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Abstract
We demonstrate the sweeping effect in turbulence using numerical simulations of hydrodynamic turbulence without a mean 
velocity. The velocity correlation function, C(�, �) , decays with time due to the eddy viscosity. In addition, C(�, �) shows 
oscillations due to the sweeping effect by “random mean velocity field” �̃0 . We also perform numerical simulation with 
mean velocity �0 = 10ẑ (10 times the rms speed) for which C(�, �) exhibits damped oscillations with the frequency of |�0|k 
and decay time scale corresponding to the �0 = 0 case. For �0 = 10ẑ , the phase of C(�, �) shows the sweeping effect, but 
it is overshadowed by oscillations caused by �0 . We also demonstrate that for �0 = 0 and 10ẑ , the frequency spectra of the 
velocity fields measured by real-space probes are respectively f −2 and f −5∕3 ; these spectra are related to the Lagrangian and 
Eulerian space-time correlations respectively.
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Introduction

The incompressible Navier–Stokes equations of a flow that 
is moving with a mean velocity of �0 is

where � is the velocity fluctuation with a zero mean, � is 
the external force, p is the pressure, and � is the kinematic 
viscosity. One of the important principles of classical phys-
ics is Galilean invariance, according to which the laws of 
physics are the same in all inertial frames (frames moving 
with constant velocities relative to each other). Naturally, 
the Navier–Stokes equations, which are essentially Newton’s 
laws for fluid flows, exhibits this symmetry (Lesieur 2012; 
Frisch 1995; Davidson 2015; McComb 1990, 2014; Belin-
icher and L’vov 1987). As a consequence of this symmetry, 

the flow properties of the fluid in the laboratory reference 
frame (in which the fluid moves with a mean velocity of �0 ) 
and in the co-moving reference frame ( �0 = 0 ) are the same.

The velocity field of a turbulent flow is random; hence 
it is typically characterised by its correlations. There 
have been several major advances in the understand-
ing the correlations in homogeneous and isotropic tur-
bulence, most notably by Kolmogorov (1941a, b) who 
showed that in the inertial range, the velocity correlation 
C(�) = ⟨��(�)�2⟩ = KKo�

2∕3k−5∕3∕(4�k2) , where � is the 
energy dissipation rate, and KKo is the Kolmogorov con-
stant. The corresponding one-dimensional energy spectrum 
is E(k) = KKo�

2∕3k−5∕3 . Note that � equals the energy flux in 
the inertial range.

Kraichnan (1964) argued that in the presence of a “ran-
dom mean velocity” field, �̃0 , Eulerian field theory does not 
yield Kolmogorov’s spectrum. In particular, Kraichnan (1964) 
considered a fluid flow with �̃0 that is constant in space and 
time but has a Gaussian and isotropic distribution over an 
ensemble of realisations. Then he employed direct interaction 
approximation (DIA) to close the hierarchy of equations and 
showed that E(k) ∼ (𝜖Ũ0)

1∕2k−3∕2 , where Ũ0 is the root mean 
square (rms) value of the mean velocity. Kraichnan (1964) 
argued that the above deviation of the energy spectrum from 
the experimentally observed Kolmogorov’s k−5∕3 energy spec-
trum is due to the sweeping of small-scale fluid structures by 

(1)
��

�t
+ (� ⋅ ∇)� + (�0 ⋅ ∇)� = − ∇p + �∇2� + � ,

(2)∇ ⋅ � = 0,
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the large energy-containing eddies. This phenomenon is called 
sweeping effect. Based on the above observations, Kraichnan 
(1964) emphasised that the Eulerian formalism is inadequate 
for obtaining Kolmogorov’s spectrum for a fully developed 
fluid turbulence. Later, he developed Lagrangian field theory 
for hydrodynamic turbulence that is consistent with the Kol-
mogorov’s 5/3 theory of turbulence  (see Kraichnan 1965, and 
other related papers). The above framework is called random 
Galilean invariance (Kraichnan 1964).

There have been several attempts to test the sweep-
ing effect. Kraichnan (1964) had argued that the nonlin-
ear time scale is 1∕(kŨ0) due to the dependence on the 
mean random velocity Ũ0 , and hence the energy spectrum 
E(k) ∼ (𝜖Ũ0)

1∕2k−3∕2 . Sanada and Shanmugasundaram 
(1992) computed the time scale for the decay of the cor-
relation function for various k’s, and argued it to vary as 
k−1 , in line with the predictions of Kraichnan (1964). Based 
on these results, Sanada and Shanmugasundaram (1992) 
argued that their correlation function validates the sweep-
ing effect. In a related work, Drivas et al. (2017) employed 
spatial filtering to study the sweeping effect on small-scale 
velocities by a large-scale flow. They showed consistency 
between results of direct numerical simulation and large-
eddy simulation with appropriate filtering.

He et al. (2010) and He and Tong (2011) proposed elliptic 
model in which the isocorrelation lines of two-point two-time 
velocity correlations are ellipses parameterised by the mean 
and sweeping velocities. Note that the mean velocity �0 is 
related to the Taylor’s frozen-in hypothesis (to be described 
below). Researchers observed that the elliptic model describes 
several experimental and direct numerical simulation (DNS) 
data more accurately than the classic Taylor’s hypothesis. 
Thus, the elliptic model validates the sweeping effect in 
hydrodynamic turbulence. Wilczek and Narita (2012) derived 
the frequency spectrum of hydrodynamic turbulence based on 
sweeping effect and mean flow. Their results are consistent 
with the sweeping effect and elliptic model.

A related phenomenon is Taylor’s hypothesis of frozen-in tur-
bulence. Taylor (1938) proposed that the velocity measurement 
at a point in a fully-developed turbulent flow moving with a 
constant velocity �0 (e.g. in a wind tunnel) can be used to study 
the velocity correlations. Taylor’s hypothesis works because the 
mean flow advects the frozen-in fluctuations, and the stationary 
probe in the fluid measures the fluctuations along a line. Here, 
the frequency spectrum of the measured time series is expected 
to show f −5∕3 , where f is the frequency. Taylor’s frozen-in tur-
bulence hypothesis has been used in many experiments to ascer-
tain Kolmogorov’s spectrum (Tennekes and Lumley 1972). As 
discussed above, Taylor’s frozen-in hypothesis is incorporated 
in the elliptic model (He et al. 2010; He and Tong 2011) and in 
Wilczek and Narita model (Wilczek and Narita 2012).

