Kolmogorov flow: Linear stability and energy transfers in a minimal low-dimensional model

Cite as: Chaos 30, 073110 (2020); https://doi.org/10.1063/5.0002751
Submitted: 27 January 2020 . Accepted: 16 June 2020 . Published Online: 06 July 2020

Soumyadeep Chatterjee, and Mahendra K. Verma

ARTICLES YOU MAY BE INTERESTED IN

Variational approach to KPZ: Fluctuation theorems and large deviation function for entropy production
Chaos: An Interdisciplinary Journal of Nonlinear Science 30, 073107 (2020); https://doi.org/10.1063/5.0006121

Dynamics and bifurcations of a family of piecewise smooth maps arising in population models with threshold harvesting
Chaos: An Interdisciplinary Journal of Nonlinear Science 30, 073108 (2020); https://doi.org/10.1063/5.0010144

Identifying edges that facilitate the generation of extreme events in networked dynamical systems
Chaos: An Interdisciplinary Journal of Nonlinear Science 30, 073113 (2020); https://doi.org/10.1063/5.0002743
Kolmogorov flow: Linear stability and energy transfers in a minimal low-dimensional model

Cite as: Chaos 30, 073110 (2020); doi: 10.1063/5.0002751
Submitted: 27 January 2020 · Accepted: 16 June 2020 · Published Online: 6 July 2020

Soumyadeep Chatterjee and Mahendra K. Verma

AFFILIATIONS
Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016, India

Author to whom correspondence should be addressed: soumyade@iitk.ac.in
Electronic mail: mkv@iitk.ac.in

ABSTRACT
In this paper, we derive a four-mode model for the Kolmogorov flow by employing Galerkin truncation and the Craya–Herring basis for the decomposition of velocity field. After this, we perform a bifurcation analysis of the model. Though our low-dimensional model has fewer modes than past models, it captures the essential features of the primary bifurcation of the Kolmogorov flow. For example, it reproduces the critical Reynolds number for the supercritical pitchfork bifurcation and the flow structures of past works. We also demonstrate energy transfers from intermediate scales to large scales. We perform direct numerical simulations of the Kolmogorov flow and show that our model predictions match the numerical simulations very well.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0002751

In the late 1950s, Kolmogorov urged the fluid community to explore the stability criteria of a shear flow with spatially periodic forcing, a system referred to as the Kolmogorov flow. Since then, many researchers have attempted to address the above problem using analytical, numerical, and experimental tools. The leading analytical results involve infinite or a large number of interacting Fourier modes. The numerical calculations and low-dimensional models also involve many Fourier modes. In this paper, we construct a four-mode low-dimensional model using Galerkin truncation and the Craya–Herring basis. Our minimal model of the Kolmogorov flow captures the essential features of its primary bifurcation and the critical Reynolds number very well. The model predictions are borne out in numerical simulations.

I. INTRODUCTION
Flow instability and transition to turbulence are important problems of fluid dynamics. Kolmogorov abstracted a simple shear flow with spatially periodic forcing, whose instability and bifurcation have been studied intensely over the years. Also, the Kolmogorov flow has been experimentally realized in several setups, including a soap film and an electrolytic fluid. In this paper, we analyze the stability of the Kolmogorov flow using a low-dimensional model consisting of four Fourier modes. We validate the model using numerical solutions.

Meshalkin and Sinai provided the first solution to the stability of the Kolmogorov flow. They considered an external force per unit mass, \(y \sin k y \hat{s} \), where \(y \) is the force amplitude and \(k \) is the force wavenumber. Meshalkin and Sinai considered \(k = 1 \) and analyzed the stability of the two-dimensional flow with \(L_x/L_y = 1/\alpha \). They considered small perturbation on the fundamental stream function (corresponding to the external force) and focused on its time variations. They incorporated the effects of all Fourier modes and studied the stability problem with continued fractions. An outcome of their analysis is that, for \(\alpha < 1 \), the laminar solution becomes unstable at the critical Reynolds number \(Re \) and \(Re \to \sqrt{2} \) (for normalization of Iudovich) as \(\alpha \to 0 \). They observed that the laminar solution is stable for \(\alpha > 1 \). Using an asymptotic instability analysis, Sivashinsky showed that a periodically forced two-dimensional plane-parallel flow becomes unstable beyond a critical Reynolds number. He showed the secondary flow to be chaotically self-fluctuating.

