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ABSTRACT
We perform direct numerical simulations to study the effects of the finite Reynolds number and domain size on the decay law of Saffman
turbulence. We observe that the invariant for Saffman turbulence, u2ℓ3, and non-dimensional dissipation coefficient, Cϵ = ϵ/(u3/ℓ), are
sensitive to finite domain size; here, u is the rms velocity, ℓ is the integral length scale, and ϵ is the energy dissipation rate. Conse-
quently, the exponent n in the decay law u2

∼ t−n for Saffman turbulence deviates from 6/5. Due to the finite Reynolds number and
the domain size, Saffman turbulence decays at a faster rate (i.e., n > 6/5). However, the exponent n = 6/5 is more sensitive to the
domain size than to the Reynolds number. From the simulations, we find that n remains close to 6/5 as long as Rλ ≳ 10 and ℓ ≲ 0.3Lbox;
here, Rλ is the Reynolds number based on the Taylor microscale and Lbox is the domain size. We also notice that n becomes slightly
lower than 6/5 for a part of the decay period. Interestingly, this trend n < 6/5 is also observed earlier in freely decaying grid-generated
turbulence.
Published under license by AIP Publishing. https://doi.org/10.1063/5.0015009., s

I. INTRODUCTION

Turbulence is a very complex phenomenon; many of its
observed characteristics lack satisfactory explanations. Consider, for
example, one of the most classical problems of turbulence—freely
decaying grid-generated turbulence. It is clear that in freely decaying
turbulence, the kinetic energy of turbulence decays with time due to
viscous dissipation; however, there is no general agreement on its
decay rate.1 Although significant efforts have been made to under-
stand the physics of freely decaying turbulence, it still remains one
of the most debatable topics of turbulence.

Kolmogorov2 was the first to propose the decay law for freely
decaying turbulence. According to him, the decay of kinetic energy
E of homogeneous isotropic turbulence with time t is independent
of viscosity and follows a power-law E ∼ t−n with the decay law
exponent n= 10/7. Kolmogorov’s predictions for freely decaying tur-
bulence are based on the assumptions that during the decay of tur-
bulence, the Loitsyansky integral I = − ∫ r2

⟨u ⋅ u′⟩dr is invariant and

the Saffman integral L = ∫⟨u ⋅ u′⟩dr = 0; here, u and u′ are the veloc-
ities at two points separated by the displacement vector r. The freely
decaying turbulence with the Loitsyansky integral as an invariant is
commonly known as Batchelor turbulence, which exhibits energy
spectrum scaling E(k) ∼ k4 at large scales and u2ℓ5 as an invariant,
where k is the wavenumber, u is the rms velocity, and ℓ is the integral
length scale. Combining u2ℓ5 = const. with the empirical relation for
the energy dissipation rate, ϵ = Cϵ(u3/ℓ), we derive the power laws,
E ∼ t−10/7 and ℓ ∼ t2/7 for freely decaying Batchelor turbulence, where
Cϵ is a constant known as the non-dimensional dissipation coeffi-
cient. Note that the assumption that Cϵ remains constant in freely
decaying turbulence is valid only at high Reynolds numbers. At low
or moderately high Reynolds number, Cϵ changes with time in freely
decaying turbulence.3–7

Saffman8 disagreed with Kolmogorov’s assumptions for freely
decaying turbulence. He argued that in freely decaying turbu-
lence, L is a non-zero invariant, whereas I is not an invariant.
The type of turbulence in which L is non-zero and an invariant
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is commonly known as Saffman turbulence, which exhibits E(k)
∼ k2 scaling at large scales and u2ℓ3 as an invariant. Combining
u2ℓ3 = const. with ϵ = Cϵ(u3/ℓ), we obtain the well-known
power laws for freely decaying Saffman turbulence, E ∼ t−6/5 and
ℓ ∼ t2/5.