In this paper, our approach is somewhat different from the 
earlier ones. We compute the normalised correlation function 

for the velocity Fourier mode and find this to be complex, 
unlike Sanada and Shanmugasundaram (1992)’s function which 
is real. The phase of the correlation function helps us deduce 
the random mean velocity that is responsible for the sweeping 
effect. We thus provide definitive evidence for the sweeping 
effect. In addition, we also analyse the correlation function with 
and without a mean velocity, as well as the frequency spec-
trum. In Section “Taylor’s Frozen-in hypothesis for �0 ≠ 0 , 
and frequency spectrum” we show that the frequency spectrum 
E(f ) ∼ f −2 for turbulent flow in the absence of a constant mean 
velocity field �0 , and E(f ) ∼ f −5∕3 for large U0.

In the next two sections, we briefly describe the Green’s 
functions, correlation function, and sweeping effect in hydro-
dynamic turbulence. In Sections  “New evidences for the 
sweeping effect” and “Sweeping effect for �0 ≠ 0” we demon-
strate the signatures of sweeping effect using numerical simu-
lations with and without mean velocity. In Section  “Taylor’s 
Frozen-in hypothesis for �0 ≠ 0 , and frequency spectrum” 
we revisit Taylor’s hypothesis in light of sweeping effect. We 
conclude in Section  “Discussions and conclusions”.

A Brief Review of Green’s Function 
and Correlation Function in Hydrodynamic 
Turbulence

Kraichnan (1964) derived the sweeping effect using direct 
interaction approximation (DIA)  (Kraichnan 1959). We 
will sketch sweeping effect in the next section. However its 
description requires some terminologies, such as Green’s 
function, correlation function, and effective viscosity, which 
will be briefly described below. See Kraichnan (1959) and 
Leslie (1973) for details.

A linearised version of Eq. (1) in Fourier space is

where � is the wavevector. The corresponding equation for 
the Green’s function is

whose solution is

where � = t − t� , and �(�) is the step function.
In addition, the equal-time correction function, C(�, 0) , 

and unequal time correction function, C(�, �) , for the veloc-
ity mode with wavenumber � are defined as

(3)
(
�

�t
+ i�0 ⋅ � + �k2

)

�(�) = � (�),

(4)
(
�

�t
+ i�0 ⋅ � + �k2

)

G(�, t, t�) = �(t − t�),

(5)G(�, �) = �(�) exp (−i�0 ⋅ �t) exp (−�k
2�),

(6)C(�, 0) = ⟨��(�, t)�2⟩,

(7)C(�, �) = ⟨�(�, t) ⋅ �∗(�, t + �)⟩.
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In the above, the averaging could be either ensemble or tem-
poral (due to homogeneity in time). The ratio of the two 
correlation function is the normalised correlation function:

A generalisation of fluctuation–dissipation theorem to 
hydrodynamics yields (Kiyani and McComb 2004)

That is, the normalised correlation function exhibits damped 
oscillations—oscillations due to �0 , while damping arising 
from the viscous part.

Researchers attempted to incorporate the effects of 
nonlinearity in the above functions. The methods used 
are DIA (Kraichnan 1959; Leslie 1973), Lagrangian field 
theory (Kraichnan 1965), renormalisation groups (Yakhot 
and Orszag 1986; McComb 1990; De Dominicis and Martin 
1979; Zhou 2010), etc. We do not detail these methods here, 
but we state several important results derived using these 
computations: 

1.	 Using field theory and certain assumptions, research-
ers have been able to show that the nonlinearity yields 
enhanced viscosity at a wavenumber k in the following 
manner: 

 where �(k) , called “effective viscosity” or “renormal-
ized viscosity”, is 

 with �∗ as a constant. Physically, �(k) represents the 
effective viscosity at wavenumber k. For large k’s (in 
the inertial range), 𝜈(k) ≫ 𝜈 , hence the total viscosity is 
essentially �(k) . This viscosity leads to enhanced mix-
ing. In other words, the effective Navier-Stokes equation 
in the presence of nonlinearity is 

 where �(�) is the nonlinear term (including the pres-
sure gradient). Refer to Yakhot and Orszag (1986), 
McComb (1990), De Dominicis and Martin (1979) and 
Zhou (2010)) for details. Also see “Appendix 1: Sweep-
ing effect and renormalization in Eulerian framework”.

2.	 Using Eq. (12) and certain assumptions on the perturba-
tion, Green’s function of Eq. (5) gets transformed to the 
following form for the Navier-Stokes equations with the 
nonlinear terms: 

(8)R(�, �) =
C(�, �)

C(�, 0)
.

(9)R(�, �) = G(�, �) = �(�) exp (−i�0 ⋅ �t) exp (−�k
2�).

(10)� → � + �(k),

(11)�(k) = �∗

√
KKo�

1∕3k−4∕3,

(12)
(
�

�t
+ i�0 ⋅ � + [� + �(k)]k2

)

�(�) = �(�) + � (�),

 where 

 is the decay time scale. Since 𝜈(k) ≫ 𝜈 , the decay time 
scale for Eq. (13) is much smaller than the correspond-
ing time scale for Eq. (5). The above Green’s function is 
called “dressed Green’s function” in field theory.

3.	 For the nonlinear equation, using field-theoretic treat-
ment and generalisation of fluctuation-dissipation theo-
rem, the correlation function of Eq. (9) is generalised to 

 That is, the decay time scale for the correlation function 
is same as that for the Green’s function.

4.	 In the absence of �0 , the correlation and Green’s func-
tions are: 

 The above function exhibits pure damping.
In the following section we provide a brief introduction to 
the sweeping effect.

Brief Description of Sweeping Effect

In this section, we briefly describe the sweeping effect (Kra-
ichnan 1964). Kraichnan assumed that the velocity fluctua-
tions of Navier–Stokes equations is advected by random 
large-scale flow, �̃0 . Note the contrast in notation between 
the random large-scale flow, �̃0 , and the mean velocity, �0 . 
Kraichnan (1964) ignored the viscous and nonlinear terms, 
and simplified Eq. (12) to

For the above equation, the normalized correlation function 
is obtained by setting � = 0 in Eq. (9):

 Kraichnan (1964) further assumed that �̃0 is constant in 
time, but it is spatially varying with a Gaussian distribu-
tion. We could consider �̃0 to be of the order of rms (root 
mean square) speed. Under these assumptions, the averaged 
correlation function has the following form (also see Wilc-
zek and Narita 2012):

(13)

G(�, �) =�(�) exp (−i�0 ⋅ �t) exp (−�(k)k
2�)

=�(�) exp (−i�0 ⋅ �t) exp (−�∕�c),

(14)�c =
1

�(k)k2
∼

1

�1∕3k2∕3
.

(15)
R(�, �) = G(�, �) = �(�) exp (−i�0 ⋅ �t) exp (−�(k)k

2�).

(16)R(�, �) = G(�, �) = �(�) exp (−�(k)k2�).

(17)
(
𝜕

𝜕t
+ i�̃0 ⋅ �

)

�(�) = � (�).