Iudovich and Marchioro extended the calculation of Meshalkin and Sinai and concluded that the laminar flow is globally stable for \(\alpha \geq 1 \). For \(\alpha < 1 \), Iudovich proved that \(Re \to \sqrt{2} \) for \(\alpha \to 0 \) and \(Re \to \infty \) when \(\alpha \to 1 \). They showed that \(Re \) increases monotonically with \(\alpha \) between \(Re = \sqrt{2} \) for \(\alpha \to 0 \) and \(Re = \infty \) for \(\alpha \to 1 \). The \(Re \) curve represents neutral stability.
Okamoto and Shōji performed a bifurcation analysis of the Kolmogorov flow with a finite set of Fourier modes and showed supercritical pitchfork bifurcation to be the primary bifurcation. They considered 544 modes for $\alpha > 0.3$, even more modes for $\alpha < 0.3$, and observed that $R_0 = 3.011193$ for $\alpha = 0.7$. Using more sophisticated calculation, Nagatou reported R_0 to be bracketed between 3.011 528 364 444 and 3.011 528 364 446. Later, Okamoto extended the bifurcation diagram to larger R using the path-continuation method. Matsuda and Miyatake studied the bifurcation diagram further and derived an exact formula for the second derivatives of their components at the bifurcation points.

The Kolmogorov flow has been simulated in experiments by inducing vortices in magnetofluids using periodically placed electrodes. Tabeling, Perrin, and Fauve observed supercritical pitchfork bifurcation at the instability of the vortices. Bondarenko, Gak, and Dolzhanski performed a similar experiment. In another experiment, Sommerv i reported the existence of an inverse cascade due to the nonlinear interactions. Herault, Pétrelis, and Fauve observed $1/f$ noise in the nonlinear regime of the Kolmogorov flow. Tabeling reviewed the experiments related to the Kolmogorov flow.

Gotô and Yamada performed instability analysis of the rhombic cells with the stream function as $\cos k_x \cos y$, where k is the aspect ratio of the cell. Kim and Okamoto performed bifurcation and inviscid limit analysis for the aforementioned rhombic vortex cells. Théry studied the effects of viscosity, linear friction, and confinement on the flow. Platt, Sirovich, and Fitzmaurice analyzed the Kolmogorov flow for $k_1 = 4$ and observed a sequence of bifurcations leading to chaos. For the same k_1, Chen and Price studied the chaotic behavior using a truncation model with nine modes. In addition, researchers have studied variations of the Kolmogorov flow to three-dimensional flows.

The Kolmogorov flow is useful not only for analyzing transition to turbulence but also for studying the inverse cascade in two-dimensional turbulence. Green reported that for $k > k_p$, kinetic energy spectrum, $E(k) \sim k^{-5/3}$, whereas for $k < k_p, E(k) \sim k$. Sommerv i studied the inverse cascade experimentally and reported the exponent to be in the range of -4.5 to -4.9 for $k > k_p$. For $k < k_p$, direct numerical simulations (DNSs) reveal that $E(k) \sim k^{-5/3}$. For random forcing in a wavenumber band near $k = k_p$, Gupta et al. showed that for $k > k_p$, the energy spectrum is of the form $k^{-3}\exp(-k^2)$; the exponential part gives an appearance of a steeper spectrum compared to k^{-3}. Zhang et al. performed a molecular simulation using the Fokker–Planck method and reported that $E(k) \sim k^{-4}$ for $k < k_p$ due to condensation in the large-scale structures. For $k > k_p$, Zhang et al. reported that $E(k) \sim \exp(-0.2k)$. Energy condensate is observed at the large scale due to an inverse cascade. Gallet and Young derived a mathematical model of energy condensation in the absence of large-scale dissipation. Mishra et al. studied the condensate regime using Ekman friction. There are more works on the Kolmogorov flow, including those by Chandler and Kerswell, Lucas and Kerswell, and Fylladitakis, and references therein.

In this paper, we consider incompressible Kolmogorov flow in a two-dimensional periodic box with the aspect ratio α and construct a low-dimensional model with four modes. We perform bifurcation analysis of the system and derive the critical Reynolds number for the instability. Our results are consistent with previous results. Besides, we also carry out direct numerical simulations of the Kolmogorov flow for the parameter used for our model. The results from these simulations are in good agreement with those from the low-dimensional model. These results give us confidence that the chosen modes are a good choice for the Kolmogorov flow.

The outline of this paper is as follows. In Sec. II, we present the governing equations and the low-dimensional model. In Sec. III, we perform linear stability and bifurcation analysis of the low-dimensional model. We describe the energy transfers among the participating modes in Sec. IV. In Sec. V, we present numerical validation using direct numerical simulation. We conclude in Sec. VI.