Both types of turbulence, Batchelor and Saffman, can be eas-
ily generated in direct numerical simulations (DNS).1,9,10 However,
experimental data of freely decaying grid-generated turbulence are
more consistent with the characteristics of Saffman turbulence.11–15

In a famous experiment of grid-generated turbulence, Comte-Bellot
and Corrsin11 obtained the decay law exponent n ≈ 6/5, same as that
for Saffman turbulence. Krogstad and Davidson12 observed decay
law exponent close to n = 6/5 for freely decaying grid generated
turbulence and argued that Saffman turbulence is the most prob-
able type for grid-generated turbulence. Morize and Moisy15 also
obtained n ≈ 6/5 in the grid-generated turbulence by using PIV (par-
ticle image velocimetry) measurements. These results indicate that
Saffman turbulence is more likely to manifest in grid-generated tur-
bulence. In this work, we consider only Saffman turbulence for our
analysis.

The implicit assumption in the discussed decay laws, E ∼ t−6/5

or E ∼ t−10/7, is that the Reynolds number of the turbulence remains
high (Rλ ≫ 1) throughout the decay period, and the turbulence
is freely decaying in a large domain (i.e., ℓ ≪ Lbox), where Rλ
is the Reynolds number based on the Taylor microscale and Lbox
is the domain size. However, technological constraints in exper-
iments and simulations restrict the study of freely decaying tur-
bulence to a finite Reynolds number and in a finite domain.1,13,16

Therefore, it is necessary to systematically assess the effects of finite
Reynolds number and domain size on the decay laws to enable
a fair comparison between the data obtained by using experi-
ments, simulations, and theories. This is the focus of the present
paper.

Using a phenomenological model, Skrbek and Stalp16 studied
the effect of finite domain size on freely decaying turbulence. They
predicted that due to the saturation of growing large eddies in a finite
domain, the decay law exponent n becomes higher than 6/5 in freely
decaying turbulence. Using Eddy-Damped Quasi-Normal Marko-
vian (EDQNM) model, Meldi and Sagaut17 predicted the correction
to be applied to the power-law exponent n = 6/5 due to the peri-
odic boundary conditions in a finite domain. Thornber18 studied
the effect of finite domain size on freely decaying turbulence by
using large eddy simulations (LES). He remarked that the exponent
m = 2/5 in the power law ℓ ∼ tm for Saffman turbulence is more
sensitive to the finite domain size than the decay law exponent
n = 6/5. Davidson1 and Meldi and Sagaut17 prescribed that if the
integral length scale ℓ remains less than one-tenth of the domain
size Lbox during the decay period, the effect of periodic boundary
conditions on the decay law exponent would be insignificant. Addi-
tionally, the higher value n (n > 6/5) in decaying turbulent flow can
intuitively be explained using the energy dissipation relation. For
the saturated integral length scale (ℓ = const.) in a finite domain,
ϵ = Cϵ(u3/ℓ) predicts E ∼ t−2, a faster decay than that of Saffman
turbulence (E ∼ t−6/5).

In this work, we assess some of the prior results and predic-
tions on the effects of domain size and also study the effect of finite
Reynolds number on the decay law of Saffman turbulence by using
direct numerical simulations. This paper is organized as follows:

We give details of the numerical simulations in Sec. II, discuss the
results in Sec. III, and conclude our observations in Sec. IV.

II. SIMULATION DETAILS
We solve the Navier–Stokes equation,

∂tu + (u ⋅ ∇)u = −∇p/ρ + ν∇2u + f, (1)

∇ ⋅ u = 0, (2)

in Fourier space using a pseudo-spectral code Tarang19,20 in a triply
periodic box of size Lbox = 2π. Here, u is the velocity field, p is the
pressure field, and ρ and ν are the density and kinematic viscosity of
the fluid, respectively. The forcing field f is set to zero for the freely
decaying turbulence. For time integration, we use the fourth-order
Runge–Kutta (RK4) method with time step Δt computed from the
CFL (Courant–Friedrichs–Lewy) condition. We use the 2/3 rule for
dealiasing.