(18)R(�, 𝜏) = 𝜃(𝜏) exp (−i�̃0 ⋅ �t).
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Note that the above averaging with Gaussian Ũ0 differs 
from the ensemble or temporal averaging performed for the 
correlation function of Eq. (7).

Using the above equation and field-theoretic arguments, 
Kraichnan (1964) argued that the relevant nonlinear time 
scale is 1∕(kŨ0) that would yield the following energy 
spectrum:

where � is the energy dissipation rate. The above spec-
trum is very different from Kolmogorov’s prediction that 
E(k) ∼ �2∕3k−5∕3 , which is observed in experiments. Based 
on these contradictions, Kraichnan (1964) argued that Eule-
rian field theory is inadequate to reproduce k−5∕3 energy 
spectrum, and hence unsuitable for describing turbulence. 
He went on to develop Lagrangian field theory to reproduce 
the consistent energy spectrum (Kraichnan 1965).

In this paper we test the sweeping effect using numeri-
cal simulation. Note that due random nature of large-scale 
flow �̃0,

where c is a random number that can take both positive and 
negative values. In the present paper we compute R(�, �) and 
look for a signature of random Ũ0 in the phase of R(�, �) . A 
nonzero phase in Eq. (21) would signal a presence of �̃0 , 
hence the sweeping effect. Note that our proposed correla-
tion function of Eq. (22) differs from Eq. (19) of Kraichnan 
(1964). We do not make any assumption on the probability 
distribution of �̃0 . This process helps us examine oscilla-
tions in R(�, �) induced by �̃0.

In the presence of a mean velocity field �0 , the correla-
tion function of Eq. (15) with sweeping effect is expected to 
be of the following form:

The above correlation function includes sweeping effect 
along with oscillations arising due to �0 . The Fourier trans-
fer of the above equation to the frequency space yields the 
following Green’s function in (�,�) space:

In the next section we provide numerical evidences for the 
sweeping effect.

(19)R(�, 𝜏) =⟨exp[−i� ⋅ �̃0𝜏]⟩ = exp

�

−
⟨Ũ2

0
⟩k2𝜏2

6

�

.

(20)E(k) ∼ (𝜖Ũ0)
1∕2k−3∕2,

(21)
R(�, 𝜏) = exp(−𝜏∕𝜏c(k)) exp(−i�̃0 ⋅ �𝜏)

→ exp(−𝜏∕𝜏c(k)) exp(−ickŨ0𝜏),

(22)

R(�, 𝜏) = exp(−𝜏∕𝜏c(k)) exp(−i�0 ⋅ �𝜏 − i�̃0 ⋅ �𝜏)

→ exp(−𝜏∕𝜏c(k)) exp(−ickŨ0𝜏) exp(−i�0 ⋅ �𝜏).

(23)G(�,𝜔) =
1

−i𝜔 + 𝜈(k)k2 + i�0 ⋅ � + ickŨ0(k)
.

New Evidences for the Sweeping Effect

In this section, we demonstrate the existence of wavenum-
ber dependent phases of R(�, �) , thus signalling the pres-
ence of sweeping effect. We perform a numerical simula-
tion of Navier–Stokes equations in the turbulent regime 
for the mean velocity �0 = 0 . We employ pseudospectral 
code TARANG (Verma et al. 2013; Chatterjee et al. 2017) 
to simulate the flow on 5123 and 10243 grids with random 
forcing (Novikov 1965). For the forcing, we employ the pro-
cedure proposed by Carati et al. (1995). We use the fourth-
order Runge Kutta (RK4) scheme for time stepping, 2/3 rule 
for dealiasing, and CFL condition for computing Δt.

In our manuscript, we adopt nondimensional units for all 
the relevant quantities. As is customary, we nondimensional-
ize length and velocity using systems size and velocity (here, 
rms speed, urms ) respectively. Hence, in our simulation, the 
rms speed is approximately unity, and the mean velocity (�0) 
is the velocity relative to the rms speed. For the present set 
of simulations, we use L = 2� , and the unit of time as eddy 
turnover time, L∕urms . The parameters of our simulations are 
described in Table 1. The Reynolds number of the runs are 
urmsL∕� = 5.7 × 103 for 5123 grid, and 1.3 × 104 for 10243 
grid. All our simulations are fully resolved since kmax𝜂 > 1 , 
where kmax is the maximum wavenumber of the run, and � is 
the Kolmogorov length scale.

We evolve the flow with �0 = 0 till a steady state is 
reached. At this point, we fork the above run to two new 
simulations with �0 = 0 and �0 = 10ẑ . The new runs are 
carried out up to one eddy turnover time each. For �0 = 0 
and �0 = 10ẑ , the temporal evolution of the fluctuating 
energy and the energy spectra are identical, as illustrated in 
Fig. 1; this is consistent with the Galilean invariance of the 
Navier–Stokes equations. These results, however, are based 
on equal-time correlations; subtleties, however, emerge 
when we study the temporal correlations of the velocity 
Fourier modes. 

Using the steady state numerical data of 10243 grid, we 
compute the normalised correlation function R(�, �) of 
Eq. (8) for k = 10, 12, 15, 20 , and 22 that lie in the iner-
tial range. The correlation R(�, �) was time averaged over 

Table 1   Parameters of our direct numerical simulations (DNS): grid 
resolution; mean velocity �0 ; kinematic viscosity � ; Reynolds num-
ber Re = urmsL∕� ; and kmax� , where kmax = N∕2 is the maximum 
wavenumber, and � is the Kolmogorov length

Grid �0 � Re kmax�

5123 0 10−3 5.7 × 103 2.5
5123 10ẑ 10−3 5.7 × 103 2.5
10243 0 4 × 10−4 1.3 × 104 2.5
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12,500 data points collected over 1.3 eddy turnover time. 
We observe that R(�, �) is complex, thus providing clues for 
the sweeping effect in the flow. In Fig. 2a we plot |R(�, �)| 
that decays exponentially with time with an approximate 
time scale of �c(k) given by Eq. (14). For validation of this 
conjecture, in Fig. 2b we plot |R(�, �)| exp(�∕�c) which are 
approximate flat curves for all k’s.

We compute �c(k) from the slope of |R(�, �)| in a semiol-
ogy plot for a range of k’s. A regression analysis of the data 
yields

for k ranging from 6 to 25. The slope of −0.62 is consistent 
with the predicted −2∕3 slope of Eq. (14). We exhibit the 
plot in Fig. 3 that exhibits some scatter, which is possibly 
due to the random velocity field as postulated in the sweep-
ing effect. This observation is contrary to that of Sanada and 
Shanmugasundaram (1992) who argued that �c ∼ k−1 based 
on Kraichnan (1964)’s sweeting effect arguments according 
to which 𝜏c ∼ 1∕(kŨ0).

