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The cascade rate of passive scalar and Bachelor’s constant in scalar turbulence are
calculated using the flux formula. This calculation is done to first order in perturbation
series. Batchelor’s constant in three dimension is found to be approximately 1.25. In
higher dimension, the constant increases as d1/3.
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1. Introduction

Perturbative field-theoretic techniques have been very useful in turbulence research.

One of the celebrated field-theoretic method, renormalization groups (RG), has

been applied to fluid turbulence,1–3 scalar turbulence,2,4 MHD turbulence5 etc. In

RG analysis, one can calculate the renormalized parameters at large length scales.

In addition to RG, one can also apply the field-theoretic techniques to calculate

turbulent cascade rates.5,6 In this paper we will calculate the cascade rates of passive

scalar using perturbative technique. From this calculation we can also calculate

Batchelor’s constant, which is very important for large-eddy simulations.

The study of passive scalar is one of the important areas in turbulence research.

It finds application in evolution of temperature field, pollution diffusion, etc. The

phenomenology of passive scalar is well developed,6 and their predictions are in

agreement with the experimental results. According to the phenomenology, the

energy spectrum of both velocity field u and scalar field ψ in the inertial-convective

range are proportional to k−5/3. Note that in the inertial-convective range both the

nonlinear terms u · ∇u and u · ∇ψ dominate the viscous term. However, there exist

two other ranges depending on the value of Prandtl number (the ratio of viscosity

and diffusivity). In this paper we will only focus on inertial-convective range.

Regarding the calculation of renormalized viscosity and diffusivity for pas-

sive scalar admixture, Yakhot and Orszag2 adopted ε-expansion, while Zhou and

Vahala,4 and Lin et al.’s7 procedure is recursive based on the original idea of Mc-

Comb and his group (Ref. 3 and reference therein). Adzhemyan et al.8 used De
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Dominicis and Martin’s9 procedure for fluid turbulence to passive scalars and com-

puted the renormalized parameters. Earlier, Wyld10 had given a perturbative ex-

pansion of Navier–Stokes equation. Canuto and Dubovikov,11 and Canuto et al.12

started with Wyld’s formalism and computed the renormalized diffusivity for pas-

sive scalar; they also computed Batchelor’s constant.

Turbulence cascade rates or fluxes play important role in turbulence calcula-

tions. It is a measure of transfer of a certain quantity from inside of a wavenumber

sphere to the outside wavenumber sphere. In fluid turbulence, Kraichnan13 applied

direct interaction approximation and calculated the flux. Later, the cascade rates

have been calculated by many researchers using various techniques, e.g. Eddy–

Damped–Quasi–Normal–Markovian (EDQNM) closure scheme, RG, etc. Here we

are interested in the cascade rate of passive scalar. This cascade rate quantifies how

scalar fluctuations at large length-scales diffuse to small length-scales.

In this paper we apply perturbative techniques to calculate the cascade rate

of passive scalar. In our scheme the cascade rate of passive scalar is calculated

using the flux formula and the renormalized parameters. In Sec. 2 we recapitulate

the earlier RG calculation4 and extend their results to higher dimensions. In the

subsequent section we apply the perturbative technique and calculate the cascade

rate in the inertial-convective range to first order. The final expression involves

energy spectrum for which we substitute k−5/3 obtained from the phenomenology.

From this procedure we also calculate Batchelor’s constant. We have extended our

calculations to higher space dimensions, because higher-dimensional field theory

usually provide important insights into the nature of nonlinear interactions.14

The outline of the paper is as follows: in Sec. 2 we provide the definitions

and recapitulation of the renormalization procedure for passive scalar. In Sec. 3, we

carry out the calculation of flux of passive scalar and Batchelor’s constant. Section 4

contains conclusions.

