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Shell Model for Buoyancy-Driven Turbulent Flows
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In this paper we construct a comprehensive shell model for the buoyancy-
driven turbulence, which is applicable to conveetive turbulence and stably-
stratificd turbulence. We simulate these models in the turbulent regime and
show that the stably-stratified turbulence exhibit Bolgiano-Obukhbov scaling

(B(k) ~ k- “./5), and the convective turbulence shows Kolmogorov spectrum
(E(k) ~ k=5/%),
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1. Introduction

Turbulent fluid flows exhibit complex behaviour. Strong nonlinear interac-
tions among large munber of modes of a turbulent flow makes the theoretical
analysis highly intractable. Shell modcls are simplified sets of the equations
of fluid mechanies in wavenumber space. They are low-dimensional models
which are successful in explaining some features of turbulence!2, e.g., the
models for fluid turbulence reproduce the Kolinogorov's theoretical predic-
tions. In a shell model, the wavemunber space is logaritlhmically divided
into NV shells, where N is the total number of shells. The energy exchange
takes place between three nearest neighbouring shells, e.g. (n+1,n,n — 1),
and cach shell contains only one mode. A major advantage of shell model
over direet numerical simulation (DNS) is its ability to solve flow simu-
Intions with very high Reynolds number (Re). For instance, a DNS of a
turbulent flow with Re & 10° would require Re™! ~ 10811 & 2 x 1020
grid points and significantly large computational time, which are impossi-
ble even in most sophisticated supercomputers of today, but such large-Re
flows can be approximately solved using a shell model with N = 76. We
remark that in the present paper we have performed shell model simulation
for Re = 10% (see Table I). A point to note is that the shell model assume
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spherical isotropy in wavenumber space.

There have been several advances in understanding of fluid turbulence
using shell model. However, till date, no convergence las been reached
on the shell model for buoyancy driven turbulence® ®, which is very im-
portant in the fows of geophysics, astroplysics, atmospheric and solar
physics, as well as in engineering. Buoyancy-driven flows exhibit variety
of phenowmena—waves, patterns, weak turbulence, and strong turbulence
(see the companion paper by Verma et al.® in this volume). Turbulence in
huoyancy-induced flows come in two categories: (a) convective turbulence
in which the hotter and lighter fluid at the bottom rises, while the colder
and lheavier fluid at the top comes down. These flows are unstable; (b)
Stably-stratified turbulence in which the lighter fluid is above the heavier
fluid.

The shell models deseribe the turbulent flows in the isotropic regime,
hence we limit ourselves to the isotropic turbulent Hows. For the isotropic
stably-stratified flows, the buoyancy should be smaller than the nonlinear
term u- Vu that corresponds to Richardson number (the ratio of buoyancy
and nonlinear term) less than unity. Strong buoyancy leads to quasi two-
dimensionality 78, whose analysis is beyond the scope of the shell model.
For the convective turbulence, the flow is approximately isotropic™'?, henee
it can be analysed nsing a shell model.

For stably stratified flows, Bolgiano'! and Obukhov!? first proposed
a phenomenology, according to which the kinetic energy (IKE)} spectrum
E. (k) ~ k~1/5 the entropy spectrum Ep(k) ~ k=79, KE cnergy flux
IL, (k) ~ &~4/5 and entropy fiux Ilp(k) = constant. This scaling is referred
to as Bolgiano-Obukhov (B0O) phenomenology %1%, Here u and 0 are the
velocity and temperature fuctnations.

Since buoyancy drives the convective turbulence, Procaccia and
Zeitak %, and L'vov !¢ proposed the BO scaling for convective turbulence as
well. However Iumar et al. '3 showed that the encrgy fiux for the convee-
tive turbulence does not decrease with wavemmber since buoyancy [leeds
the kinetic energy (coutrary to BO scaling). Kwmar ¢f al.'¥ analyzed the
energy spectrum and the energy feed due to buoyancy for the Rayleigh
Bénard convection, and showed that for a set of parimneters, the kinetic en-
ergy feed due to the buoyancy was compensated by the dissipation rate in
a region of wavenumbers, for which they observed IKolmogorov’s spectrum,

In the present paper we provide a comprehensive shell model for the
buoyancy-induced turbulence, and show that the kinetic energy spectriun
in Raylcigh Bénard convection is close to Kolmogorov’s theory of fluid tur-
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buience, while that in stably-stratified flows is proportionat to £=11/%, We
also show the existence of ultimate regime!™ in shell model for convective
turbulence. For convective turbulence, we have computed the Richard-
son number and compare it with the Péclet number scaling, similar to the
analysis for Verma ¢f al.5. Our shell model results are consistent witl the
numerical findings of Kumar ef al.’s 3.