In Fig. 4 we plot ℜ[R(�, �)] , ℑ[R(�, �)] , and the phase of 
R(�, �) , which is defined as

The phase Φ(k, �) varies linearly till �2 ≈ 0.6�c , which is 
the duration for the constancy of �̃0 . We can estimate �̃0 
from the phase using Eq.  (21) with |c| = 1 (which is an 

(24)�c(k) ∼ k−0.62±0.13,

(25)Φ(k, �) = tan−1
ℑ[R(�, �)]

ℜ[R(�, �)]
.

assumption). From Fig. 4 we deduce the following proper-
ties for Φ(k, �) : 

1.	 The phase Φ(�, �) increases linearly with time till � ≈ �2 , 
hence Φ(�, �) ∝ � till � ≈ �2.

2.	 In Fig. 4, the slopes of the Φ(�, �) for various k’s are 
different, hence Φ(�, �) ≠ D� with a constant D for all 
k’s. Therefore, we can easily conclude that the Fourier 
modes are not advected by a constant mean velocity 
field, say �0.

3.	 The slopes of Φ(�, �) come with both positive and nega-
tive signs, thus confirming random sweeping effect.

Fig. 1   For �0 = 0 and 
�0 = 10ẑ , a plots of total 
energy of the velocity fluc-
tuation vs. t (in units of eddy 
turnover time). b Plots of the 
normalized kinetic energy 
spectrum E(k)k5∕3 vs. k. Here 
E(t) and E(k) are identical for 
�0 = 0 and �0 = 10ẑ due to the 
Galilean invariance of the fluid 
equations
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Fig. 2   For �0 = 0 and 
k = 10, 12, 15, 20, 22 (inertial 
range wavenumbers), a plots of 
the absolute value of normalised 
correlation function, |R(�, �)| 
vs. �� = �∕�c . It decays expo-
nentially in time as in Eq. (21). 
b Plots of |R(�, �)| exp(�∕�c) 
vs. �′ , which is approximately 
flat
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Fig. 3   Plot of �−1
c

 vs. k. We observe that �−1
c

∼ k0.62±0.13 . The expo-
nent being closer to 2/3 indicates that Eq. (14) provides a fair descrip-
tion of the decaying time scale
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Thus, the nonzero phase Φ(k, �) provides evidence for the 
sweeping effect. In addition, the real and imaginary parts 
of R(�, �) contain the effects of both magnitude and phases, 
hence they show damped oscillations.

Hence the numerical correlation functions are consistent 
with Eq. (21), thus providing a numerical demonstration of 
the sweeping effect proposed by Kraichnan (1964). Physi-
cally, a Fourier mode �(�) is being advected by the random 
mean velocity field, Ũ0(�) . The random velocity changes its 
direction and magnitude in around an eddy turnover time. 
We observe that the phases are linear in � only up to � ≈ �2 . 
The aforementioned wavenumber-dependent mean velocity 
field is in the similar spirit as the advection of eddies within 
eddies (Davidson 2015; Pope 2000; McComb 1990; Verma 
2019). It is important to note that the aforementioned time 
variation of Ũ0(�) is contrary to the assumption of Kraichnan 
(1964) that Ũ0(�) is constant in time. A detailed analysis of 
�̃0(�) as a function of wavenumber and angles, as well as its 
probability distribution, will be performed in future.

In the next section we analyse the sweeping effect in the 
presence of �0.

Sweeping Effect for �
0
≠ 0

In the present section we compute R(�, �) for nonzero �0 
using numerical data and compare it with Eq. (22). After 
that we will describe the frequency spectrum for zero and 
nonzero �0.

As argued in Section  “A brief review of Green’s function 
and correlation function in hydrodynamic turbulence”, for 

nonzero �0 , the normalised correlation function given by 
Eq. (22). Thus, the mean velocity field induces a factor of 
exp(−i�0 ⋅ ��) in the correlation function in comparison to 
Eq. (21) for �0 = 0 . To verify the above correlation func-
tion, we perform numerical simulation of Eqs. (1, 2) with 
�0 = 10ẑ and compute the correlation function R(�, �) for 
� = (0, 0, 10).

In Fig. 5, we plot the real and imaginary parts of the 
correlation R(�, �) , as well as its magnitude and phase. As 
shown in the figure, |R(�, �)| for �0 = 0 and 10ẑ are approxi-
mately the same. However, both the real and imaginary parts 
of R(�, �) exhibit damped oscillations with a frequency of 
� = kz|�0| and a decay time scale of 1∕(�(k)k2) . The oscilla-
tions are due to the exp(−i�0 ⋅ ��) term. Note that the damp-
ing time scales �c(k) are independent of �0 , which is verified 
by the plot of Fig. 5a, b in which the envelops of |R(�, �)| and 
ℜ[R(�, �)] match with the corresponding plots for �0 = 0 
(shown as red lines).

The correlation function also contains signatures of the 
random sweeping effect for �0 = 10ẑ . In Fig. 5d, we plot the 
phase Φ of R(�, �) , which is quite close to U0k� . However, 
Φ − U0k� is nonzero, which is evident from its magnified 
plot in Fig. 5d. This deviation is due to the random sweeping 
effect by random mean field Ũ0 . Thus, the small-scale fluc-
tuations are swept by �0 = 10ẑ and by large-scale random 
velocity Ũ0(k) . Thus, sweeping effect, though overshadowed 
by U0 , is present for nonzero U0 as well.

In summary, for the normalised correlation function, 
the absolute value |R(�, �)| falls exponentially with a decay 
time scale of �c , while the phase Φ(�, 𝜏) ∝ �0 ⋅ � + cŨ0k 
that contains contributions from the mean velocity and the 

Fig. 4   For �0 = 0 and 
k = 10, 12, 15, 20, 22 (inertial 
range wavenumbers), plots of 
the a ℜ[R(�, �)] , b ℑ[R(�, �)] , 
and c, d Φ(�, �) , where R(�, �) 
is the normalized correla-
tion function. Subfigure d 
is a zoomed view of c for 
�� = 0 ∶ 0.6 . The real part 
exhibits decaying oscillations, 
while the imaginary part shows 
oscillations, consistent with 
Eq. (21). The phases for various 
� ’s exhibit monotonic increase 
with time till �� = �2 = 0.6 due 
to �̃0 , thus demonstrating the 
sweeping effect
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sweeping effect. Note that |R(�, �)| is independent of U0 , but 
the real and imaginary parts of R(�, �) contain the effects 
of both magnitude and phase; hence they exhibit damped 
oscillations.

Taylor’s Frozen‑in Hypothesis for �
0
≠ 0 , 

and Frequency Spectrum

We can use the spectral correlation function of Eq. (22) to 
compute the following spatio-temporal correlation (Wilczek 
and Narita 2012):

We obtain temporal correlation C(�) measured at the 
same location by setting � = 0 . Fourier transform of 
C(�) yields the frequency spectrum E(f), which is often 
measured in experiments. Researchers have exploited the 
above hypothesis to measure turbulence spectrum in many 
fluid and plasma experiments, for example in wind tun-
nels (Tennekes and Lumley 1972), and in the solar wind 
using extraterrestrial spacecrafts (Matthaeus and Gold-
stein 1982).