2. Renormalization of Viscosity and Diffusivity Revisited

Earlier calculations of renormalization in scalar turbulence have been carried out by

Yakhot and Orszag,2 Zhou and Vahala,4 and Lin et al.7 In this section we recapit-

ulate very briefly Zhou and Vahala’s calculation for passive scalar and extend their

results to higher dimensions. Zhou and Vahala’s calculation is based on recursive

scheme proposed by McComb and his coworker (Ref. 3 and references therein). The

equations for the velocity u and passive scalar ψ fields in Fourier space are

(−iω + νk2)ui(k̂) = − i
2
Pijm(k)

∫
dp̂ uj(p̂)um(k̂ − p̂) (2.1)

(−iω + κk2)ψ(k̂) = −ikj
∫
dp̂ uj(p̂)ψ(k̂ − p̂) (2.2)
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with

Pijm(k) = kjPim(k) − kmPij(k); (2.3)

Pim(k) = δim −
kikm

k2
; (2.4)

k̂ = (k, ω); (2.5)

dp̂ =
dpdω

(2π)d+1
. (2.6)

Here ν and κ are the viscosity and diffusivity respectively, p is the fluid pressure,

and d is the space dimension. We have assumed that the flow is incompressible, i.e.

kiui(k) = 0.

In the recursive RG procedure the wavenumber range (kN , k0) is divided loga-

rithmically into N shells. The effective parameters are obtained by eliminating the

high wavenumber shells iteratively. We denote the higher wavenumber shells by k>

and the remaining wavenumber region by k<. In this procedure the field variables

u>i (k̂) and ψ>(k̂) are assumed to be Gaussian with zero mean, and

〈u>i (p̂)u>j (q̂)〉 = Pij(p)Cu(p̂)δ(p̂+ q̂) (2.7)

〈ψ>(p̂)ψ>(q̂)〉 = Cψ(p̂)δ(p̂+ q̂) (2.8)

where Cu(p̂) and Cψ(p̂) are velocity and scalar correlation functions respectively.

If we denote ν(n) and κ(n) as viscosity and diffusivity respectively after the

elimination of n shells, then the elimination of the next shell yields the following

equations to the first order in perturbation:

(−iω + ν(n)k
2 + δν(n)k

2)u<i (k̂) = − i
2
Pijm(k)

∫
dp̂ u<j (p̂)u<m(k̂ − p̂) (2.9)

(−iω + κ(n)k
2 + δκ(n)k

2)ψ<(k̂) = −ikj
∫
dp̂ u<j (p̂)ψ<(k̂ − p̂) (2.10)

where

δν(n)(k) = − 1

(d− 1)k2
× 4�
�

(2.11)

δκ(n)(k) = − 1

k2

�
�. (2.12)

In the above Feynmann diagrams, the solid, wiggly (photon), and curly (gluon) lines

represent correlation function 〈uiuj〉, and Green functions Gu, Gψ respectively. The

filled circle represents (−i/2)Pijm vertex, while the empty circle represents −ikj
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vertex. The RG procedure adopted here is the same as that of Zhou and Vahala.4

Some of the notation used here is close to the that of MHD turbulence calculation

of Verma.5,15

The frequency dependence of the correlation function are taken as: Cu(k, ω) =

2Cu(k)<(Gu(k, ω)) and Cψ(k, ω) = 2Cψ(k)<(Gψ(k, ω)). With this assumption, the

expressions corresponding to the above Feynmann diagrams will be

δν(n)(k) =
1

(d− 1)k2

∫ ∆

p+q=k

dp

(2π)d
S1(k, p, q)

Cu(q)

ν(n)(p)p2 + ν(n)(q)q2
, (2.13)

δκ(n)(k) =
1

k2

∫ ∆

p+q=k

dp

(2π)d
S2(k, p, q)

Cu(q)

κ(n)(p)p2 + ν(n)(q)q2
, (2.14)

with

S1(k, p, q) = kp[(d− 3)z + 2z3 + (d− 1)xy] , (2.15)