For all the simulations (except one), we use the following form
of the energy spectrum with random Gaussian noise, similar to that
in the work of Ishida, Davidson, and Kaneda,9 and fix the initial
energy to unity,

E(k, t = 0) ∼ kσ exp(−(k/kp)2
). (3)

We name it Synthetic initial condition. Here, we set σ = 2 to obtain
E(k, t = 0) ∼ k2 (Saffman turbulence) scaling at large scales, and
wavenumber kp, which corresponds to the size of large eddies, is var-
ied to control the initial ℓ/Lbox. In one of the simulations, we use
a fully evolved and statistically stationary turbulence as an initial
condition. We develop this flow field by applying a random forc-
ing scheme that supplies constant energy and no kinetic helicity in
the wavenumber band kf ∈ (11, 12).21–24 We name it evolved ini-
tial condition. Interestingly, this turbulent flow also exhibits E(k)
∼ k2 scaling at large scales in the steady state. For all the simula-
tions, kmaxη > 1, ensuring that the grid spacing is sufficient to resolve
the smallest scale of the flow, where kmax is the largest wavenum-
ber in the simulations and η is the Kolmogorov length scale in the
turbulent flow.

Table I presents the details of the simulations and the key
results obtained for freely decaying Saffman turbulence. We perform
seven simulations (S1–S7) with the synthetic initial condition and
one simulation with the evolved (SF) initial condition for different kp
and ν to obtain a wide range of initial Reynolds numbers and ℓ/Lbox.
The Reynolds number based on the Taylor microscale for isotropic
turbulence is defined as

Rλ =
2
3

E

√
15
νϵ

.

τi represents the initial transient period. We estimate τi by using
the temporal variation of the decay law exponent n [Fig. 3(b)]. τi
is defined as the time when ∂n/∂τ first becomes equal to −0.01 after
the initial maximum. μn and σn given in the table are mean and stan-
dard deviation of n, respectively, from τ = τi to τ = τf , where τf is the
time when ℓ/Lbox ≈ 0.3. The values of Rλ in the table are at τ = 0, τ
= τi, and τ = τf . Note that the time τ is normalized by initial eddy
turn-over time.

In Sec. III, we discuss the results obtained from the
simulations.
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TABLE I. Details of the simulations for Saffman turbulence with the synthetic and the evolved initial conditions. N is the number of grid points in each direction. Rλ are at
τ = 0, τ = τi , and τ = τf , respectively, and ℓ/Lbox are at τ = 0 and τ = τi ; here, τf is the time where ℓ = 0.3Lbox . μn and σn are mean and standard deviation of n, respectively,
from τ = τi to τ = τf .

Runs N ν kp (kf for SF) τi τf Rλ ℓ/Lbox μn± σn

S1 512 0.001 5 5.1 6.3 320, 45, 44 0.219, 0.291 1.16 ± 0.005
S2 512 0.001 10 12.1 15.1 155, 29, 28 0.112, 0.281 1.10 ± 0.007
S3 512 0.001 20 14.9 49.7 76, 18, 17 0.056, 0.197 1.13 ± 0.009
S4 512 0.001 30 21.7 84.9 50, 13, 12 0.038, 0.177 1.17 ± 0.01
S5 512 0.001 40 21.1 154.1 38, 11, 9 0.028, 0.144 1.20 ± 0.01
S6 1024 0.0005 40 17.5 233.1 75, 17, 13 0.028, 0.111 1.21 ± 0.02
S7 1024 0.0005 80 23.4 500 37, 10, 7 0.014, 0.076 1.23 ± 0.005
SF 512 0.001 (11, 12) 15.1 81.8 46, 12, 10 0.069, 0.160 1.21 ± 0.03

III. RESULTS AND DISCUSSION

In this section, we discuss the results for freely decaying
Saffman turbulence obtained by using the synthetic and evolved
initial conditions.

Figure 1 shows the temporal variation of Rλ and ℓ/Lbox. We
observe that Rλ decreases, whereas ℓ increases with time. Runs S1
and S2 have relatively high Reynolds number and high initial ℓ/Lbox,
whereas S5 and S7 have relatively low Reynolds number and low ini-
tial ℓ/Lbox. Among all the simulations, only S6 has both reasonably
high Rλ and low ℓ/Lbox at the same time throughout the decay period.
Squares and circles marked in Fig. 1 at τ = τi and τ = τf , respectively,

indicate that as long as ℓ ≲ 0.3Lbox, the growth of the integral length
scale and the decay of the Reynolds number approximately follow
the power laws, ℓ ∼ τ2/5 and Rλ ∼ τ−1/10, respectively, for most of the
runs. Later in the discussion, we also show that the effects of finite
domain size on the decay law E ∼ τ−6/5 are not significant as long as
ℓ ≲ 0.3Lbox for Saffman turbulence.