In “Appendix 2: Computation of spatio-temporal correla-
tions and frequency spectra of turbulent flow”, C(�) has been 
computed for the following limiting cases: 

(26)
C(�, 𝜏) ∼∫ d�C(�) exp(−𝜈(k)k2𝜏 − i�� ⋅ �𝜏)⟨exp(−ickŨ0(k)𝜏)⟩ exp(i� ⋅ �)

=∫ d�C(�) exp(−𝜏∕𝜏c − i�� ⋅ �𝜏) exp(−k
2[Ũ0(k)]

2𝜏2) exp(i� ⋅ �).

1.	 Fo r  nonze ro  �0  w i t h  �0 ⋅ � ≫ 𝜈(k)k2  and 
�0 ⋅ � ≫ kŨ0(k) : in this case, 

 where � is the dissipation rate that equals the energy 
flux. The above C(�) yields the following frequency 
spectrum: 

 which is the prediction of Taylor’s frozen-in turbulence 
hypothesis. In fact, this idea is often used to test Kol-

mogorov’s spectrum in turbulence experiments (Ten-
nekes and Lumley 1972). Recently, Kumar and Verma 
(2018) and  Verma (2018) invoked this scheme to deduce 
the energy spectrum for Rayleigh–Bénard convection in 
a cube when the large-scale circulation remains steady. 
The above spectrum also follows from Eq. (23) that 
yields the dominant frequency as � = iU0kz for this case. 
See “Appendix 2: Computation of spatio-temporal cor-
relations and frequency spectra of turbulent flow” for 
details. In Fig. 6a we plot E(f) computed using the time 
series of randomly distributed 50 probes for �0 = 10ẑ 
simulation. To compute the frequency spectrum E(f), 

(27)C(�) ∼(�U0�)
2∕3,

(28)E(f ) ∼ (�U0)
2∕3f −5∕3,

Fig. 5   For �0 = 10 and 
� = (0, 0, 10) in the inertial 
range, plots of the normalised 
correlation function R(�, �) 
vs. � : a ℜ[R(�, �)] , b |R(�, �)| , 
c ℑ[R(�, �)] , and d Φ(�, �) . The 
real and imaginary parts exhibit 
damped oscillation with the 
frequency of |�0|k and damping 
time of 1∕(�(k)k2) . |R(�, �)| for 
�0 = 0, 10ẑ are identical, thus 
showing that the decay time 
scales for the two cases are the 
same; also, |R(�, �)| provides 
envelop to the real part. The 
phase of R(�, �) varies as 
Φ(�, �) = |�0|kz� + � , where 
� arises due to the sweeping 
by the random large-scale flow 
structures. The dashed black 
and blue lines represent |�0|kz� 
and 70� (amplified by a factor 
for visualisation) respectively
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0 0.2 0.4
τ

−1

−0.5

0

0.5

1
�
[R

(k
,τ
)]

(c)

0 0.5 1
τ

0

20π

40π

Φ
(k
,τ
)

(d)

Φ(k, τ)
70[Φ(k, τ)− |U0|kzτ ]



	 Transactions of the Indian National Academy of Engineering

123

we record the velocity field at the 50 real space probes. 
For the frequency spectrum computation, we run our 
simulation for a single eddy turnover time with a con-
stant Δt = 3 × 10−5 , which helps us compute the Fourier 
transform of the real space data using equispaced FFT. 
We sampled the real space data every 33 time step.

2.	 For �0 = 0 : In this case, 

 that yields the following frequency spectrum: 

 As shown in the “Appendix 2: Computation of spa-
tio-temporal correlations and frequency spectra of 
turbulent flow”, the above spectrum is a result of 
exp(−k2[Ũ0(k)]

2𝜏2) (sweeping effect) and exp(−�∕�c) 
(damping term). The above spectrum can be derived 
using the dominant frequency relation � = �(k)k2 . See 
“Appendix  2: Computation of spatio-temporal cor-
relations and frequency spectra of turbulent flow” for 
details. Also see Fig. 6b for an illustration of E(f) com-
puted using the time series of randomly distributed 50 
probes for the �0 = 0 simulation.

We can also derive Taylor’s frozen-in hypothesis in the fol-
lowing manner. For �0 = 0 and setting � = 0 , Eq. (26) yields 
equal-time correlation as

On the other hand, if we set � = 0 and assume that 
�0 ⋅ � ≫ 𝜈(k)k2 and �0 ⋅ � ≫ kŨ0(k) , then Eq. (26) yields

(29)C(�) ∼��

(30)E(f ) ∼ �f −2.

(31)C(�, � = 0) = ∫ d�C(�) exp(i� ⋅ �).

(32)C(� = 0, �) = ∫ d�C(�) exp(−i�0 ⋅ ��),

which has a very similar structure as Eq. (31) with � replaced 
by −�0� . Hence

That is, equal-time spatial correlation (for �0 = 0 ) is related 
to the equal-space temporal correlation for nonzero �0 . This 
is the essence of Taylor’s frozen-in hypothesis. We illustrate 
the physical interpretation of the above result in Fig. 7. It is 
important to note that Eq. (33) is valid for any kind of flow, 
turbulent or viscous.

For steady, homogeneous, and isotropic turbulence, and 
for r in the inertial range, (Kolmogorov 1941a, b) derived 
that

(33)C(� = 0, �) = C(�, � = 0) with � = −�0�.

(34)C(r) = c1 − c2(�r)
2∕3,
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Fig. 6   a For �0 = 10ẑ , plots of the wavenumber spectrum E(k) 
and the scaled frequency spectrum E(f) for the velocity time series 
measured by real-space probes. The plot is averaged over 50 real-
space probes located at random locations. Here f̃ = f (2𝜋)∕U0 and 

Ẽ(f̃ ) = E(f )U0∕(2𝜋) . E(f ) ∼ f −5∕3 , consistent with Taylor’s frozen-in 
turbulence hypothesis. b For �0 = 0 , E(f ) ∼ f −2 , consistent with the 
sweeping effect
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Fig. 7   In the left figure, A and B represent respectively the veloc-
ity measurements at locations z and z + r and at times t (same time) 
when �0 = 0 . In the right figure, the measurements are performed at 
the same place ( z = 0 ), but at different times, t and t − U0� . Here �0 
is along the z axis. According to Taylor’s hypothesis, the velocity cor-
relations of the two figures are the same
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where c1 and c2 are constants. The above relation and inverse 
transform of Eq. (31) yields C(�) ∼ �2∕3k−11∕3 that leads to 
E(k) ∼ k−5∕3 , which is Kolmogorov’s spectrum. Note that 
Ũ0(k) or the sweeping effect does not affect the k−5∕3 spec-
trum. Substitution of the above C(�) in Eq. (32) yields

where c3 is a constant. Fourier transform of the above equa-
tion yields Eq. (28). This is a alternative derivation of Tay-
lor’s frozen-in hypothesis.

