.197 
0.218 
0.239 

0.190 
0.066 
0.053 
0.056 
0.073 

1.47 
3.43 
4.12 
4.11 
3.55 

02D 1 0.070 0.021 5.41 
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and q = w(k/u) yield an expression for A / K 2 ,  that is 
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(13) 

where 

1 
4 

~ ( 1 ,  v, w) = -W(I + v2/3 + ~ ~ / ~ ) - l [ b ~ ( 1 ,  v, w)w-ii/3((1 + a2)v-l1l3 - 2a) + (1 + a 2 ) .  

. b 2 ( 1 ,  W, v ) ~ - ~ l / ~ ( w - l l / ~  - 1) - 2av3(1, w, w ) w - " / ~  - (1 + a2)b4(1 ,  v, w ) v - " / ~ ] ,  (14) 

and v* = max(v, 11 - V I ) .  See table I for A/K2  for various values of a. 
We calculate K from A 2  / K  and A / K 2 .  The values of K for various values of a are listed in 

table I. We have also calculated the constant K in 2D. In 2D when E " = E b ,  we choose A = 1, 
the same as in 3D, but not 0.065 which yields K = 6.6 in the fluid limit. The choice of the same 
A in 2D MHD was motivated by the fact that in MHD turbulence, forward cascade of energy 
and inverse cascade of cross helicity occur in both 2D and 3D [17]. Note that the behaviours of 
fluids turbulence in 2D and in 3D are dramatically different. 

The results presented in this paper are in good agreement with the simulation results of 
Verma et al. [12] (K = 3.7 in three dimensions for E - / E  + = 0.6, and average K = 6.6 in two 
dimensions for E - / E  + = 1, 0.6). In 3D simulation, however, only a single run with a 
relatively lower resolution ( 1283) was performed. We need to perform more runs to come to a 
definite conclusion. 

We find that K monotonically increases from 1.47 to 4.12 as we go from the fully fluid case 
( E R  = E )  to a situation when E R I E  = - 113, i.e. E U / E b  = 0.5, then it decreases and finally 
reaches 3.55 in the fully magnetic limit ( E R  = -E).  The maxima of K occurring for E" / E  = 
= 0.5 is a curious result because the average E" / E  for the solar wind in the outer heliosphere, 
where E + = E - is a good approximation, is 0.5. Note that maximum K corresponds to 
minimum energy dissipation, hence it appears as if the solar wind is settling to a minimum 
dissipation state. Further investigation in this direction could possibly yield interesting 
results regarding minimum dissipation states. 

Recent temperature evolution studies of solar-wind plasma show that turbulent heating in 
the solar wind can account for the observed temperature evolution when K = 1.0 for 
non-Alfvhic streams (streams for which E + = E - )  [la]. In the inner heliosphere, where the 
solar wind is fluid dominated, the turbulent heating is possibly the major heating mechanism. 
However, in the outer heliosphere, since K is in the range of 3 to 4, turbulent heating could 
account for only 20-25% of the total dissipation; the rest of the dissipation should be provided 
by other sources, e.g., shock heating, stream-stream interactions, etc. 

To conclude, we have calculated Kolmogorov's constant for MHD turbulence for zero 0, to 
one-loop order using a perturbative technique similar to the direct-interaction approximation 
of Kraichnan. We find that in the fluid-dominated case, K = 1.5-2, but as magnetic energy 
increases, K increases as well and reaches a maximum value of 4.12 when E b  = 2 E U ,  then it 
decreases and reaches 3.55 for a fully magnetic case. These results are consistent with the 
recently performed simulation results and also shed light on the evolution of the E " / E  ratio 
and temperature in the solar wind. 

* * *  
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