S2(k, p, q) = kp(z + xy) , (2.16)

The quantities x, y, and z are defined by

x = −p · q
pq

; y =
q · k
qk

; z =
p · k
pk

. (2.17)

The effective viscosity and diffusivity after the elimination of (n+ 1) shell are

(ν, κ)(n+1)(k) = (ν, κ)(n)(k) + δ(ν, κ)(n)(k) . (2.18)

The spectrum Cu(k) can be written in terms of one-dimensional energy spec-

trum Eu(k) as

Cu(k) =
2(2π)d

Sd(d− 1)
k−(d−1)Eu(k) , (2.19)

where Sd is the surface area of d dimensional spheres. It is known that Eu(k) follows

Kolmogorov’s spectrum, i.e.,

Eu(k) = Ku(Πu)2/3k−5/3 , (2.20)

where Π is the kinetic-energy flux, and Ku is Kolmogorov’s constant for fluid tur-

bulence. Using the dimensional arguments we find that ν(n) and κ(n) have the

following forms:

(ν, κ)(n)(knk
′) = (Ku)1/2(Πu)1/3k−4/3

n (ν, κ)∗(n)(k
′) , (2.21)

with k = kn+1k
′(k′ < 1). The large-n limit of the ν∗(n)(k

′) and κ∗(n)(k
′) are expected

to be universal functions in the RG sense.

We solve for ν∗(n)(k
′) and κ∗(n)(k

′) iteratively using Eqs. (2.13), (2.14) and (2.18).

We take h = 0.7, and start with constant ν∗(0) and κ∗(0). We iterate the process till

ν∗(n+1)(k
′) ≈ ν∗(n)(k

′) and κ∗(n+1)(k
′) ≈ κ∗(n)(k

′), that is, till they converge. We find
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Table 1. The computed values of renormalized viscosity ν∗, diffusivity κ∗, turbulent Prandtl
number Prturb, Kolmogorov’s constant Ku and Batchelor’s constants Kψ for various space di-
mensions d.

d ν∗ κ∗ Prturb Ku Kψ

3 0.36 0.85 0.42 1.53 1.25

4 0.42 0.69 0.61 1.60 1.39

7 0.38 0.48 0.80 1.76 1.65

10 0.34 0.39 0.87 1.94 1.83

25 0.22 0.24 0.94 2.43 2.44

50 0.16 0.16 1.0 3.1 3.0

100 0.093 0.095 0.98 3.4 3.4

that the iteration process converges; the limiting value ν∗ and κ∗ are shown in

Table 1.

We can draw many interesting conclusions from the above results. Since the

scalar does not appear in the equation for u, ν∗ computed here is the same as that

obtained for fluid turbulence. In Table 1 we have listed the renormalized diffusivity

κ∗ and the turbulent Prandtl number Prturb. For d = 3, κ∗ = 0.85 and Prturb =

ν∗/κ∗ = 0.42. The above quantities vary a bit with the variation of h, but they

are roughly in the same range. The error in our estimate of the parameters is of

the order of 0.1. Our results are in the same range as those obtained by Zhou and

Vahala.4

We have also carried out the above analysis for higher space dimensions. The

calculated κ∗ and Prturb are listed in Table 1. For large d, ν∗ ≈ κ∗ ∝ d−1/2. The

d dependence is in the agreement with the finding of Fournier and Frisch for fluid

turbulence.16 The above result also implies that Prturb ≈ 1 for large d.

In two dimensions the scalars are not constrained to double energy-enstrophy

conservation like velocity field. The RG analysis for two-dimensional scalar turbu-

lence is beyond the scope of this paper.