Since the decay law for Saffman turbulence is the outcome of
the assumed constancy of u2ℓ3 and Cϵ during the decay period,
we need first to analyze their temporal variation. Figure 2 shows
the variation of u2ℓ3 and Cϵ with time. We notice that both the
quantities, u2ℓ3 and Cϵ, are not strictly constant during the decay
period. Marked circles on the lines in Fig. 2(a) indicate that the

FIG. 1. Temporal variation of (a) Rλ and
(b) ℓ/Lbox for Saffman turbulence with the
synthetic and the evolved initial condi-
tions. Dashed lines in (a) and (b) repre-
sent the power laws for Saffman turbu-
lence, Rλ ∼ τ−1/10 and ℓ ∼ τ2/5, respec-
tively. Marked squares and circles rep-
resent τ at which ∂n/∂τ ≈ − 0.01 and
ℓ ≈ 0.3Lbox , respectively.

FIG. 2. Temporal variation of (a) u2ℓ3 and
(b) Cϵ for Saffman turbulence with the
synthetic and the evolved initial condi-
tions. Marked squares and circles rep-
resent τ at which ∂n/∂τ ≈ −0.01 and
ℓ ≈ 0.3Lbox , respectively.
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FIG. 3. (a) Decay of kinetic energy E and
(b) the temporal variation of the asso-
ciated decay law exponent n for freely
decaying Saffman turbulence with the
synthetic and the evolved initial condi-
tions [inset in (b) shows time using a lin-
ear scale]. Marked squares and circles
represent τ at which ∂n/∂τ ≈ −0.01 and
ℓ ≈ 0.3Lbox , respectively. Dashed lines
represent the decay law, E ∼ τ−6/5 and
n = 6/5 in (a) and (b), respectively.

deviation of u2ℓ3 from constancy starts when ℓ becomes larger
than ∼0.3Lbox for most runs. The run S1, which has the highest
ℓ/Lbox, exhibits the maximum deviation of u2ℓ3 and Cϵ from their
constancy. For the runs (S3–S6), which have reasonably high Rλ
and low ℓ/Lbox, Cϵ remains almost constant throughout the decay
period.

Figure 3 shows the decay of kinetic energy E and the variation of
the associated decay law exponent n with time. We observe that the
decay of turbulent flow first passes through a transient period. Inter-
estingly, our simulations show that the transient period is inversely
correlated with the initial Reynolds number. As the initial Reynolds
number increases, the transient period decreases (see Table I), sug-
gesting that τi could be some sort of relaxation time in decaying
turbulent flow. As expected, the effect of the non-constancy of u2ℓ3

and Cϵ with time directly is reflected on the decay law of kinetic
energy; the exponent n does not remain close to 6/5 throughout
the decay period. The runs S1 and S2, which have relatively high
ℓ/Lbox, exhibit significant deviation from n = 6/5, and n is higher
than 6/5 in these runs. For the rest of the runs (S3–S7 and SF), which
have relatively low ℓ/Lbox, n remains close to 6/5. Note that the run
S7, which has the lowest ℓ/Lbox and Rλ among all the simulations,
shows n slightly higher than 6/5. The runs S5 and S6 with reasonably
high Rλ and low ℓ/Lbox at the same time exhibit exponent n closest
to 6/5.

These observations suggest that the effect of finite domain size
(e.g., the runs S1 and S2) and Reynolds number (e.g., the run S7) on
freely decaying turbulence makes the decay faster (i.e., n > 6/5). This
could be the main reason why experiments and simulations of freely
decaying turbulence (with low Rλ and high ℓ/Lbox) exhibit n > 6/5,
and sometimes, the results are incorrectly interpreted to represent
Batchelor turbulence (n ≈ 10/7) due to the finite Reynolds number
and domain size. Skrbek and Stalp16 discussed this observation and
argued that n > 6/5 observed in grid-generated turbulence is due to
the saturation of growing large eddies in a finite domain. Thus, using
the value of n (n = 6/5 and n = 10/7 for Saffman and Batchelor tur-
bulence, respectively) is not a reliable way of distinguishing between
Saffman and Batchelor turbulence.

