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Proper Orthogonal Decomposition vs. Fourier Analysis for
Extraction of Large-Scale Structures of Thermal Convection
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We performed a comparative study of extraction of large-scale flow structures
in Rayleigh Bénard convection using proper orthogonal decomposition (POD)
and Fourier analysis. We show that the free-slip basis lunctions capture the
flow profiles successfully for the no-slip boundary conditions. We obscrve that
the large-scale POD modes capture a larger fraction of total cnergy than the
Fourier modes. However, the Fourier modes capture the rarer flow structures
like How reversals better, The flow profiles of the dominant POD and Fourier
modes are quite similar. Our results show that the Fourier analysis provides an
attractive alternative to POD analysis for capturing large-scale flow structures.

Keywords: Proper Orthogonal Decomposition; Fourier Analysis; Convection

1. Introduction

In fluid fAows, the large-scale structures play a major role in its dynamics.
Heuce, an identification of such structures is critical for understanding fAuid
flows. Proper Orthogonal Decomposition (POD)'"* is one of the popular
wethods for this task. In this paper we employ a POD sclhieme called
“snapshot method” %%, in which a nunber of uncorrelated and discrete time
snapshots of the How field are used.

An alternate tool for identifying large-scale structures is Fourier analy-
sis®, which is relatively easier to compute. Recently, Chandra and Verma®
showed that the Fourier modes play a critical role in the reversal dynam-
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ies of turbulent convection. Note that a large number of low-dimensional
models have been constructed using the large-scale Fourier modes. There
are several low-dimnensional models based on POD modes as well®9, but
Fourier modes are more amenable for this purposc.

In the present work, we perform a comparative stndy between POD and
Fourier analysis by employing them to Rayleigh-Bénard convection in a 2D
hox, We will emphasise similarities and dissimilaritics between these two
diagnostics tools.

2. Large-scale Structures of RBC in a Two-dimensional Box

\We simulate Rayleigh-Bénard convection (RBC) in a square box of unit
dimension. For the velocity ficld we assumnc no-slip boundary conditions
(1 = v = 0) on all the walls, and for the temperature field we consider the
top and bottom walls to be perfectly conducting, while the side-walls to be
insulating. The relevant nondimensionalized equations under Boussinesq
approximation for the flow are

Ov+{(v-V)v==VP+ RaPrTy+ Prviv, (1)
T + (v- V)T = VT, (2)
V-v=10. (3)

where v = wi + v} is the velocity ficld, 7" is the temperature field, the
Rayleigh number Ra is the ratio of the buoyancy term and the nonlinear
term, the Prandtl number Pr is the ratio of the kinematic viscosity and
the thermal diffusivity, and ¢ is the buoyancy direction.

We solve the equations in a unit square box for Prandtl number Pr = 1,
and Rayleigh number R = 2 x 107, For this parameter, the flow is turbu-
lent. The fow also exhibits How reversals, that is, probes near the vertical
walls exhibit random reversals of the velocity field. For the simulation we
use spectral element code NEK50009, and employ 28 x 28 spectral elements
with seventh-order polynomials inside each element. Thus the overall reso-
lution of the simulation is 196 x 196 grids. The aforementioned resolution is
sufficient to resolve the boundary layers. We remark that a two-dimensional
RBC in an experiment can be realised when the depth of the setnp is much
smaller compared to the height and the width; in such systems, the modes
along the depth are not generated in a significant manner.

We ran our simulation till the system attains a steady state. During
the steady state, we focus our attention on the flow during an interval fromn
thermal diffusive time £, = 12,765 to tp = 12.792, between which a flow
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reversal is observed. We analyse the dominant flow structures during this
interval.

For the POD analysis™® we take 1000 snapshots of the fow in the
aforementioned cquidistant interval. The simulation data were interpolated
on a uniform mesh of (192 x 192). For the POD analysis, we construct 1000
veetors using the two components of the velocity and the temperature field.
Following this, a correlation matrix of these vectors was constructed™®?,
First ten most cnergetic POD modes were identified using this correlation
matrix*?, which contain 97.5% of the total energy. In Fig. 1 we illustrate
the energy ratio Ej,/E), where E, represents the energy of the p-th POD
mode. Clearly, £,/E; decreases sharply with p (E;/Ey ~ 14). Also, the
first POD mode contains 88% of the total energy. The first three POD
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The flow velocity at all the four walls is zero, ie., v = 0. A spectral
decomposition of the no-slip boundary condition involves Chiebyshev poly-
nomials that resolve the boundary layers quite efficiently. Note however
that the flow structures in the boundary layers are of “small scales”, and
they can be ignored while computing the large-scale flow structures. Chan-
dra and Verma” observed that the free-slip basis functions defined helow

= Z i (k) sin(rnma) cos(nmy)

e,

v = Z Dy n (k) cos(max) sin(nmy) {(4)

m,n
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capture the large-scale flow structures quite well. Here &y = mx, ky = nw
with 22, 1t as positive integers, iy, n, Om,» are the Fourier components of u
and v respectively?. Note that the free-slip basis functions do not satisfy
the no-slip boundary condition. The success of the free-slip basis functions
in capturing the large-scale structures is due to the fact that ignored modes
at the boundary layers belong to the small-scale structures.