2. Shell Model for Buoyancy-Induced Turbulence

A Sabra shell model*®? of buoyancy-driven turbulence under Boussinesg
approximations is

1 i 9
‘:[;" = Nplu,u] + agb, — vkiu, + f,, (1)
da,, dT "
ek LJpP, et — wks 2
= Ny [u,d) £ n kk:0,, (2)

where u,, is the velocity shell variable, 8,, is the shell variable for the temper-
ature fluctuations, £, is the external forcing, g is acceleration due to gravity,
a, v, k& are the thermal expansion cocfficient, the kinematic viscosity, and
the thermal diffusivity respectively, and &, = koA" is the wavenmmber of
the shell. Since the shell models are applicable to a periodic box without
walls, the above can be considered as a part of an unbound system with a
vertical temperature gradient of dT/dz.

In convective turbulence, the buoyancy compensates the dissipative
losses, hence the shell mode) for convection does not require any exter-
nal forcing to maintain a steady state. However, the shell model for the
stably stratified turbulence ueeds to be forced for obtaining a steady state.
In our shell-tnode] simulations of stubly stratified turbulence, we force n i
small wavemumnber shells randomly so as to feed a constant energy supply

rate £ to the system. The energy supply rate ¢ is divided equally to the iy
shells, hence
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where ¢, is the randomn phase of the nth shell chosen from the uniforin

distribution in [0,27]. In our simulation we force the shells n = 3 and 4,
hence ny = 2.
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The nonlinear terms Ny, [, u] and Ny [u, 8] of the above equations are

Nylu,u] = i@kt itpnes + @okyqug, gty — agky_oitn- 1, ()
N, (e, 0) = —i[kn(diag),  Ongo + dubl | 2t g0)

+k, 1 (dgu:: = 19,,+] - d;;H:l_ 14t )

—kn ..r_:(—dlu,, - 19,,_.2 - dgH,,_lu,,_ 2)] (5)

where ap = dy = 1, a2 = do = A—2, and ag = dy = 1 — A, where A
i 1 :
is chosen as golden mean whose value is (V5 + 1)/2'. The above model
ineti 2 iscous ancy terins
conserves kinetic energy Y, u;, /2 when the viscous and the buoyancy ter
are turned off. Nu, 8] is chosen as above so that

R (Z 07, Ny [, 9;) =0, (6)

where 1t is the real part of the argument.

It is couvenient to work with the nondimensionalized equations, which
is achieved by using the characteristic length ¢ as the length scale,
VagldT /dz|d? as the velocity scale, and [dT/dz|d as the tClllpCl‘ﬂt:ll’c scale.
Therefore, w, = ul\/agldT/d:\d*, 0, = 0,|dT/dz\d, k, = Kk, /d, and
t = t'(d/\/ag|dT/dz|d?). In terms of nondimensonalized variables, the

cquations are

y [Pr .
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where § = (dT/dz)/(A/d), where A is the absolute temperature differences
in height d. S = 1 for positive dT/dz (stably stratificd flows), and § = —1
for negative dT /dz (convective flows). .

The two nondimensional control parameter in the above equations are
Rayleigh munber Ra, which is a ratio of the buoyancy force and (lis:fipnti.vc
force, and the Prandtl nunber Pr, which is a ratio of the kinematic viscosity
and the thermal diffusivity. We also remark that our shell model differs from
that of Brandenburg®. .

A stably-stratified Aows are stable, hence the fluctuations would vanish
asymptotically. Hence, to generate turbulence in stably-stratified flow, we
force the large scale flows. We apply forcing f,, to shells with small # that
represents large length seales. Note that for f, = 0, we obtain u,, — 0 and
#,, — 0 asymptotically.