II. BASIC FORMULATION

For an incompressible flow, the Navier–Stokes equation and incompressibility condition are

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla p + \mathbf{F}_0 + \nu \nabla^2 \mathbf{u}, \quad (1)$$

$$\nabla \cdot \mathbf{u} = 0, \quad (2)$$

where \mathbf{u} and p are the velocity and pressure fields, respectively, ν is the kinematic viscosity, and \mathbf{F}_0 is the acceleration due to the external force. We consider a two-dimensional Kolmogorov flow in a doubly periodic box of size $L_x \times L_y$. The ratio $\alpha = L_y/L_x$ is called the aspect ratio. We assume density ρ to be unity. We take

$$\mathbf{F}_0 = \gamma \sin \left(\frac{2\pi y}{L_y}\right) \hat{x}, \quad (3)$$

where γ is the amplitude of the velocity and k_1 is the forcing wavenumber which we consider to be 1.

We nondimensionalize Eqs. (1) and (2) using $L_y/2\pi$ as the length scale and $2\pi \nu/\gamma L_y$ as the time scale and obtain the following equations:

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla p + \frac{1}{R} \sin(y) \hat{x} + \frac{1}{R} \nabla^2 \mathbf{u}, \quad (4)$$

$$\nabla \cdot \mathbf{u} = 0, \quad (5)$$

where

$$R = \frac{\gamma}{\nu^2} \left(\frac{L_y}{2\pi}\right)^3 \quad (6)$$

is the Reynolds number. A trivial stationary solution of Eqs. (4) and (5) is

$$\mathbf{u} = (\sin(y), 0), \quad p = \text{const}. \quad (7)$$

This solution represents a laminar flow.

For stability analysis, it is customary to work in a Fourier space. In this space, the equations get transformed to

$$\frac{d}{dt} \mathbf{u}(k) + \mathbf{N}_u(k) = -ikp(k) + \mathbf{F}_0(k) - \frac{1}{R} k^2 \mathbf{u}(k), \quad (8)$$

$$k \cdot \mathbf{u}(k) = 0, \quad (9)$$
where
\[N_u(k) = i \sum_p [k \cdot u(-q)]u(-p), \] (10)
\[p(k) = \frac{i}{k^2} - \frac{1}{k^2} [N_u(k) - F_u(k)] \] (11)
are the Fourier transforms of the nonlinear and pressure terms, respectively. Here, \(k = -p - q \). Note that calculation of \(N_u(k) \) requires all possible wavenumber triads. We denote the Fourier mode as \(k = (\alpha l, m) \), where \(l, m \) are integers.

The Fourier transform of the external force \(\frac{1}{R} \sin(\gamma) \hat{x} \) is
\[F_u(k) = \frac{1}{2iR} [\delta_{k,1} - \delta_{k,-1}] \hat{x}. \] (12)
That is, the forcing wavenumbers are \((0,1)\) and \((0,-1)\). Near the onset of instability, the nonlinear term \(u \cdot \nabla u \) generates other Fourier modes. In this paper, we show that a low-dimensional model having nonzero Fourier modes at wavenumbers \(k = (-\alpha,0) \), \(p = (0,1) \), \(q = (\alpha,-1) \), and \(s = (\alpha,1) \) reproduces earlier results on the Kolmogorov flow quite well (e.g., Iudovich). In Sec. V, we perform direct numerical simulations and show that our low-dimensional model reproduces the simulation results to a significant degree. Due to these reasons, we work with this set of Fourier modes. We consider the following interacting triads:
\[k \oplus p \oplus q = (-\alpha,0) \oplus (0,1) \oplus (\alpha,-1) = 0, \] (13)
\[(-k) \oplus p \oplus (-s) = (\alpha,0) \oplus (0,1) \oplus (-\alpha,-1) = 0, \] (14)
where \(\oplus \) represents a nonlinear interaction (see Fig. 1). Thus, possible nonlinear interactions for the modes with wavenumbers \(k, p, q, s \) are
\[k = [(-\alpha,-1) \oplus (0,1)] + [(-\alpha,1) \oplus (0,-1)], \] (15)
\[p = [(\alpha,0) \oplus (\alpha,1)] + [(-\alpha,0) \oplus (-\alpha,1)], \] (16)
\[q = [(\alpha,0) \oplus (0,-1)], \] (17)
\[s = [(\alpha,0) \oplus (0,1)]. \] (18)

In Sec. III, we derive the governing equations for the above Fourier modes.