Tennekes and Lumley (1972) termed the correlation asso-
ciated with f −5∕3 spectrum as Eulerian space-time correla-
tion due to its connection with the mean flow �0 that advects 
the flow, reminiscent of Eulerian picture. The frequency 
spectrum f −2 is associated with the fluctuating “mean veloc-
ity”, hence Tennekes and Lumley (1972) called the associ-
ated correlation as Lagrangian space-time correlation, pos-
sibly relating the sweeping effect with random scattering of 
particles. Note, however, that we derived both these spectra 
in Eulerian hydrodynamics framework.

He et al. (2010), and He and Tong (2011) combined the 
sweeping effect with Taylor’s frozen-in turbulence hypoth-
esis in a framework called elliptic approximation. Due to the 
sweeping effect, the isocontour lines of the equal-time corre-
lation function measured at two different locations separated 
by �E is the following elliptical function (deviates from a 
straight line, a prediction of Taylor’s hypothesis):

In the above expression, Ũ0z and �̃0⟂ are the parallel and 
perpendicular components of the random velocity field along 
and perpendicular to �0 . Refer to He et al. (2010) and He 
and Tong (2011), and Appendix “Elliptic approximation” for 
further details. Thus, the sweeping effect, Taylor’s frozen-in 
turbulence hypothesis, and space-time correlation functions 
are related to each other.

We conclude in the next section.

Discussions and conclusions

Using numerical simulations, we demonstrate the presence 
of sweeping effect in hydrodynamic turbulence. For zero 
mean flow ( �0 = 0 ), we compute the velocity correlation 
function C(k, �) and show that its magnitude decays with 
time-scale �c ≈ 1∕(�(k)k2) , where �(k) is the renormalised 
viscosity. However, the phase of the correlation function 
shows a linear increase with � till approximately one eddy 
turnover time; this is attributed to the sweeping of the small 
scale fluctuations by the random mean velocity, 𝐔̃0 , of the 
flow. Thus we demonstrate a clear signature of sweeping 
effect in hydrodynamic turbulence. Note that the phase of the 

(35)C(�) = c3(�U0�)
2∕3,

(36)r2
E
= r2

Ez
+ |�E⟂|

2 = [r − (U0 + Ũ0z)𝜏]
2 + [|�̃0⟂|𝜏]

2.

correlation function extracts the sweeping effect by random 
mean velocity. Our approach deviates from those of Sanada 
and Shanmugasundaram (1992) who only studied the abso-
lute of correlation function and argued that �c ∼ k−1 , in line 
with the predictions of Kraichnan (1964). On the contrary, 
our simulations shows that �c ∼ k−2∕3.

For nonzero mean flow ( �0 = 10ẑ ), the correlation 
function exhibits damped oscillations with a frequency of 
� = U0k and decay time scale of 1∕(�(k)k2) ; the decay time 
scales for �0 = 10ẑ is same as that for �0 = 0 . A careful 
examination of the phase of the correlation function also 
shows additional variations due to the sweeping by the ran-
dom mean velocity 𝐔̃0 of the flow.

For the aforementioned two cases, the frequency spec-
tra of the velocity field measured by the real-space probes 
are different. For �0 = 0 , E(f ) ∼ f −2 , which is related to 
the Lagrangian space-time correlation, but for �0 = 10ẑ , 
E(f ) ∼ f −5∕3 , which is the predictions of Taylor’s frozen-in 
turbulence hypothesis. We demonstrate these spectra using 
their respective space-time correlation functions. Our analy-
sis shows that Taylor’s hypothesis is applicable when

where Ũ0 is random mean velocity, which is responsible for 
the sweeping effect.

Thus, we provide a systematic demonstration of sweep-
ing effect and Taylor’s frozen-in turbulence hypothesis, and 
show consistency between the two contrasting phenom-
ena. We demonstrate the above spectra using numerical 
simulations.
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Appendix 1: Sweeping Effect 
and Renormalization in Eulerian Framework

In this section we extend iterative renormalisation group 
(i-RG) of McComb (1990) and Zhou (2010) to include 
the effects of the mean velocity field �0 . We show that 
the renormalised viscosity is independent of �0 . However, 
this scheme fails to capture the sweeping effect. This issue 
was first raised by Kraichnan (1964) in direct interaction 

(37)U0k ≫ 𝜈(k)k2; U0 ≫ Ũ0,
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approximation (DIA) framework. Note that the above com-
putations are based on Eulerian framework. Since the above 
RG scheme is covered in detail in many references, such 
as McComb (1990), Zhou (2010) and Verma (2001, (2004), 
here we highlight the changes induced by �0.

In Fourier space, the Navier–Stokes equations in the pres-
ence of �0 are (McComb 1990)

where

We compute the renormalized viscosity in the presence 
of a mean velocity �0 . In the renormalization process, the 
wavenumber range (kN , k0) is divided logarithmically into N 
shells. The nth shell is (kn, kn−1) where kn = hnk0 (h < 1) and 
kN = hNk0 . In the first step, the spectral space is divided in 
two parts: the shell (k1, k0) = k> , which is to be eliminated, 
and (kN , k1) = k< , set of modes to be retained. The velocity 
modes in the k> regime are averaged. The averaging proce-
dure enhances the viscosity, and the new viscosity is called 
“renormalized viscosity”. The process is continued for other 
shells that leads to larger and larger viscosity.

In i-RG scheme, after (n + 1) st step, the renormalized 
equation appears as

with

(38)

(−i𝜔 + i�0 ⋅ � + 𝜈k2)ui(k̂) = −
i

2
Pijm(�)∫p̂+q̂=k̂

dp̂
[
uj(p̂)um(q̂)

]
+ fi(k̂),

(39)kiui(�) =0,

(40)

Pijm(�) =kjPim(�) + kmPij(�),

k̂ =(𝜔,�), p̂ = (𝜔�, �), and q̂ = (𝜔��, �); k̂ = p̂ + q̂.

(41)

[
−i𝜔 + i�0 ⋅ � + (𝜈(n)(k) + 𝛿𝜈(n)(k))k

2
]
u<
i
(k̂) =

−
i

2
Pijm(�)∫p̂+q̂=k̂

d�d𝜔�

(2𝜋)d+1
[u<

j
(p̂)u<

m
(k̂ − p̂)] + f <

i
(k̂)

(42)

𝛿𝜈(n)(k̂)k
2 =

1

d − 1 ∫
Δ

p̂+q̂=k̂

d�d𝜔�

(2𝜋)d+1
[B(k, p, q)G(q̂)C(p̂)].