=i = Nl 0] - Su;, -
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3. Numerical Methods

We simulate the shell models by solving Eqs. (7) and (8). For stably-
stratified turbulence, § = 1, but for convective turbulence, § = —1. For
time stepping we use fourth-order Runge-IKutta (RK4) mmethod. We took
76 shells for the convective turbulence simulations, and 36 shells for the
stratified turbulence simulations. For both convective and stably stratified
turbunlence we take Pr= 1.

For thie stably-stratified turbulence, we performed two sets of simmla-
tious, onc with Ra = 10° and the other with Ra = 10'". To generate
turbulence, we employ random forcing to the shells 2 to 4. The Richard-
son munber, which is a ratio of the buoyancy term and the nonlincar terin
u - Vu, is an important paramcter for stably stratified turbulence. We
compute the spectra and fluxes of the kinetic energy and entropy (8°/2) by
averaging over many time frames (~ 108) of the steady-state flow.

Table I. Paramcters of our simulations of conveetive turbulence: Rayleigh number Ra,
Nusselt number Nu, Reynolds number Re, kinetic energy dissipation rate ¢, cntropy
dissipation rate ¢p, and Kolmogorov’s constant Ky, We choose number of shells N = 76

amd Prandtl number Pr = 1 for all our runs.

Ra Nu Re £y €0 Ko
101 6.0 = 10° 8.6 = 10° 36.5 48.8 1.2
10! 1.9 x 107 2.7 x 10° 76.5 61.8 0.9
1012 6.4 % 107 8.7 x 108 51.0 54.3 1.0
1014 1.9 x 108 2.7 x 107 61.8 80.6 0.9
10 G.4 x 108 8.7 x 107 3G.4 48.5 1.2
10'% 2.2 x 10" 2,9 x 10¥ 94.1 95.2 0.9

108 6.7 x 107 8.9 x 10° 42.1 108.1 1.1

For convective turbulence, we perform simulations for various Rayleigh
numbers as listed in Table I and compute various quantities listed in Table I
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using the steady-state data. We also compute the Nusselt unnmber for differ-
ent Ra's and derive a scaling relatiouship between Nu witl: Ra. Note that
the Nusselt number is the ratio of the total (convective plus conductive)
heat flux to the conducive heat flux, and it is expressed as?"

e ﬂ‘: Lt { Sl

e iz

- 7£ ity u, 8 P
Nu= M_(i__.). =1~{ ¥\ _ 14 VRaPr{u' 0 oo

dz

Here the nondimensionalized shell velocity and temperature ficld are u), =

tty/Voagd?dT [dz and 6 = (#/d)/(dT /dz)} respectively.
4. Results and Discussions
4.1. Shell model for stably-stratified turbulence
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Fig. 1. Stably stratificd turbulence with Pr = 1, Ra = 105, and Ri = 0.10: plots of
(a) normalized KE spectra, (b) normalized entropy spectra and (¢) KE flux T, (k) and
entropy flux Ig(k). The plots shows that BQ scaling fits with the data better than the
KO sculing.

For stably stratified Aow, we take Pr = 1, Ra = 10*. The energy supply
rate was chosen to be £ = 50. Under steady state, we achieved Ri = 0.10,
Reynolds number Re = 10%, kinetic energy dissipation rate ¢, = 3.9, and
entropy dissipation rate eg = 3.1. In Fig. 1{(a) we plot the normalized KE
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spectra, E, (k)k''/® for the BO scaling, and E, (k)&% for the KO scaling.
Shadow region in the figure is the forcing band. In Fig. 1(b) we plot the
normalized entropy spectra, Eg(k)k7'® for the BO scaling, and Eg(k)k"’/ .
for the KO scaling. The figure indicates that the BO scaling fits with the
numerical data better than KO scaling. Along with the speetrum results,
we also compute the KE and entropy fluxes, which are plotted in Fig. 1(c).
M, (k) ~ kY5 and Ilp = const (though not in the same wavemunber
range), consistent with BO scaling. These results show that BO scaling
is valid for stably stratified flow. We find that the energy supply rate by
buoyaney, F(k) = R{up0y), is negative, indicating a conversion of kinetic
cnergy to the potential energy . We obtain an approximate dual scaling
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Fig. 2. Stably stratificd turbulence with Pr = 1, Ra = 10" and Ri = 0.25: plot of KE
spectrum. The wavenumber range 4 < & < 18 exhibit E(k) ~ k=115 and 18 < & < 100
exhibit E{k) ~ k54,

(k=15 and £~5/3) for Ra = 10'°. For this run we keep = = 10, and nnder
steady state we achieved Ri = 0.25, Re = 2x 10%, ¢, = 0.6, and ¢y = 0.8. It
turns out that the dual scaling oceurs for a very narrow set of parameters
for which the buoyancy is strong, but not so strong so as to make the flow
quasi two-dimensional.