Moreover, our simulations suggest that the effect of the finite
domain size on the decay law is more, as compared to the effect
of the finite Reynolds number. Also, for the simulations that have
ℓ ≲ 0.3Lbox, n remains close to 6/5 during the decay period. This
observation suggests that the condition, ℓ ≲ 0.1Lbox prescribed by
Davidson1 and Meldi and Sagaut17 to avert the effect of finite domain

size, is perhaps over-restrictive; the condition ℓ ≲ 0.3Lbox may be
sufficient to observe the decay law close to E ∼ τ−6/5 for Saffman
turbulence. A noticeable difference between the simulations with
the synthetic and the evolved initial conditions is that the decay law
exponent n for the run SF remains closer to 6/5 than that observed in
the run S2, which has kp = 10 [close to kf ∈ (11, 12)]. This difference
may be a result of the fact that S2 uses a synthetic initial condition,
whereas SF employs a more realistic initial condition—an evolved
turbulence.

For the runs S1–S6 and SF, we also observe that n becomes
slightly lower than 6/5 for a part of the decay period. Interestingly,
n slightly lower than 6/5 (n ≈ 1.1) is also observed in many grid-
generated turbulence experiments.11,12,15 Krogstad and Davidson12

argued that n < 6/5 in grid-generated turbulence arises due to the
decay of Cϵ with time in freely decaying turbulence. However, we
observe n < 6/5, for a part of the decay period, also for the runs
that exhibit increasing Cϵ with time [see S4–S6 in Fig. 2(b)]. There-
fore, the observation n < 6/5 in freely decaying grid-turbulence still
appears to be an unsolved issue, and it requires further investiga-
tions.

Figure 4 shows the temporal variation of the energy dissipation
rate ϵ. During the initial period, ϵ increases and reaches its peak.
Yoffe and McComb7 used this behavior of ϵ to estimate the initial

FIG. 4. Temporal variation of energy dissipation rate for Saffman turbulence with
the synthetic and the evolved initial conditions. Note that during the initial period ϵ
increases. Marked squares and circles represent τ at which ∂n/∂τ ≈ −0.01 and
ℓ ≈ 0.3Lbox , respectively. Dashed line represents ϵ ∼ τ−11/5.
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FIG. 5. Temporal variation of (a) energy
spectrum from τ = 0 to τ ≈ 64.4 and
(b) energy flux from τ ≈ 4.6 to τ ≈ 64.4
with time difference Δτ ≈ 4.6 for the
run S6. Note that the energy trans-
fer remains forward. The directions of
arrows indicate increasing time.

transient period. However, we employ initial temporal variation of n,
instead of ϵ, to estimate τi, since the method of Yoffe and McComb7

fails to estimate the transient period for the run SF. Unlike the runs
with the synthetic initial conditions, the energy dissipation rate ϵ for
the evolved initial condition (run SF) starts decreasing from τ = 0.
After the initial transient period, the decay of ϵ, as expected, exhibits
a power law close to ϵ ∼ τ−11/5 for the runs having ℓ ≲ 0.3Lbox.

Figure 5 shows the temporal variation of the energy spectrum
and the flux for the run S6 (other simulations exhibit similar behav-
ior). Temporal variation of the energy spectrum [Fig. 5(a)] shows
that the energy of all the scales decays with time after the initial
transient period. The energy flux Π(k), which is the net transfer
of energy out of the sphere of radius k by the modes inside the
sphere,25,26 remains positive with the decay of turbulence. It indi-
cates that the energy transfer is forward (from large to small scales)
throughout the decay period [see Fig. 5(b)]. Figure 6 exhibits shell
to shell energy transfer in Fourier space. Shell to shell energy trans-
fer is a useful tool to analyze whether the energy transfer is local
or non-local in a turbulent flow.25 Local energy transfer implies
that a major fraction of energy is transferred to the neighbor-
ing modes, whereas non-local indicates that a significant amount
of energy is also transferred to distant modes. In Fig. 6, D and
R represent the donor and the receiver shells, respectively. For

FIG. 6. Shell to shell energy transfer at τ ≈ 18.4 for the run S6. Shells D,
R = 5, 10, and 15 correspond to wavenumbers k ≈ 14, 52, and 196, respectively.
Note that the energy transfer is forward and local.

more details on the shell to shell energy transfer, see the work
of Verma.25 With these definitions, Fig. 6 shows that the energy
transfer not only remains forward but also local in freely decaying
turbulence.