III. LINEAR STABILITY AND BIFURCATION ANALYSIS

The derivation of the evolution equations for the Fourier modes gets simplified in the Craya–Herring basis.\(^{19-11}\) For the wavenumber \(k \), the unit vectors in this basis are\(^{11}\)
\[\hat{e}_3(k) = \hat{k}, \] (19)
\[\hat{e}_1(k) = \frac{\hat{k} \times \hat{n}}{\| \hat{k} \times \hat{n} \|}, \] (20)
\[\hat{e}_2(k) = \hat{e}_3(k) \times \hat{e}_1(k). \] (21)

\[u(k) = u_1(k) \hat{e}_1(k). \] (22)

Explicitly, the unit vectors \(\hat{e}_i \)’s for the four wavenumbers \((k, p, q, s)\) are
\[\hat{e}_1(k) = \hat{y}, \] (23)
\[\hat{e}_1(p) = \hat{x}, \] (24)
\[\hat{e}_1(q) = -\frac{1}{\sqrt{\alpha^2 + 1}} \hat{k} - \frac{\alpha}{\sqrt{\alpha^2 + 1}} \hat{y}; \] (25)
\[\hat{e}_1(s) = \frac{1}{\sqrt{\alpha^2 + 1}} \hat{k} - \frac{\alpha}{\sqrt{\alpha^2 + 1}} \hat{y}. \] (26)

Using Eqs. (23)–(26), we derive the evolution equations for \(u_i \)’s as
\[\frac{d}{dt} u_i(k) = -\frac{(\alpha^2)}{\sqrt{1 + \alpha^2}} (u_i'(p)u_i'(q) + u_i'(s)u_i(p)) - \frac{(\alpha^2)}{R} u_i(k), \] (27)
\[\frac{d}{dt} u_i(p) = \frac{1}{\sqrt{1 + \alpha^2}} i (u_i'(k)u_i'(q) - u_i(k)u_i(s)) \] (28)
\[+ \frac{1}{2iR} - \frac{1}{R} u_i(p), \]
\[\frac{d}{dt} u_i(q) = -\frac{1}{\sqrt{1 + \alpha^2}} i u_i'(k)u_i'(p) - \frac{1}{R} u_i(q), \] (29)
\[\frac{d}{dt} u_i(s) = -\frac{1}{\sqrt{1 + \alpha^2}} i u_i'(k)u_i(p) - \frac{1 + \alpha^2}{R} u_i(s). \] (30)
The steady-state solutions of the above equations are

\[S_0 : \begin{align*}
 u_1(k) &= 0, \\
 u_1(p) &= \frac{1}{C}, \\
 u_1(q) &= 0, \\
 u_1(s) &= 0,
\end{align*} \]

\[S_1 : \begin{align*}
 u_1(k) &= -\frac{1}{\gamma} \sqrt{r-1}, \\
 u_1(p) &= -\frac{1}{\gamma} i, \\
 u_1(q) &= -\frac{1}{\gamma} \sqrt{1+\alpha^2} \sqrt{r-1}, \\
 u_1(s) &= \frac{1}{\gamma} \sqrt{1+\alpha^2} \sqrt{r-1},
\end{align*} \]

and

\[S_2 : \begin{align*}
 u_1(k) &= \frac{1}{\gamma} \sqrt{r-1}, \\
 u_1(p) &= -\frac{1}{\gamma} i, \\
 u_1(q) &= \frac{1}{\gamma} \sqrt{1+\alpha^2} \sqrt{r-1}, \\
 u_1(s) &= -\frac{1}{\gamma} \sqrt{1+\alpha^2} \sqrt{r-1},
\end{align*} \]

where \(r = R/R_c \) with

\[R_c = \sqrt{2}(1+\alpha^2)/\sqrt{1-\alpha^2}. \]

The solution \(S_0 \) is valid for all \(r \), while \(S_1 \) and \(S_2 \) are defined only for \(r > 1 \). Also, \(u_1(k), u_1(p), u_1(q), u_1(s) \) modes of \(S_1 \) have opposite signs compared to \(S_2 \). See Fig. 2 for an illustration of steady \(u_1(k) \) for \(\alpha = 0.7 \); the figure exhibits a transition from \(S_0 \) to \(S_1 \) or \(S_2 \) at \(r = 1 \). For \(r > 1 \), the system follows either the \(S_1 \) branch or the \(S_2 \) branch depending on the initial condition. In Subsections III A and III B, we show that \(S_0 \) is the only stable solution for \(r < 1 \), while \(S_1 \) and \(S_2 \) are the stable solutions for \(r > 1 \). For \(r > 1 \), the solution \(S_0 \) is unstable. Another important point to note is that \(R_c, S_1, S_2 \) are not defined for \(\alpha > 1 \); hence, \(S_1 \) is the only solution for \(\alpha > 1 \).

