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Using direct numerical simulation we demonstrate that for isotropic stably-
stratified llows follow Balgiano-Obukhov sealing, i.e, the kinctic energy spec-
trum Ey (k) ~ &7 1% the entropy spectrimn Eg(k) ~ k=7/5, and kinetic en-
crgy ftux I, (k) ~ &=V5, This is due to the conversion of kinetic cnergy Lo po-
tential energy because of buoyancy. For Rayleigh Bénard convection, we argue
that T, (k) is a nondecreasing function of & due to the positive cnergy supply
rate by buoyancy. Our numerical simulations show that the convection tur-
bulence follows Kolmogorov-like sealing (B, (k) ~ &~ %) with Kolmogorav's
constant approximately 1.4.

Keymwords: Startified turbulence; Rayleigh Bénard convection; Direct munerical
sirmmlation; Buoyancy-driven turbulence.

1. Introduction

Buoyancy-driven flows are observed in planets, stars, galaxies, as well as
in electronic devices and industrial applications. Understanding of such
systems are critical for modeling complex fluid flows, e.g., terrestrial at-
mosphere, weather predictions, planctary boundary layers, cte. One of the
most important topic in this field is to study the sealing of spectrum and
fluxes of kinctic energy (KE, */2), and that of entropy (62/2). Here u and
¢ are the velocity and temperature fluctuations'2. In this paper, we will
compute these quantities using direct munerical simulations and show that
the spectrum differs from Kolmogorov's theory when buoyancy is strong.

The dynamical equations describing the buoyancy-driven flows under
the Boussinesq approximation are

du +(u-Vu= —-V—U+a-g9£'+yV2u+f“, (1)
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where u is the velocity field, # and ¢ are the temperature and pressure
fluctuations, respectively, with reference to the conduction state, £ is the
buoyancy direction, F¥ is the external foree field, d is the characteristic
lengtly, and gy, v, and & are the Auid’s wmean density, kinematic viscosity,
and thermal diffusivity respectively. Gravity-driven flows exhibit variety
of nonlincar phenomena depending on the strength of gravity and the ex-
ternal forcing. We categorise these phenomena in terms of the important
paraneters of buoyancy-driven turbulence:

Brunt Viisili frequency Ny = 9 (45 = fay ar (4)
Mo ldz dz
. YA
Rayleigh number Ra = dj?cq g (5)
Urins
Froude number Fr = s ‘
roude number iN, (6)
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Yiins dz Fr
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Prandtl number Pr = 7 {9)
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where ., is the rms velocity of How. The Brunt Viisild frequency is
the frequency of the gravity wave, the Froude number is the ratio of the
characteristic fluid velocity and the gravitational wave velocity, and the
Richardson number is the ratio of the buoyancy and the nonlinearity (u -
Viu.

The generic behaviour for various range of parameters are:

(1) Stably stratified flows: When dT/dz > 0, the flow is stabie and we
observe the following behaviour.

(a) Internal gravity waves: When the nonlinearity is weak (Re < 1), we
obtain internal gravity waves as the solution of the above equations.
The frequency of gravity wave is N . Weak nonlinearity induces
weak turbulence in the gravity waves.

(b) Quasi two-dimensional turbulence: When the nonlinearity becomes
significant and gravity too is strong (Fr « 1), the flow along
the buoyancy direction is suppressed, and it becomes quasi two-
dimensional. Such flows have been studied extensively by Lind-
borg®*, Brethouwer et al.®, and others.



{c) Approximately isotropic turbulence: When the gravity is relatively
small but nonlinearity is strong (Re 3 1), the flow becones isotrop-
ically turbulent. When the Richardson munber, which is the ratio
of the buoyaney force and the nounlinearity, is of the order of unity,
we obtain Bolgiano-Obuklhov scaling (to be described below). How-
ever when the Richardson number is small, we obtain the usual
Kolmogorov's spectrum.

(2) Convective flows: When dT/dz < 0, the flow is intrinsically unsta-
ble and it becomes convective. The system exhibits convective rolls
and patterns for small nonlinearity, but turbulence for large nonlinear-
ity. We will show below that such flows in the turbutent limit exhibit
approximate Kolmogorov’s spectrum.