IV. CONCLUSIONS
In this work, we study the effects of finite Reynolds number

and domain size on the decay law of freely decaying Saffman turbu-
lence by using direct numerical simulations. We observe that due
to finite Reynolds number and domain size, the decay law expo-
nent n becomes higher than that proposed for Saffman turbulence
(n = 6/5). This could be the primary reason why n > 6/5 is frequently
observed in experiments and simulations (with the finite Reynolds
number and domain size) of freely decaying turbulence. Hence, the
value of power law exponent n in any simulations or experiments is
not a trustworthy way to distinguish between Saffman (n = 6/5) and
Batchelor (n = 10/7) turbulence.

Furthermore, the effect of finite Reynolds numbers on the decay
law exponent, n = 6/5, is relatively less as compared to that of finite
domain size. Also, the effect of finite domain size on the decay
law E ∼ t−6/5 is perhaps not as restrictive as that proposed earlier
(ℓ ≲ 0.1Lbox). Our simulations suggest that the conditionsRλ ≳ 10 and
ℓ ≲ 0.3Lbox are sufficient to observe n ≈ 6/5 in decaying Saffman
turbulence. We also notice that the decay law exponent n becomes
slightly lower than 6/5 for a part of the decay period. Interestingly,
this trend n < 6/5 is also observed in earlier grid-generated turbu-
lence experiments. These observations for freely decaying Saffman
turbulence suggest that care must be taken while making any con-
clusive remarks from the data obtained from experiments and
simulations at finite Reynolds number and in a finite domain.

We also perform a similar analysis for freely decaying Batche-
lor turbulence(not included in this paper). We use σ = 4 in Eq. (3) to
ensure E(k→ 0) ∼ k4 scaling at τ = 0 for the energy spectrum. Com-
pared to Saffman turbulence, we observe a stronger dependence of
the decay law exponent n = 10/7 for Batchelor turbulence on finite
Reynolds numbers.

In this paper, we have only considered an idealized case
of turbulence—incompressible homogeneous isotropic turbulence.
However, finite Reynolds numbers and domain size may also play
a crucial role and may affect the dynamics of decaying anisotropic
and/or compressible turbulence. In a future study, it would be
interesting to analyze the effects of finite Reynolds numbers and
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domain size in more complex flows, such as decaying rotating tur-
bulence,10,22,23 magnetohydrodynamic turbulence,27 compressible
turbulence,28,29 and turbulent flow with polymer additives.30

ACKNOWLEDGMENTS
The authors thank their colleagues Manohar K. Sharma,

Roshan J. Samuel, Anando G. Chatterjee, S. Sadhukhan, Shadab
Alam, Shashwat Bhattacharya, Ali Asad, and Akanksha Gupta for
the useful discussions on freely decaying turbulence. The simula-
tions were performed at the High Performance Computing (HPC)
facility of IIT Kanpur, India.