In the above expression,

where d is the space dimensionality, x, y, z are the direction 
cosines of �, �, � , and G(q̂),C(p̂) are respectively Green’s 
and correlation functions that are defined as (McComb 1990; 
Zhou 2010; Verma 2004)

Using � = �� + ��� , we obtain

Note that � − �0 ⋅ � = �D is the Doppler-shifted fre-
quency in the moving frame, where the frequency of the 
signal is reduced. It is analogous to the reduction of fre-
quency of the sound wave in a moving train when the train 
moves away from the source. For �0 = 0 , it is customary 
to assume that � → 0 since we focus on dynamics at large 
time scales (McComb 1990; Zhou 2010; McComb 2014). 
The corresponding assumption for �0 ≠ 0 is to set �D → 0 
because �D is the effective frequency of the large scale 
modes in the moving frame. The approximation � → �D 
essentially takes away the effect of Galilean transformation 
and provides inherent turbulence properties. Note that in 
Taylor’s frozen-in turbulence hypothesis, � = �0 ⋅ � that 
yields �D = 0 (Tennekes and Lumley 1972).

Equation (46) indicates that the correction in viscosity, 
��(n) , is independent of �0 . After this step, the derivation 
of renormalised viscosity with and without �0 are identi-
cal. Equation (46) however does not include any sweep-
ing effect, which is a serious limitation of Eulerian field 
theory, as pointed out by Kraichnan (1964) in direct inter-
action approximation (DIA) framework. Kraichnan (1965) 
then formulated Lagrangian-history closure approximation 
for turbulence and showed consistency with Kolmogorov’s 
spectrum (also see Leslie 1973). Effectively, a consistent 
theory needs to include a term of the form i�̃0 ⋅ � in the 
denominator of Eq. (44). A procedure adopted by Verma 

(43)B(k, p, q) = kp[(d − 3)z + 2z3 + (d − 1)xy],

(44)G(q̂) =
1

−i𝜔�� + i�0 ⋅ � + 𝜈(n)(q)q
2
,

(45)C(p̂) =
C(�)

−i𝜔� + i�0 ⋅ � + 𝜈(n)(p)p
2
.

(46)

𝛿𝜈(n)(𝜔, k)k
2 =

1

d − 1 ∫p̂+q̂=k̂

d�d𝜔�

(2𝜋)d+1
B(k, p, q)C(�)

×
1

[
−i𝜔 + i𝜔� + i�0 ⋅ � + 𝜈(n)(q)q

2
][
−i𝜔� + i�0 ⋅ � + 𝜈(n)(p)p

2
]

=
1

d − 1 ∫
Δ

�+�=�

d�

(2𝜋)d
B(k, p, q)C(�)

[
− i(𝜔 − �0 ⋅ �) + 𝜈(n)(p)p

2 + 𝜈(n)(q)q
2
]

=
1

d − 1 ∫
Δ

�+�=�

d�

(2𝜋)d
B(k, p, q)C(�)

𝜈(n)(p)p
2 + 𝜈(n)(q)q

2
.
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(1999) for “mean magnetic field” renormalisation in mag-
netohydrodynamic turbulence may come out to be handy 
for such computations, which may be attempted in future.

Appendix 2: Computation 
of Spatio‑Temporal Correlations 
and Frequency Spectra of Turbulent Flow

Using the normalized correlation function of Eq. (22), we 
derive the following spatio-temporal correlation function:

We time average Ũ0 over random ensemble (Kraichnan 1964; 
Wilczek and Narita 2012) that yields

In addition, we set � = 0 to compute the temporal correlation 
at a single point.

In the above integral, following Pope (2000), we replace 
the isotropic and homogeneous C(�) with

where � is the energy dissipation rate, which is same as the 
energy flux, and

with cL, c� , p0, �  as constants, and L as the large 
length scale of the system. We also substitute 
�c(k) = 1∕(�(k)k2) = �−1∕3k−2∕3 and Ũ0(k) = 𝜖1∕3k−1∕3 (from 
dimensional analysis). We ignore the coefficients in front of 
these quantities for brevity. After the above substitutions, 
we obtain

(47)C(�, 𝜏) =∫ d�C(�) exp(−𝜈(k)k2𝜏 − i�� ⋅ �𝜏) exp(−i� ⋅ �̃0(�)𝜏) exp(i� ⋅ �).

(48)
C(�, 𝜏) =∫ d�C(�) exp(−𝜈(k)k2𝜏 − i�� ⋅ �𝜏)⟨exp(−ickŨ0(k)𝜏)⟩ exp(i� ⋅ �)

=∫ d�C(�) exp(−𝜏∕𝜏c − i�� ⋅ �𝜏) exp(−k
2[Ũ0(k)]

2𝜏2) exp(i� ⋅ �).

(49)C(�) =
E(k)

4�k2
=

fL(kL)f�(k�)KKo�
2∕3k−5∕3

4�k2
,

(50)fL(kL) =

(
kL

[(kL)2 + cL]
1∕2

)5∕3+p0

,

(51)f�(k�) = exp
[

−�
{

[(k�)4 + c4
�
]1∕4 − c�

}]

,

The above form of C(�) is valid for any �0 . The above inte-
gral is too complex, hence we perform asymptotic analysis 
in two limiting cases that are described below.

For �
0
⋅ � ≫ �(k)k2 and �

0
⋅ � ≫ kŨ

0
(k)

(52)

C(�) =KKo�
2∕3 ∫ dkk−5∕3fL(kL)f�(k�) exp(−i�� ⋅ ��)×

exp(−�1∕3k2∕3�) exp(−�2∕3k4∕3�2).

For this case U0 dominates other velocity scales, hence 
we take � ∼ 1∕(U0k) as the dominant time scale. For 

simplification, we make a change of variable, k̃ = U0k𝜏 . In 
addition, we choose the z axis to be along the direction of 
�0 . Under these simplifications, the integral becomes

We focus on � in the inertial range, hence L∕U0𝜏 ≫ 1 
and 𝜂∕U0𝜏 ≪ 1 , consequently, fL(k̃(L∕U0𝜏)) ≈ 1 , and 
f𝜂(k̃(𝜂∕U0𝜏) ≈ 1 . Therefore,

where B is the value of the nondimensional integral. The 
Fourier transform of the above C(�) yields the following 
frequency spectrum:

The above frequency spectrum is the prediction of Taylor’s 
frozen-in turbulence hypothesis.