In Subsections III A and III B, we analyze the stability of \(S_0, S_1, \) and \(S_2 \).

A. Stability of the laminar solution \(S_0 \)

First, we analyze the stability of the laminar solution, \(S_0 \). For the same, we linearize Eqs. (27)–(30) around \(S_0 \) and obtain the following equations:

\[\frac{d}{dt} \tilde{u}_1(k) = -\left(\frac{\alpha^2}{2\sqrt{1+\alpha^2}} \right) \left(\tilde{u}_1'(s) - \tilde{u}_1'(q) \right) - \left(\frac{\alpha^2}{R} \right) \tilde{u}_1(k), \]

\[\frac{d}{dt} \tilde{u}_1(p) = -\frac{1}{R} \tilde{u}_1(p), \]

\[\frac{d}{dt} \tilde{u}_1(q) = -\left(\frac{1-\alpha^2}{2\sqrt{1+\alpha^2}} \right) \tilde{u}_1'(k) - \left(\frac{1+\alpha^2}{R} \right) \tilde{u}_1(q), \]

\[\frac{d}{dt} \tilde{u}_1(s) = -\left(\frac{1-\alpha^2}{2\sqrt{1+\alpha^2}} \right) \tilde{u}_1'(k) - \left(\frac{1+\alpha^2}{R} \right) \tilde{u}_1(s), \]

where \(\tilde{u}_1(k), \tilde{u}_1(p), \tilde{u}_1(q), \) and \(\tilde{u}_1(s) \) represent fluctuations in \(S_0 \), and they are complex quantities. Hence, we split them into real and imaginary parts,

\[\tilde{u}_1(k) = \Re[\tilde{u}_1(k)] + i\Im[\tilde{u}_1(k)], \]

\[\tilde{u}_1(p) = \Re[\tilde{u}_1(p)] + i\Im[\tilde{u}_1(p)], \]

\[\tilde{u}_1(q) = \Re[\tilde{u}_1(q)] + i\Im[\tilde{u}_1(q)], \]

\[\tilde{u}_1(s) = \Re[\tilde{u}_1(s)] + i\Im[\tilde{u}_1(s)]. \]

Using Eqs. (35)–(38), we derive the following matrix equation:

\[\frac{d}{dt} \bar{U} = A \bar{U}, \]

where

\[A = \begin{pmatrix}
 -\frac{A}{R} & 0 & 0 & 0 & B & 0 & -B & 0 \\
 0 & 0 & 0 & -\frac{A}{R} & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & -\frac{1}{R} & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 -D & 0 & 0 & 0 & 0 & 0 & -\frac{C}{R} & 0 \\
 0 & -D & 0 & 0 & 0 & 0 & 0 & -\frac{C}{R} \\
 -D & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 D & 0 & 0 & 0 & 0 & 0 & 0 & -\frac{C}{R}
\end{pmatrix}, \]

\[\bar{U} = \begin{pmatrix}
 \Re[\tilde{u}_1(k)] \\
 \Im[\tilde{u}_1(k)] \\
 \Re[\tilde{u}_1(p)] \\
 \Im[\tilde{u}_1(p)] \\
 \Re[\tilde{u}_1(q)] \\
 \Im[\tilde{u}_1(q)] \\
 \Re[\tilde{u}_1(s)] \\
 \Im[\tilde{u}_1(s)]
\end{pmatrix}. \]

Here, \(A \) is an 8 \times 8 matrix with \(A = \alpha^2, B = \alpha^2/(2\sqrt{1+\alpha^2}), C = 1+\alpha^2, \) and \(D = (1-\alpha^2)/(2\sqrt{1+\alpha^2}) \). The solution \(\bar{U}(t) \) is a
For the stability analysis, we generate the stability matrix for S_1, S_2, and S_3 by linearizing Eqs. (27)–(30) around S_1, S_2, S_3. This exercise yields a set of equations for $\tilde{u}_1(k), \tilde{u}_3(p), \tilde{u}_3(q)$, and $\tilde{u}_4(s)$ similar to Eqs. (35)–(38). Note that $\tilde{u}_1(k), \tilde{u}_3(p), \tilde{u}_3(q)$, and $\tilde{u}_4(s)$ are fluctuations around S_1, S_2. The resulting matrix equation is

$$\frac{d}{dt}U = \mathbb{B}U,$$ \hspace{1cm} (50)