3. Calculation of Cascade Rates

In this section we compute cascade rates of u and ψ, and Bachelor’s constant. To

this end we use the flux formulas and the renormalized parameters computed in the

previous section. The time evolution of correlation functions Cu and Cψ (defined

by Eqs. (2.7) and (2.8)) are given by6,17–19

(
∂

∂t
+ 2νk2

)
Cu(k, t, t) =

1

(d− 1)(2π)dδ(k + k′)

×
∫

k′+p+q=0

dp

(2π)d
[Suu(k′|p|q) + Suu(k′|q|p)] (3.1)
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(
∂

∂t
+ 2κk2

)
Cψ(k, t, t) =

1

(2π)dδ(k + k′)

×
∫

k′+p+q=0

dp

(2π)d
[Sψψ(k′|p|q) + Sψψ(k′|q|p)] (3.2)

where

Suu(k′|p|q) = −=([k′ · u(q)][u(k′) · u(p)]) , (3.3)

Sψψ(k′|p|q) = −=([k′ · u(q)][ψ(k′)ψ(p)]) . (3.4)

Here = stands for the imaginary part of the argument. Note that Eqs. (3.1) and (3.2)

have been discussed in the earlier literature, e.g., Lesieur6 and Stanĭsić.17 However,

reinterpretation of the terms S(k|p|q) by Dar et al.19 as energy transfer from mode

p (the second argument of S) to k (the first argument of S) with mode q (the third

argument of S) as a mediator makes the formalism more transparent and simple.

Also, some quantities which were impossible to calculate in earlier formalism could

be computed now.19 This interpretation of Dar et al. is consistent with the earlier

formalism.

The energy fluxes Πu and Πψ from a wavenumber sphere of radius k0 is19

Πu(k0) =

∫
k′>k0

dk′

(2π)d

∫
p<k0

dp

(2π)d
〈Suu(k′|p|q)〉 , (3.5)

Πψ(k0) =

∫
k′>k0

dk′

(2π)d

∫
p<k0

dp

(2π)d
〈Sψψ(k′|p|q)〉 . (3.6)

Note that there is no cross-transfer between u and ψ energy. It is also important to

note that both Cu and Cψ are conserved in every triad interaction, i.e.,

Suu(k′|p|q) + Suu(k′|q|p) + Suu(p|k′|q)

+Suu(p|q|k′) + Suu(q|k′|p) + Suu(q|p|k′) = 0 (3.7)

Sψψ(k′|p|q) + Sψψ(k′|q|p) + Sψψ(p|k′|q)

+Sψψ(p|q|k′) + Sψψ(q|k′|p) + Sψψ(q|p|k′) = 0 . (3.8)

These are the statements of “detailed conservation of energy” in triad interaction

(when ν = κ = 0).6

The energy fluxes can be calculated using Eqs. (3.5) and (3.6) by taking ensemble

averages of Suu and Sψψ. It is easy to check that 〈Suu〉 = 〈Sψψ〉 = 0 to the zeroth

order, but are nonzero to the first order. The field-theoretic calculation performed

here is very similar to Verma’s MHD flux calculation.18 Please refer to Verma’s
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paper18 for further details. The Feynmann diagrams for the first order of 〈S〉 are

〈Suu(k′|p|q)〉 =�
q

p

k

+�
q

p

k

+�
q

p

k

; (3.9)

〈Sψψ(k′|p|q)〉 =�
q

p

k

+�
q

p

k

. (3.10)

In the above Feynmann diagrams, the solid, dashed, wiggly (photon), and curly

(gluon) lines represent 〈uiuj〉, 〈ψψ〉, Gu, and Gψ respectively. In all the diagrams,

the left vertex denotes ki, while the filled circle and the empty circles of right vertex

represent (−i/2)Pijm and −ikj respectively. Algebraically,

〈Suu(k|p|q)〉 =

∫ t

−∞
dt′[T1(k, p, q)G

u(k, t− t′)Cu(p, t, t′)Cu(q, t, t′)

+T2(k, p, q)G
u(p, t− t′)Cu(k, t, t′)Cu(q, t, t′)