(a)
L/ Stratified system
RN
1 ]
T T <} !
Random Force kB kd b
(bl Convective system
g ! 1
E 1 I
= T it ST
1.0 >0, '
Iﬁf kd b

Fig. 1. Schematic diagrams of encrgy flux My (k) (a) In a stably stratified fow, T, (k)
decreases with & due to a negative energy supply rate R{u:(£)0*{(£k)}. (1) In a thermally
driven flow (e.g., Rayleigh Bénard convection), 1T, {k) is o non-decreasing function of
k (in incrtial range) due to » positive R{uz(E)0*(k)}. Thus I, (k) first increases for
k < ke, where F(k) > D(k), then (k) = const ky < k < ky, where F(k) = D(k);
T, (k) deereases for k > ky where F(E) < D(k). Hore &y is the Kolmogorov's dissipation
wavenumber, [Figure adapted from Kumar ef al. ')

For stably stratified flows, Bolgiano® and Obukhov? first proposed a
phenomenology, according to which

E.(k) = e1(a’geq)*/" (10)
Eo(k) = ca(ag)™*", %—7/5, (11)
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IIp(k} = €9 = constant, (12)
(k) = ex(a®gPep) k1%, (13)

where & is the wavemumber, ¢y is the entropy dissipation rate, E,. (k) is
the kinetic energy spectrum, Ep(k) is the entropy spectrum, I, (k) is
the kinetic energy flux, and Tlg(k) is the entropy flux, and e;’s are con-
stants. The KE flux of a stably stratified flow is depleted at different
length scales due to conversion of kinctic energy to “potential cuergy”; here
F(R) = R{u.{k)6"(k)) < 0. As a result, IT,, (k) decreases with wavenumber
(see Fig. 1(a}), and the energy spectrum is steeper than that predicted by
Kolmogorov theory (E(k) ~ k~%/*). The aforementioned scaling (Egs. (1-
4)) is referred to as BO scaling, while the usual Kohnogorov-scaling &~5/%
is called Kolmogorov-Obukhov (KO) scaling. Note that the aforementioned
scaling assumes that the turbulence is fully developed and isotropic. In this
paper, we demonstrate that the stably stratified flows exhibit BO scaling
when buoyaney is strong, and it exhibits KO scaling when the buoyancy is
wealk.

Procaccia and Zeitak®, L'vov?, L'vov and Falkovich!®, and Rubin-
stein!! proposed that a similar scaling is also applicable to Rayleigl-Bénard
convection (RBC) with the assumption that F(k) < 0. In this paper, we
demonstrate using munerical simulations and phenomenological arguments
that F(k) > 0 for RBC (see Fig. 1(b)). Consequently IT, (k) would increase
with &, and E, (k) would be cither Kolmogorov-like or shallower then &5/,
These observations of non-decreasing IT, (k) contradict the earlicr predic-
tions on RBC®* ' but they are in agreement with the numerical results
of Skandera et al.'2, For further details see Kumar ¢f ol and Verma et
al 14,

2. Numerical Methods

We solve the following non-dimensionalized form of Egs. (1,2,3):

du . [Pr o "
a"F(U'V)u——VO’-{-B.«-I- Rav u+4f , (14)
G 1 o
+ (u:V)f = Su, + —=V"4, 15
a ( = Vv R:I.PI‘ ( d)

V-u=40. (16)
These equations Lave been nondimensionalized using d as the length scale,
VvagAd as the velocity seale, and A as the temperature seale, The param-
eter § = (dT'/dz)/(A/d), where A is the absolute temperature differences
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in height d, takes values +1. For RBC, the temperature of the top plate is
lower than that of bottom one, hence § = +1, but for the stably stratified
flows, the temperature gradient is opposite, f.o,, § = —1.

We perform our direct nnmerical simulation of the above equations using
a psendospectral code Tarang! in a three-dimensional periodic box of size
(27)*. We use fourth-order Runge-Kutta (RK4) method for time stepping,
Courant-Freidricks-Lewey (CFL) condition for computing time step Af, and
3/2 rule for dealiasing. We apply a random force to the flow in the band
2 < k < 4 using the scheme of Kimura and Herring'® to obtain a steady
turbulent flow.