where

$$\mathbb{B} = \begin{pmatrix} -\frac{4}{R} & 0 & 0 & \pm C & D' & 0 & -D' & 0 \\ 0 & -\frac{4}{R} & 0 & 0 & 0 & -D' & 0 & D' \\ 0 & 0 & -\frac{1}{R} & 0 & 0 & \pm E & 0 & \mp E \\ \mp 8H' & 0 & 0 & -\frac{1}{R} & \pm E & 0 & \mp E & 0 \\ F & 0 & 0 & \pm G & 0 & 0 & 0 & 0 \\ 0 & -F' & \pm G & 0 & 0 & 0 & 0 & 0 \\ -F' & 0 & 0 & \mp G & 0 & 0 & 0 & 0 \\ 0 & F & \pm G & 0 & 0 & 0 & 0 & -\frac{C}{R} \end{pmatrix},$$ \hspace{1cm} (51)

and C, D', E, F, G, H are $(AA)/R, (BR)/R, -(BA'R)/(AR), (DR)/2R, (DA'R)/2R$, and A'/R, respectively. Here, $A' = \sqrt{(R/R_c) - 1}$, and A, B, C, D are the same as those defined in Sec. III A.

Similar to the stability analysis for S_0, we compute the eigenvalues of the matrix \mathbb{B}, which are

$$\lambda_1 = -\frac{C}{R},$$ \hspace{1cm} (52)

$$\lambda_2 = -\frac{C + \sqrt{A + 8EG'R^2}}{2R},$$ \hspace{1cm} (53)

$$\lambda_3 = -\frac{C + \sqrt{A + 8EG'R^2}}{2R},$$ \hspace{1cm} (54)

$$\lambda_4 = -\frac{C + \sqrt{A + 8DF'R^2}}{2R},$$ \hspace{1cm} (55)

$$\lambda_5 = -\frac{C + \sqrt{A + 8DF'R^2}}{2R},$$ \hspace{1cm} (56)

$$\lambda_6 = \frac{2C}{3R} + \frac{2R}{6O} + \frac{2R}{6O^2},$$ \hspace{1cm} (57)

$$\lambda_7 = -\frac{2C}{3R} - \frac{2R}{12O} + \frac{2R}{12O^3},$$ \hspace{1cm} (58)

$$\lambda_8 = -\frac{2C}{3R} - \frac{2R}{12O} + \frac{2R}{12O^3}.$$ \hspace{1cm} (59)

In the above expressions, I and O are complicated functions of A and R, hence, they are not presented here. The eigenvalues $\lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5$ are always real and negative. However, $\lambda_6, \lambda_7, \lambda_8$ could become complex, and still their real parts are always negative. Thus, we demonstrate that the solutions S_1, S_2 are stable for $r > 1$ for which these solutions are defined. Using these observations, we also conclude that the transition at $r = 1$ (or $R = R_c$) follows a supercritical pitchfork bifurcation, as illustrated in Fig. 2 for $\alpha = 0.7$.

In Fig. 4, we illustrate the flow profile of the vortex pattern generated by the modes of S_1 for $\alpha = 0.7$ and $R = 4.61$. Note that the large-scale vortical flow results from the presence of all the
We observe using the and Verma. For triad \((k,p,q)\) satisfying \(k+p+q = 0\), the energy transfer from \(u(p)\) to \(u(k)\) with the mediation of \(u(q)\) is

\[
S^{uu}(k|p|q) = -3|\mathbf{k} \cdot \mathbf{u(q)}||\mathbf{u(p)} \cdot \mathbf{u(k)}|.
\]

For the transfers between other Fourier modes, we employ the corresponding giver, receiver, and mediator Fourier modes.

For the laminar solution \(S_0\), energy transfers among the Fourier modes vanish due to a lack of a nonzero interacting triad. For \(S_1, S_2\), there is no energy exchange between the Fourier modes \(u(k)\) and \(u(p)\), that is,

\[
S^{uu}(k|p|q) = 0.
\]

However, there are energy transfers among other Fourier modes. They are

\[
S^{uu}(k|q|p) = S^{uu}(-k|s|p) = \gamma = \frac{\alpha^2(r-1)}{4\sqrt{2R^2}}.
\]

\[
S^{uu}(q|p|k) = S^{uu}(-s|p|k) = \sigma = \frac{(r-1)}{4\sqrt{2R^2}}.
\]

It is evident that \(\gamma\) and \(\sigma\) are positive because \(r > 1\). Also, \(\sigma > \gamma\) because \(\alpha < 1\). These energy transfers are illustrated in Fig. 1.