+T3(k, p, q)G
u(q, t− t′)Cu(k, t, t′)Cu(p, t, t′)] . (3.11)

〈Sψψ(k|p|q)〉 =

∫ t

−∞
dt′[T4(k, p, q)G

ψ(k, t− t′)Cψ(p, t, t′)Cu(q, t, t′)

+T5(k, p, q)G
ψ(p, t− t′)Cψ(k, t, t′)Cu(q, t, t′)] , (3.12)

where Ti(k, p, q)’s are given by

T1(k, p, q) = −kp((d− 3)z + (d− 2)xy + 2z3 + 2xyz2 + x2z) , (3.13)

T2(k, p, q) = kp((d− 3)z + (d− 2)xy + 2z3 + 2xyz2 + y2z) , (3.14)

T3(k, p, q) = kq(xz − 2xy2z − yz2) , (3.15)

T4(k, p, q) = k2(1− y2) , (3.16)

T5(k, p, q) = −kp(z + xy) . (3.17)

We assume the relaxation time for Cu(k) and Cψ(k) to be (ν(k)k2)−1 and

(κ(k)k2)−1 respectively, i.e.

Cu(k, t, t′) = exp(−ν(k)k2(t− t′))Cu(k, t, t) , (3.18)

Cψ(k, t, t′) = exp(−κ(k)k2(t− t′))Cψ(k, t, t) . (3.19)
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With this assumption, Eqs. (3.11) and (3.12) reduce to

Πu(k0) =

∫
k>k0

dk

(2π)d

∫
p<k0

dp

(2π)d
1

ν(k)k2 + ν(p)p2 + ν(q)q2

× [T1(k, p, q)C
u(p)Cu(q) + T2(k, p, q)C

u(k)Cu(q)

+T3(k, p, q)C
u(k)Cu(p)] (3.20)

Πψ(k0) =

∫
k>k0

dk

(2π)d

∫
p<k0

dp

(2π)d
1

κ(k)k2 + κ(p)p2 + ν(q)q2

× [T4(k, p, q)C
ψ(p)Cu(q) + T5(k, p, q)C

ψ(k)Cu(q)] . (3.21)

For Cu(k) we substitute Eqs. (2.19) and (2.20), while for Cψ we substitute6

Cψ(k) =
2(2π)d

Sd
k−(d−1)Eu(k) , (3.22)

Eψ(k) = KψΠψ(Πu)−1/3k−5/3 , (3.23)

where Kψ is called the Batchelor’s constant. The renormalized viscosity and diffu-

sivity in the inertial range are

ν(k) = (Ku)1/2(Πu)1/3k−4/3ν∗ (3.24)

κ(k) = (Ku)1/2(Πu)1/3k−4/3κ∗ . (3.25)

The substitution of the above quantities, and the change of variables

k =
k0

u
; p =

k0

u
v; q =

k0

u
w (3.26)

yield the following nondimensional version of the flux equations16:

1 = (Ku)3/2

[
4Sd−1

(d− 1)2Sd

∫ 1

0

dv ln

(
1

v

)∫ 1+v

1−v
dw(vw)d−2(sinα)d−3Fu(v, w)

]
(3.27)

1 = Kψ(Ku)1/2

[
4Sd−1

(d− 1)Sd

∫ 1

0

dv ln

(
1

v

)∫ 1+v

1−v
dw(vw)d−2(sinα)d−3Fψ(v, w)

]
(3.28)

where α is angle between vectors p and q, and the integrals Fu,ψ(v, w) are

Fu =
1

ν∗(1 + v2/3 + w2/3)
[t1(v, w)(vw)−d−

2
3 + t2(v, w)w−d−

2
3 + t3(v, w)v−d−

2
3 ]

(3.29)

Fψ =
1

κ∗(1 + v2/3) + ν∗w2/3
[t4(v, w)(vw)−d−

2
3 + t5(v, w)w−d−

2
3 ] . (3.30)

Here ti(v, w) = Ti(k, kv, kw)/k2.
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The terms in the square brackets of Eqs. (3.27) and (3.28) (denoted by Iu,ψ)

involve integrals. We compute them using Gaussian quadrature. The integrals con-

verge for all dimensions d ≥ 2. Once the integrals are known, Kolmogorov’s and

Batchelor’s constants (Ku and Kψ respectively) can be computed. The computed

values are given in Table 1.