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

REFERENCES
1P. A. Davidson, Turbulence: An Introduction for Scientists and Engineers (Oxford
University Press, Oxford, 2004).
2A. N. Kolmogorov, “On the degeneration of isotropic turbulence in an incom-
pressible viscous fluid,” Dokl. Acad. Nauk SSSR 31, 319–323 (1941).
3G. K. Batchelor, The Theory of Homogeneous Turbulence (Cambridge University
Press, Cambridge, 1953).
4K. R. Sreenivasan, “On the scaling of the turbulence energy dissipation rate,”
Phys. Fluids 27, 1048–1051 (1984).
5K. R. Sreenivasan, “An update on the energy dissipation rate in isotropic
turbulence,” Phys. Fluids 10, 528–529 (1998).
6T. Watanabe and K. Nagata, “Integral invariants and decay of temporally devel-
oping grid turbulence,” Phys. Fluids 30, 105111 (2018).
7S. R. Yoffe and W. D. McComb, “Onset criteria for freely decaying isotropic
turbulence,” Phys. Rev. Fluids 3, 104605 (2018).
8P. G. Saffman, “Note on decay of homogeneous turbulence,” Phys. Fluids 10,
1349 (1967).
9T. Ishida, P. A. Davidson, and Y. Kaneda, “On the decay of isotropic turbulence,”
J. Fluid Mech. 564, 455–475 (2006).
10P. A. Davidson, N. Okamoto, and Y. Kaneda, “On freely decaying, anisotropic,
axisymmetric Saffman turbulence,” J. Fluid Mech. 706, 150–172 (2012).
11G. Comte-Bellot and S. Corrsin, “The use of a contraction to improve
the isotropy of grid-generated turbulence,” J. Fluid Mech. 25, 657–682
(1966).

12P.-Å. Krogstad and P. A. Davidson, “Is grid turbulence Saffman turbulence?,”
J. Fluid Mech. 642, 373–394 (2010).
13L. Djenidi, M. Kamruzzaman, and R. A. Antonia, “Power-law exponent in the
transition period of decay in grid turbulence,” J. Fluid Mech. 779, 544–555 (2015).
14M. Sinhuber, E. Bodenschatz, and G. P. Bewley, “Decay of turbulence at high
Reynolds numbers,” Phys. Rev. Lett. 114, 034501 (2015).
15C. Morize and F. Moisy, “Energy decay of rotating turbulence with confinement
effects,” Phys. Fluids 18, 065107 (2006).
16L. Skrbek and S. R. Stalp, “On the decay of homogeneous isotropic turbulence,”
Phys. Fluids 12, 1997–2019 (2000).
17M. Meldi and P. Sagaut, “Turbulence in a box: Quantification of large-scale res-
olution effects in isotropic turbulence free decay,” J. Fluid Mech. 818, 697–715
(2017).
18B. Thornber, “Impact of domain size and statistical errors in simulations of
homogeneous decaying turbulence and the Richtmyer-Meshkov instability,” Phys.
Fluids 28, 045106 (2016).
19A. G. Chatterjee, M. K. Verma, A. Kumar, R. Samtaney, B. Hadri, and R. Khur-
ram, “Scaling of a fast Fourier transform and a pseudo-spectral fluid solver up to
196608 cores,” J. Parallel Distrib. Comput. 113, 77–91 (2018).
20M. K. Verma, A. Chatterjee, K. S. Reddy, R. K. Yadav, S. Paul, M. Chandra, and
R. Samtaney, “Benchmarking and scaling studies of pseudospectral code Tarang
for turbulence simulations,” Pramana 81, 617–629 (2013).
21D. Carati, O. Debliquy, B. Knaepen, B. Teaca, and M. K. Verma, “Energy
transfers in forced MHD turbulence,” J. Turbul. 7, N51 (2006).
22M. K. Sharma, M. K. Verma, and S. Chakraborty, “Anisotropic energy transfers
in rapidly rotating turbulence,” Phys. Fluids 31, 085117 (2019).
23M. K. Sharma, A. Kumar, M. K. Verma, and S. Chakraborty, “Statistical fea-
tures of rapidly rotating decaying turbulence: Enstrophy and energy spectra and
coherent structures,” Phys. Fluids 30, 045103 (2018).
24M. K. Sharma, M. K. Verma, and S. Chakraborty, “On the energy spectrum of
rapidly rotating forced turbulence,” Phys. Fluids 30, 115102–115110 (2018).
25M. K. Verma, Energy Trasnfers in Fluid Flows: Multiscale and Spectral Perspec-
tives (Cambridge University Press, Cambridge, 2019).
26M. K. Verma, “Statistical theory of magnetohydrodynamic turbulence: Recent
results,” Phys. Rep. 401, 229–380 (2004).
27A. Brandenburg and T. Kahniashvili, “Classes of hydrodynamic and magneto-
hydrodynamic turbulent decay,” Phys. Rev. Lett. 118, 055102 (2017).
28R. Samtaney, D. I. Pullin, and B. Kosović, “Direct numerical simulation of
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