For RBC, we performed a simulation in unit box with 512% grid. For the
horizontal plates, we employ a free-slip boundary condition for the velocity
ficld and a conducting boundary condition for the temperature field. For
the vertical walls, we apply a periodic boundary condition for both fields.
Note that for RBC f* = 0 since the buoyancy makes the flow turbulent by
itself.

3. Results and Discussions

3.1. Stably stratified turbulence

Table 1. Parameters of our numerical simulations for stably stratified turbulence
(85T) and Rayleigh Bénard convection {(RBC): flow type, grid size, Rayleigh oum-
ber Ra, Richardson number R, Froude number Fr, Reynolds number Re, kinetic
energy dissipation rate €,, thermal dissipation rate ey, and averaged Al We choose
Prandt] number Pr = 1 for both the runs.

Flow Type Grid Ra Ri It Re €n ) At

SST  1024% 5x10° 0.01 1.4 649 114 150 3.5%x 107°
RBC 5123 107 16 NA 790 88x10”% 107% 6.2x 107"

We perform large-resolution simulations for Pr = 1 and Rayleigh num-
ber Ra = 5 x 10%. We report our resnlts when the flow has reached a steady
state. We find that the Richardson nunber Ri = 0.01. Thus buoyancy is
comparable to the nonlinear term in our simulation. The other parameters
of our runs are listed in Table 1.

We compute the KE and entropy spectra and fluxes for the steady-state
data of the above run. Figures 2{a, b) indicate that the BO scaling fits
with the numerical data better than the KO scaling. The KE and entropy
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Fig. 2. For stably stratified turbulence (SST) with Pr = 1 and Ri = 0.01, plots of {u)
normalized KE spectra, (b) normalized entropy spectra for Bolgiano-Obuklioy {BO) aml
Kolnogorov-Obukhov {K0) scaling, (e} KE fiux I, (k), normalized KE flux I, (k)RS
and entropy flux Myik), and {d} negative F(&) for stably stratified fow. I

fluxes are plotted in Fig. 2(c). Clearly, the KE flux T, (%) is positive, and
it decreases approximately as k=% consistent with the BO predictions
(Eq. (13)). The entropy flux ITp is a constant, and the energy supply rate by
buoyancy, F(k) = R{u.(k)8*(k)}, is negative (see Fig. 2(d)). These results
show that the BO scaling is valid for stably stratified fows for Rj = O(1).
We remark that the flow is approximately isotropic,

3.2. Rayleigh Bénard convection with Pr = 1

We performed a numerical simulation of RBC with for Pr = 1 and Rayleigh
number Ra = 107 (sce Table 1). We employ free-slip boundary condition
for our simulation. We report the spectra and fluxes of kinetic energy and
eutropy (62/2) after the fAow has reached a steady state.

In Fig. 3(a), we plot the normalized K specira for the BO and the
KO scaling. The plots indicate that the KO scaling fits better than the
B0 scaling for & narrow band of wave numbers (the shaded region, 15 <
k < 40). In Fig. 3(b), we plot the entropy speetrum that exhibits a dual
branch, with the upper branch scaling as k=2, whose origin is related to the
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Fig. 3. For convective turbulence (RBC) with Pr = 1 and Ra = 107, plots of (a)
normalized IKE spectra for (B0O) and (KO) scaling; {b) entropy spectrum that exhibits
a dual branch. The upper branch of Ep(k) matches with &~2 quite well, while the
lower part is fluctuating. {c) KE flux I, (k) and entropy Hux I(k); (d) F(k), D{k}),
F(k) — D(k), and dll,{k)/dk. Shadow region shows the inertial range.

observation that 6(0,0,2n) = —1/{2n7), where # is the Fourier transform
of the temperature fluctuations!”. The KE and entropy fluxes, shown in
Fig. 3(c), demonstrate that the fluxes are constant, consistent with the KO
scaling,.