In our calculation Batchelor’s constant Kψ in three dimension is 1.25. Due

to uncertainties in the value of ν∗ and κ∗, the error in the constant could be of

the order of 0.1. Earlier, Kraichnan had estimated the constant to be 0.2. Yakhot

and Orszag2 obtained Kψ = 1.16 by their ε-based renormalization group analysis.

Canuto and Dubovikov11 and Canuto et al.12 estimated Kψ = (5/3) ∗ 0.72 = 1.2

using their RG calculation. Lin et al.7 find the constant to be close to 0.3. Our

result is in very good agreement with the theoretical predictions of Yakhot and

Orszag2 and Canuto et al.,12 as well as to the experimental values (≈ 1.2− 1.4, see

Monin and Yaglom20).

It is also interesting to note that both Ku,ψ are proportional to d1/3, consistent

with the predictions of Fournier and Frisch16 for fluid turbulence. This result implies

that the cascade rated Πu,ψ will decrease with dimensions as d−1/2.

4. Conclusions

In this paper we employed field-theoretic techniques to calculate the cascade rates

of scalar turbulence. Our calculation is to first order. From this formalism we also

calculate Batchelor’s constant. In three dimensions, we find Batchelor’s constant

to be 1.25, which is in very good agreement with the theoretical predictions of

Yakhot and Orszag2 and Canuto et al.,12 and the experimental values. In higher

space dimensions the constant varies as d1/3.

Our calculation of cascade rate requires the renormalized viscosity and diffusiv-

ity. We have extended the RG calculations of Zhou and Vahala4 for higher dimen-

sions. Our calculations show that for higher dimensions, the renormalized viscosity

and diffusivity vary with dimensions as d−1/2, and the turbulent Prandtl number

approaches unity.

References

1. D. Forster, D. R. Nelson and M. J. stephen, Phys. Rev. A16, 732 (1977).
2. V. Yakhot and S. A. Orszag, J. Sci. Comput. 1, 3 (1986).
3. W. D. McComb, The Physics of Fluid Turbulence (Claredon, Oxford University Press,

1990).
4. Y. Zhou and G. Vahala, Phys. Rev. E48, 4387 (1993).
5. M. K. Verma, Phys. Rev. E64, 26305 (2001).
6. D. C. Leslie, Development in the Theory of Turbulence (Claredon, Oxford University

Press, 1973).
7. B.-S. Lin, C. C. Chang and C.-T. Wang, Phys. Rev. E63, 16304 (2000).
8. L. T. Adzhemyan, A. N. Vasil’ev and M. Gnatich, Theor. Math. Phys. (USSR) 58,

47 (1984).



October 18, 2001 13:52 WSPC/140-IJMPB 00727

3428 M. K. Verma

9. C. DeDominicis and P. C. Martin, Phys. Rev. A19, 419 (1979).
10. H. W. Wyld, Ann. Phys. 14, 143 (1961).
11. V. M. Canuto and M. S. Dubovikov, Phys. Fluids 8, 571 (1996).
12. V. M. Canuto and M. S. Dubovikov, Phys. Fluids 8, 599 (1996).
13. R. H. Kraichnan, J. Fluid Mech. 5, 497 (1959).
14. M. Nelkin, nlin.CD/0103046 (2001).
15. M. K. Verma, Phys. Plasma 8, 3945 (2001).
16. J. D. Fournier and U. Frisch, Phys. Rev. A17, 747 (1979).
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