The energy transfer computations indicate that the velocity mode \(u(0,1)\) gives energy to \(u(\alpha,-1)\), which in turn gives energy to \(u(\alpha,0)\). Since \(\alpha < 1\), the wavenumber \((\alpha,0)\) yields the largest wavelength. Thus, the energy flows from the intermediate scale [corresponding to the wavenumber \((0,1)\)] to the large scale [corresponding to the wavenumber \((\alpha,0)\)]. Hence, we conclude that the Kolmogorov flow exhibits an inverse energy cascade, contrary to the forward energy transfer observed in three-dimensional hydrodynamic turbulence.

In Sec. V, we will describe results from direct numerical simulation and compare them with the results of the low-dimensional model.

IV. ENERGY TRANSFERS IN THE KOLMOGOROV FLOW

In this section, we will quantify the energy transfers between the interacting Fourier modes \(u(k)\), \(u(p)\), \(u(q)\), and \(u(s)\). For the same, we will employ the mode-to-mode energy transfer formalism proposed by Dar, Verma, and Eswaran\(^{11}\) and Verma.\(^{12}\)

![Image](https://via.placeholder.com/150)

FIG. 4. (a) The flow patterns for the model solution \(S_1\) with \(\alpha = 0.7\) and \(R = 4.61\). Here, \(L_x = 2\pi/\alpha\) and \(L_y = 2\pi\). (b) The same steady flow pattern, is observed in DNS for the same parameters.
TABLE I. For $\alpha = 0.7$ and $R = 4.61$, the relative amplitudes of the modes of the low-dimensional model (LDM), as well as the relative amplitudes of the dominant modes of DNS. The total energy of the DNS is 0.188 and that for LDM is 0.18. The amplitudes are for the steady state at $t = 440$. This table does not include the $-k$ modes that contain the remaining 50% of the total energy.

<table>
<thead>
<tr>
<th>$k = (k_x, k_y)$</th>
<th>$E(k)/E(%)$ (DNS)</th>
<th>$E(k)/E(%)$ (LDM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(\alpha, 0)$</td>
<td>16.035</td>
<td>15.975</td>
</tr>
<tr>
<td>$(0, 1)$</td>
<td>29.459</td>
<td>28.563</td>
</tr>
<tr>
<td>$(\alpha, 1)$</td>
<td>2.197</td>
<td>2.731</td>
</tr>
<tr>
<td>$(\alpha, -1)$</td>
<td>2.197</td>
<td>2.731</td>
</tr>
<tr>
<td>$(2\alpha, 1)$</td>
<td>0.053</td>
<td>...</td>
</tr>
<tr>
<td>$(-2\alpha, 1)$</td>
<td>0.053</td>
<td>...</td>
</tr>
<tr>
<td>$(2\alpha, 2)$</td>
<td>0.002</td>
<td>...</td>
</tr>
<tr>
<td>$(3\alpha, 1)$</td>
<td>0.001</td>
<td>...</td>
</tr>
<tr>
<td>$(\alpha, 2)$</td>
<td>0.001</td>
<td>...</td>
</tr>
</tbody>
</table>

by the $R = Re$ curve, which is the red curve in Fig. 3. These observations indicate that our low-dimensional model captures the DNS results very well for the parameters of Fig. 3.

The dominant Fourier modes of the DNS are the same as those of the low-dimensional model. The other modes have much smaller magnitudes. The flow profiles of the DNS and the model are very similar, consistent with the above observations. For example, for the parameter values, $\alpha = 0.7$ and $R = 4.61$, the steady-state flow profiles of the low-dimensional model and DNS exhibited in Fig. 4 are very similar. For the same parameter values, the steady-state values of the dominant Fourier modes for the DNS and the low-dimensional model are quite close to each other (see Table I). For the DNS, the nine modes (along with their complex conjugates) listed in Table I contain nearly all of the total energy of the system.

In our DNS, we do not observe solutions other than S_0, S_1, and S_2. That is, we do not observe any secondary bifurcation in our simulations. The DNS for $\alpha = 0.7$ and $R = 200$ too exhibits a steady vortical flow structure as in Fig. 4, thus indicating the absence of a secondary bifurcation. Note, however, that Okamoto and Shoji\cite{okamoto1998} had predicted secondary bifurcations for $\alpha = 0.98$, as well as on the unstable branch for $\alpha = 0.35$. These are specialized cases that require special initial conditions and careful time-advancing of the DNS; hence, this investigation is deferred for future.