In addition, for small Richardson nuwber or for weak buoyancy, we
obtain Kolmogorov's k=% energy spectrum. The aforementioned results
are consistent with the DNS results of Kumar et el. 1%

4.2, Convective turbulence shell model

The parmneters used for the convective turbulence simulations are listed in
Table I. For one of the runs, Ra = 10'* and Pr = 1, we plot the normalized
KE spectrum, E,(k}k*/*, and the normalized cntropy spectrum, Eg(k)k5/3
in Fig. 3(a). The figure indicates that Kolmogorov (K0) scaling fits quite
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well with the data for three decades. We cross check our spectrum result
with the KE and entropy fluxes, which are plotted in Figs. 3(b) and 3{c)
respectively. The KE flux I1,, (k) slightly increases with & (see Fig. 3(b)) as
shown by dashed red curve and then becomes constant. The entropy flux
y(k) remains constant in the inertial range. These results demonstrate
that the IKolmogorov scaling is valid for the convective turbulence.
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Fig. 3. Convective turbulence with Pr = 1 and Ra = 10'6: plots of {a) normalized KE
spectra and normalized entropy spectra for Kolmogorov-Obukliov (KO) scaling, (b) KE
flux I, (&) and {c) entropy fux Mp(k), and {(d) energy supply rate F(R), dissipation rate
D(k), and F(k) — D(k).
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Fig. 4. Plot of the Nussclt number Nu versus Ra.  The function Nu = (Bfi.d =
lS.T)Ru:""'Qi” U1 fits well with the simulation data.

We also compute energy supply rate F(k) = R{uif}) and plot it in
Fig. 3(d). The plot indicates a positive cnergy transfer from buoyancy to
the kinetic energy !*. In Fig. 3(d), we also plot the dissipation rate D(k)
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and F(k) — D(k). F(k) and D(k) cancel each other in the inertial range,
and hence dI1,,(k)/dk = 0 or TI(k) is approximately constant. This yields
a constant KE flux IT,,(k) which leads to Kolmogorov's spectrum.

We compute the Richardson number for all convection runs, and observe
it to be approximately 0.01. The above number is related to the Péclet

munber:
agd(dT/dz)

w2 /d
 agd'(dT/dz)v #?
B UK. ke ud?
RaPr
= 5 10
P (10)

where Pe is the Péclet number. Verma et ol 20 showed that
Pe = CvRaPr. (11)

I our numerical simulations of shell model for the convective turbulence,
we observe that € = 10, hence Ri = 0.01. Since Richardson munber
is relatively small, the nounlinear termn dominates the buoyancy termy; the
observed Kolmogorov’s spectrumn is possibly because of this reason.

Since the Prandtl number is unity, the Reynolds number wed/1 is same
as the Péclet number, and it is listed in Table I for all the runs. We
compute the Kolmogorov constant Ky, using the energy spectrum and the
energy flux, We observe that Ky, listed in Table I ranges from 0.9 to 1.2.
We compute the Nusselt munber using Eq. (9), and plot it in Fig. 4 as a
function of Ra. The best fit of our data is Nu = (86.4 & 18,7)Ral0-#+0-01),
This result is consistent with Kraichnan’s predication!”, according to which
Nu ~ Ra!/? for very high Rayleigh numbers (called the ultitnate regime).

5. Summary and Conclusions

In suminary, we constructed a combined shell maodels for couvective turbu-
lence and stably-stratificd turbulence. The difference in these models is in
the temperature gradient term of the temperature equation. Using muner-
ical computation of these models we demonstrate the stably-stratified tur-
bulence shows Bolgiano-Obukhov scaling, while the convective turbulence
exhibits Kolmogorov spectrum. These results arc consistent with the recent
numerical results of Kumar et al. ™" which arc based on pseudospectral
simulation. We remark that the Bolgiano-Obukhov scaling for stably strat-
ified flow is observed for the isotropic turbulence which is observed when
the Froude nunber is of the order of unity.
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