For RBC we observe that F(k) = 0, as shown in Fig. 3(d). In Fig. 3(d),
we also plot D{k), F(k) — D(k), and dIl,(k)/dk. For the wavenunbers
band 15 < & < 40, F{k) = D(k), hence dIL, (k)/dk = 0 or I1,(k) = const.
This constant KE flux yiclds E,, (k) ~ k=33, Note that the aforementioned
Kolmogorov’s —5/3 spectrum is not due to a constant energy flux, but due
to a cancellation of the energy supply rate with the dissipation rate. For our
run, the Reynolds nunber Re == 790, which is moderate. For Re = 790, the
Kolmogorov's length is n = Re™/'L =~ L/133, where L = 1 is the size of
the box. Consequently the dissipation starts at the length [y = 605 = L/2
or at the wavenumber of kg = 27/l = dm, which is consistent with our
results exhibited in Fig. 3.

The aforementioned arguinents show that the behavionr of F(k) and
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I, (k) for the stably stratified fow and RBC are quite different!®. Our
numerical results are consistent with our finx-based arguments, but they
differs from those of Procaccia and Zeitak®, L'vov?, and L'vov and
Falkovich 9.

We also compute Kolmogorov's constant for the above run. We find
that in the inertial range I, ~ €, &= 8.8 x 107*, and E,(k)k%* = 0.06.
Therefore,

RYETE!
I\-I\'o = -‘-E-Eﬁé-)fii— = 1.4, (17)
u
which is in agreement with the theoretical and experimental estimates,

The Richardson number for the RBC run is approximately 16, which is

related to the Péclet numnber Pe as following:

agd(dT /dz)
u?/d
agd*(dT/dz) v &*
vK K 2d?

: (18)

Ri=

_ RaPr
Pe?

Verina et al. '8 sliowed that
Pe = 0.24\/ RaPr. (19)

Hence Ri = 1/0.24% = 16, which matches very well with our numerical
resuits.

3.3. Rayleigh Bénard convection for small and large Pr

For RBC, the turbulence behaviour for very small or very large Prandtl
nmunuber differs significantly from that with moderate Prandtl numbers
(Pr ~ 1}. For zero and small Prandtl number, Mishra and Verma ™ showed
that the temperature fluctuations and henee the buoyancy are concentrated
at low wavenumbers. This feature makes Kolmogorov phenomenology ap-
plicable for zero and smail Prandt] numbers. Therefore the kinetic encrgy
spectra for zero and small Prandt]l number are Kolmogorov-like.

For infinite and large Prandt]l numbers, Pandey ef al. ' showed that the
viscous dissipation dominate the nonlinecar term u- Vu. Consequently, the
kinetic energy spectrum scales k~'%%, The entropy spectrum exhibits dual
branch (k=2 and another branch) for all Prandt! number flows.
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In summary, RBC turbulence with small to moderate Prandt]l num-
bers exhibit Kolmogorov scaling, while that with large and infinite Prandtl
munber exhibit B, (k) ~ k=134,

4. Summary and Conclusions

In summary, we analyse stably-stratificd and convective turbulence using
munerical simulations. For the stably-stratified flows, we restrict ourselves
o approximate isotropic regime that occurs for Fr 2 1 and Ri < 1. For
such stably stratified Aows, our numerical results on the energy spectrum,
the energy flux, and the energy supply rate by buoyancy reveal that they
exhibit Bolgiano-Obukhov BO scaling. We show that the encrgy supply rate
due to buoyancy, F(k), is negative, hence the kinetic energy is transferred
to the potential energy, which is dissipated.

We remark that the stably stratified Hows become quasi two-dimensional
when Fr < 1. The turbulent behaviour of such Aows is very different, and
it is being actively studied®.

For turbulence in RBC with moderate Prandti mnnber, we show that
the kinctic energy Aux is a non-decreasing function of £ (since F{k) >
0), and the energy spectrum of KE canuot be steeper than &~%% in the
bulk. We observe k5% energy spectrum for kinetic energy. The flux
of kinetic energy and entropy remain approximately constant here. We
estimate Kolmegorov’s constant to be around 1.4, which is in a very good
agreement with theorctical and numerical results. When combined with
earlier work ou RBC, convective turbulence with small to moderate Prandt
munbers exhibit Kolmogorov scaling, while that with large and infiuite
Prandtl number exhibit £, (k) ~ k=133,
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