The temperature field satisfies the conducting boundary conditions at
the horizontal plates (T=constant), and insulating boundary conditions
(T/dxr = 0) at the vertical walls. It is customary to separate T into
conducting and convective part, i.e.,

T(r,y) = T(y) + 0(x,y) (5)
where T'(y) = 1—y is the conduction profile for the nondimensionalized sys-
tem, and # is the temperature fuctuations over T(y). The aforementioned
thermal boundary conditions yields:

f = Z O, (k) cos(anma) sin{nmy) {6)
T, T

The Fourier transforms can be performed for cach snapshot indepen-
dently, which is one of the main advantages of this analysis, contrary to
POD that requires many snapshots. However to study the dynamics and
cvolution of the flow structures during a reversal, we study 1000 snapshots
of the flow. We compute the Fourier modes for cach frame [Eqs. (4, 6)]. The
energy of the higher wavenunber modes decreases sharply, consistent with
the Kohnogorov theory of turbulence. Since our focus is on the large-scale
structures, we take the first 10 Fourier modes that contain approximately
93% of the total kinctic encrgy. In Fig. 1 we plot the ratio B, ,./Ey1,
where E,, , represents the kinetic energy of the (m, n) Fourier mode. The
Fourier analysis reveals that the modes (1,1), (2,2}, and (1, 3) are the most
dominant modes in the flow. The first Fourier mode has 58% of the total
energy. The Fourier modes of the flow are shown in right column of Fig. 2
as F1-F3.

When we compare the two methods for the extraction of large-scale
flow structures, we observe that POD modes are more optimal than the
Fouricer modes. For example, the first 10 POD and first 10 Fourier modes
contain respectively 97.5% and 93% of the total energies. Also, the first
POD mode contains 88% of the total energy, but the correspending Fourier
mode contains only 58% of the total encrgy. However, the flow structures
of the first three POD modes are distinctly similar in their shape to the
first three Fourier modes, but the higher order modes differ. Note however
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Fig. 2. Plots of the three moat energy POD modes (lefi column) and the corresponding
Fourier todes (right column). The top three POD modes are {P1) POD-1, (P2) POD-2
and (P3} POD-3. The top three energetic Fourier modes are (F1) (1,1) mode, (F2) (-,-)
mode and (F3) (1,3) mode.

that the directions of the velocity fields of the POD and Fourier modes arc
anti-correlated, hence the amplitudes of these modes are also opposite to
cach other (to be discussed below).

The amplitude of & POD mode is computed by projecting the snapshot
to the POD mode. The time series of the first five Fourier and POD modes
are exhibited in Fig. 3 that shows that the amplitudes of the POD and
Fourier modes are anti-correlated to each other. This is consistent with
the anti-correlation of the velocity ficlds for the corresponding POD and
Fourier modes (see Fig. 2). During the flow reversal between ¢ = 12.78 and
¢t = 12.785, the first Fourier mode, as well as the first POD mode, change
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sign. The second and third modes also show sharp variations during the
flow reversal”. The fourth and fifth Fourier modes also show noticeable
variations during the reversal process, but the corresponding POD modes
do not show noticeable variations during this period. This is due to the
fact that top three POD modes are most dominant in the flow, while the
fourth and the fifth POD modes are quite weak. Thus both Fourier and
POD modes provide valuable information on the dynamics of flow reversal,
details of which can be found in Sergent and Podvin®?, and Chandra and
Verma“.

The recounstruction of the snapshots using the POD and Fourier modes
is shown in Fig. 4 where we show the 5-th and 670-th snapshots of the Aow.
The 5-th snapshot is reproduced acenrately by both the POD and Fourier
analysis. However for the 670-th snapshot, which depicts the corner-roll
flow structure, POD reconstruction is poorer than the Fourier one. The
reason for the discrepancy is due to the averaging process of the POD
analysis. On the average, the first POD mode is more dominant than the
sccond POD-mode (Es/E, = 1/14). For the 670-th snapshot, the second
POD mode is the most important mode, but its contribution towards the
reconstruction of the snapshot get suppressed by the most dominant first
POD mode. On the other hand, Fourier modes correctly reconstructs the
670-th snapshot since each snapshot has its own set of Fourier modes, and
the (2,2} mode is more dominant than the (1,1) mode for the 670-th suap-
shot. Hence Fourier recoustruction is better than the POD reconstruction
for dynamic flows.

3. Conclusions and Discussions

In this paper we proposed that the low-wavenumber Fourier modes are good
candidates for identifying large-scale iow structures, and they provide an
alternative to POD analysis. In support of cur argument, we perform a
comparative study of the POD and Fourier analysis of 1000 snapshots of
the flow profiles in o two-dimensional Rayleigly Bénard convection.

The low wavenumber Fourier modes capture the large-scale structures
of the flow quite well. However, the first N POD modes contain more
energy than the corresponding Fourier modes. Due to this, a reproduction
of a flow pattern requires fewer POD modes than the Fourier modes, but
the difference is not very significant. Note however that Fourier modes can
be computed for cach snapshot separately, but the POD analysis requires a
large set of snapshots. A simple estimation shows that the Fourier analysis
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Fig. 3. Plot of the time series of the most cnergetic five Fourier and POD modes of
the vertical velocity v during the reversal. POD cocfficients are scaled appropriately for
visual clarity.

is computationally less expensive than the POD analysis. This is nseful
while dealing with large three-dimensional datasets. Moreover, the Fourier
modes have simpler visual interpretations than the POD modes.

A major objection to the usage of Fourier analysis is its inapplicability
to no-slip boundary couditions. However, the small-scale structures of a
boundary layer do not contribute significantly to the large-scale structures.
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Fig. 4. TRecoustruction of the 5th and 670th snapshots using the first ten POD and ten
Fouricr modes. Both the POD and Fourier reconstruction are reasonably goad, but the
the 670th snapshot is better reconstructed using the Fourier modes.

The RBC example discussed in this paper and in Chandra and Verma’

show that free-slip basis can eapture the large scale flow structures cven
under no-slip geometries quite well.

Thus, POD and Fourier analysis have their own advantages and disad-
vantages. For idealised geometries like a box, Fourier analysis provides an
attractive alternative to POD.
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