(53)

C(𝜏) ≈KKo(𝜖U0𝜏)
2∕3 ∫ dk̃k̃−5∕3fL(k̃(L∕U0𝜏))f𝜂(k̃(𝜂∕U0𝜏)

sin(U0k𝜏)

U0k𝜏

× exp[−k̃2∕3(U∕U0)
2∕3(𝜏∕T)1∕3 − k̃4∕3(U∕U0)

4∕3(𝜏∕T)2∕3].

(54)C(𝜏) ≈KKo(𝜖U0𝜏)
2∕3 ∫ dk̃k̃−5∕3

sin k̃

k̃
exp[−k̃2∕3(U∕U0)

2∕3(𝜏∕T)1∕3 − k̃4∕3(U∕U0)
4∕3(𝜏∕T)2∕3]

≈BKKo(𝜖U0𝜏)
2∕3,

(55)

E(f ) ≈∫ C(�) exp(i2�f �)d� = ∫ BKKo(�U0�)
2∕3 exp(i2�f �)d�

∼(�U0)
2∕3f −5∕3.
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For �
0
= 0

We set �0 = 0 in Eq. (52). In the resulting equation, both 
the remaining exponential terms (the damping and sweeping 
effect terms) have the following time scale:

Hence, for computing the integral C(�) , we make a change 
of variable:

that transforms the integral to

where U is the large-scale velocity, and �d is the dissipative time 
scale. We focus on � in the inertial range, hence L∕U𝜏 ≫ 1 
and 𝜏d∕𝜏 ≪ 1 . Therefore, using Eqs. (50), (51), we deduce that 
fL(k̃(L∕U𝜏)3∕2) ≈ 1 and f𝜂(k̃(𝜏d∕𝜏)3∕2) ≈ 1 . Therefore,

where A is the value of the integral of Eq. (59). The Fourier 
transform of C(�) yields the following frequency spectrum:

(56)�(k) ∼ 1∕(kuk) ∼ �−1∕3k−2∕3.

(57)k = k̃𝜖−1∕2𝜏−3∕2

(58)C(𝜏) ≈KKo𝜖𝜏 ∫ dk̃k̃−5∕3fL(k̃(L∕U𝜏)3∕2)f𝜂(k̃(𝜏d∕𝜏)
3∕2) exp(−k̃2∕3 − k̃4∕3),

(59)

C(𝜏) ≈ KKo𝜖𝜏 ∫ dk̃k̃−5∕3 exp(−k̃2∕3 − k̃4∕3) ≈ AKKo𝜖𝜏,

(60)

C(f ) =∫ C(�) exp(i2�f �)d� = AKKo� ∫ � exp(i2�f �)d� ∼ �f −2.

Thus, the damping and sweeping terms yield frequency 
spectrum E(f ) ∼ f −2.

We could also derive the above frequency spectra using 
scaling arguments  Landau and Lifshitz (1987). From 
Eq. (23), we obtain the dominant frequency as

When �0 ⋅ � ≫ 𝜈(k)k2 and �0 ⋅ � ≫ kŨ0(k) , we obtain 
� = U0kz . Therefore, using the formula for one-dimensional 
spectrum E(k) = KKo�

2∕3k−5∕3 , and � = 2�f  , we obtain

On the contrary, when �0 ⋅ � ≪ 𝜈(k)k2 (for zero or small U0 ), 
we obtain � ≈ �(k)k2 = �∗

√
KKo�

1∕3k2∕3 and hence,

consistent with the formulas derived earlier.
The spectral exponent ( −2 ) for Burgers equation matches 

the above exponent for the frequency spectrum (for the U0 = 0 
case). However, there are important differences between 
Burgers turbulence and hydrodynamic turbulence. Burgers 
turbulence exhibits k−2 spectrum in wavenumber space (e.g. 
see  Verma 2000), but hydrodynamic turbulence for U0 = 0 
case shows f −2 spectrum in frequency space. The k−2 spec-
trum in the Burgers turbulence is related to shocks, but f −2 
spectrum for hydrodynamics has no connection to shocks.

Elliptic Approximation

In Section “Taylor’s Frozen-in hypothesis for �0 ≠ 0 , and 
frequency spectrum” we showed that the equal-time velocity 
correlation for �0 = 0 matches with unequal-space temporal 
correlation for nonzero �0 (see Eq. (33)). Elliptic approxi-
mation combines the Taylor’s frozen-in hypothesis with the 
sweeping effect. This task was performed by He et al. (2010) 
and He and Tong (2011). Here, we reproduce their arguments 
using Eq. (47).

We consider a fluid flow with a mean velocity of �0 along 
the z axis. We focus on the vertical velocities measured at 
two points z and z + r , but at times t and t + � (see Fig. 8 
for an illustration). For the same, the space-time correlation 
derived using Eq. (47) is

(61)𝜔 = �0 ⋅ � + ckŨ0(k) − i𝜈(k)k2.

(62)E(f ) =E(k)
dk

df
∼ (�U0)

2∕3f −5∕3.

(63)E(f ) =E(k)
dk

df
∼ �f −2,

(64)
C(r, 𝜏) =∫ d�C(�) exp(−𝜈(k)k2𝜏) exp

{
[r − i(U0 + Ũ0z)𝜏)]ikz − i�̃0⟂ ⋅ �⟂𝜏

}
.

(z, t)A

B (z + r, t + ! )

B
(z + r - U0! , t)

(z, t)A

r

rE

Z

B

Fig. 8   A and B represent respectively the velocity measurements at 
locations z and z + r and at times t and t + � . The fluid element at B 
would be at B′ at time t, thus A and B′ would represent equal-time 
measurements. Note that rE = r − U0�
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Now suppose that

then

We can relate the above correlation function to an equal-time 
correlation function

with

or

where

This is the statement of elliptic approximation (He et al. 
2010; He and Tong 2011). Our derivation is slightly differ-
ent from those of He et al. (2010) and He and Tong (2011).

Thus, the elliptic approximation includes both, the 
sweeping effect and Taylor’s frozen-in turbulence hypoth-
esis. The velocities U0 and Ũ0 yield the Eulerian and 
Lagrangian space-time correlations respectively, and they 
are related to the sweeping effect and Taylor’s hypothesis 
respectively. It is easy to see that the conventional Tay-
lor’s hypothesis is applicable when U0 ≫ Ũ0 and it yields 
f −5∕3 spectrum, for which the physical interpretation is as 
follows. The velocity correlation for the velocity measure-
ments at A and B of Fig. 8, C(r, �) = ⟨�(z, t)�(z + r, t + �)⟩ , 
is same as those measured at A and B′ at the same time t, 
C(rE, 0) = ⟨�(z, t)�(z + r − U0�, t)⟩ . This is because the fluid 
element at B′ at time t reaches B at time t + �.
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(69)r2
E
= r2

Ez
+ |�E⟂|

2 = (r − U�)2 + (V�)2,

(70)U =U0 + Ũ0z
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