For the computation of the energy spectrum and flux, we performed a DNS for $\alpha = 0.7$ and $R = 200$ on a relatively higher resolution of 512^2. We obtain a steady flow at $t = 1300$; at this time, the energy spectrum $E(k)$ is very steep. The steep power law of k^{-7} provides a reasonable fit to the energy spectrum, which is consistent with the predictions of Okamoto.\cite{okamoto1998} We also remark that the exponential function $\exp(-2.5k)$ too provides a reasonable fit to the spectrum; this result is consistent with the arguments that the low-dimensional systems and the dissipation range of turbulent flows exhibit an exponential spectrum.\cite{zhang2001, okamoto1998} Note that Zhang et al.\cite{zhang2001} obtained similar scaling in their simulation of the Kolmogorov flow. See Fig. 5(a) for an illustration.

We also compute the energy flux $\Pi(k)$ for the same run. The energy flux is negative for the smallest wavenumber sphere of radius 0.5, indicating an inverse cascade of energy [see Fig. 5(b)]. The simulation result is close to the model result, that is, the energy transfer from $u_1(-\alpha, -1)$ to $u_1(\alpha, 0)$ shown in Fig. 1 and discussed in Sec. IV. In addition, $\Pi(k)$ falls sharply. Thus, both the energy spectrum and the flux support earlier observations that only small wavenumber modes are active in the Kolmogorov flow. For example, see Table I.

We conclude in Sec. VI.

VI. DISCUSSIONS AND CONCLUSIONS

In this paper, we present a low-dimensional model that captures the essential features of the Kolmogorov flow. The Fourier components are in the Craya–Herring basis. We identify the fixed
points of the system and show that the system bifurcates from the laminar solution to a new solution with the vortex structure. These solutions are consistent with earlier works based on analytical, numerical, and experimental tools. In addition, we perform direct numerical simulation (DNS) of the Kolmogorov flow that exhibits similar results as the low-dimensional model.

Our low-dimensional model captures the critical Reynolds number of the Kolmogorov flow. The model predicts that the new vortex solution remains stable beyond \(R > R_c \). The critical Reynolds number \(R_c \) increases monotonically with \(\alpha \), with \(R_c \to \sqrt{2} \) as \(\alpha \to 0 \) and \(R_c \to \infty \) as \(\alpha \to 1 \). However, between these two limits, the model prediction of \(R_c \) is marginally lower than those computed using models containing a larger number of Fourier modes.\(^{11,12}\) Using energy transfers, we show that in the Kolmogorov flow, the energy flows from intermediate scales to large scales; this is contrary to the forward energy transfers in Kolmogorov’s theory of turbulence. Thus, our model captures essential aspects of the primary bifurcation of the Kolmogorov flow, and its results are consistent with earlier models.

Our DNS results are very similar to those of the low-dimensional model. For example, the flow patterns and the dominant modes of DNS are close to those of the low-dimensional model. Both DNS and the model do not exhibit any secondary bifurcation, indicating the robustness of the low-dimensional model. It is interesting to note that the six-mode dynamo model of Verma et al.\(^{15}\) showed very similar bifurcation, as described in this paper. It is possible that the Kolmogorov flow with forcing at larger wavenumbers \((k_f > 1) \) may exhibit secondary bifurcation.

There are certain discrepancies between the predictions of our model and those of earlier models. As shown by Okamoto and Shōji,\(^{11}\) we expect secondary bifurcations for \(\alpha \) very close to unity, as well as on the unstable branch for other \(\alpha \)'s. A verification of Okamoto and Shōji’s predictions on secondary bifurcations using DNS requires major fine-tuning of the initial conditions and the DNS, and it is planned for the future. Also, our model does not capture several oscillatory solutions predicted by Sivashinsky.\(^{17}\) These issues need to be explored in the future.

In summary, our four-mode model captures many of its interesting features of the Kolmogorov flow. It also opens avenues for further explorations of the Kolmogorov flow with \(k_f > 1 \) and large Reynolds numbers.

ACKNOWLEDGMENTS

We thank Roshan Samuel, Shashwat Bhattacharya, Moham-mad Anas, Narendra Pratap, Akanksha Gupta, Shadab Alam, and Manohar Sharma for useful discussions. This work was supported by the research grant (No. 6104-1) from the Indo-French Centre for the Promotion of Advanced Research (IFCPAR/CEFIPRA). Soumyadeep Chatterjee is supported by the INSPIRE fellowship (No. IF180094) of the Department of Science & Technology, India.

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author upon reasonable request.

REFERENCES