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Dynamics and symmetries of flow reversals in turbulent convection
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Based on direct numerical simulations and symmetry arguments, we show that the large-scale Fourier modes
are useful tools to describe the flow structures and dynamics of flow reversals in Rayleigh-Bénard convection
(RBC). We observe that during the reversals, the amplitude of one of the large-scale modes vanishes, while another
mode rises sharply, very similar to the “cessation-led” reversals observed earlier in experiments and numerical
simulations. We find anomalous fluctuations in the Nusselt number during the reversals. Using the structures
of the RBC equations in the Fourier space, we deduce two symmetry transformations that leave the equations
invariant. These symmetry transformations help us in identifying the reversing and nonreversing Fourier modes.
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Many experiments [1–7] and numerical simulations [5,8–
10] on turbulent convection reveal that the velocity field of
the system reverses randomly in time (also see review articles
[11]). This phenomenon, known as “flow reversal,” remains ill
understood. In this Brief Report, we study the dynamics and
symmetries of flow reversals in turbulent convection using
the large-scale Fourier modes of the velocity and temperature
fields.

The experiments and simulations performed to explore
the nature of flow reversals are typically for an idealized
convective system called Rayleigh-Bénard convection (RBC)
in which a fluid confined between two plates is heated
from below and cooled at the top. Detailed measurements
show that the first Fourier mode vanishes abruptly during
some reversals [3,4]. These reversals are referred to as being
“cessation led.” Recently Sugiyama et al. [5] performed RBC
experiments on water in a quasi-two-dimensional box, and
observed flow reversals with the flow profile dominated by a
diagonal large-scale roll and two smaller secondary rolls at the
corners. They attribute the flow reversals to the growth of the
two smaller corner rolls as a result of plume detachments from
the boundary layers.

Several theoretical studies performed to understand re-
versals in RBC provide important clues. Broadly, these
works involve either stochasticity (e.g., “stochastic resonance”
[8,12]), or low-dimensional models with noise [13,14]. Mishra
et al. [10] studied the large-scale modes of RBC in a cylindrical
geometry and showed that the dipolar mode decreases in
amplitude and the quadrupolar mode increases during the
cessation-led reversals. Regarding dynamo, low-dimensional
models constructed using the large-scale modes and symmetry
arguments reproduced dynamo reversals successfully [7,15].

The theoretical models described above only focus on the
large-scale modes. Here too, they provide limited information
about these modes due to the small number of measuring
probes. In this report, we accurately compute large- and
intermediate-scale Fourier modes using the complete flow
profile. This helps us in the quantitative understanding of the
dynamics and symmetries of the RBC system. We also show
that these modes can describe the diagonal and corner rolls of
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Sugiyama et al. [5], as well as the cessation-led reversals of
Brown and Ahlers [3].

The equations governing two-dimensional Rayleigh-
Bénard convection under Boussinesq approximation are

∂u
∂t

+ (u · ∇)u = −∇P + Pr∇2u + RaPrT ŷ, (1)

∂T

∂t
+ (u · ∇)T = ∇2T , (2)

∇ · u = 0, (3)

where u is the velocity field, T is the temperature field,
P is the pressure, and ŷ is the buoyancy direction. The two
nondimensional parameters are the Prandtl number Pr, the
ratio of the kinematic viscosity ν and the thermal diffusivity
κ , and the Rayleigh number Ra = αg�d3/(νκ), where α is
the thermal expansion coefficient, d is the distance between
the two plates, � is the temperature difference between the
plates, and g is the acceleration due to gravity. These equations
have been nondimensionalized using d as the length scale, the
thermal diffusive time d2/κ as the time scale, and � as the
temperature scale.

We solve these equations in a closed box geometry of
aspect ratio � = 1 (denoted by B1) and � = 2 (denoted by B2)
using NEK5000 [16], an open-source spectral-element code.
We apply no-slip boundary condition on all the walls. The top
and bottom walls are assumed to be perfectly conducting, while
the side walls are assumed to be insulating. We use 28 × 28
spectral elements for B1 and 48 × 28 spectral elements for
B2, and seventh-order polynomials for resolution inside the
elements. Thus, the effective grid resolution for the B1 and
B2 boxes are 196 × 196 and 336 × 196, respectively. The
concentration of grid points is higher near the boundaries
in order to resolve the boundary layer. We perform our
simulations for Ra = 2 × 107, 108, 109 for B1, and for
Ra = 107, 2 × 107, 108 for B2, till several thermal diffusive
time units. Pr = 1 for all our runs. We observe flow reversals
only for Ra = 2 × 107 (B1) and Ra = 107 (B2). These results
are consistent with those of Sugiyama et al. [5].

In Figs. 1(a)–1(c) we display three frames of the velocity
and temperature fields for the Ra = 2 × 107 run for the � =
1 box. The three frames illustrate the flow profiles before
the reversal [(a), at t = 10.52 thermal diffusive time units],
during the reversal [(b), at t = 10.68], and after the reversal
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FIG. 1. (Color online) Top panel: Convective flow profile computed from a spectral element simulation for a box of aspect ratio � = 1,
Pr = 1, Ra = 2 × 107: (a) before the reversal (t = 10.52 thermal diffusive time units), (b) during the reversal (t = 10.68), (c) after the reversal
(t = 10.79). Bottom panel: Velocity field corresponding to (a) û1,1, (b) û2,2, (c) −û1,1. The flow patterns of the bottom panel are good
approximations of the corresponding patterns of the top panel. The corner roll of (a) can be constructed as a superposition of (d) and (e), while
(c) as a superposition of (f) and (e).

[(c), at t = 10.79] (see videos in [17]). They are very similar to
those presented by Sugiyama et al. [5]. To gain further insight
into the reversal dynamics, we decompose the velocity and
temperature fields into Fourier modes

u =
∑

m,n

ûm,n sin(mkcx) cos(nπy), (4)

v =
∑

m,n

v̂m,n cos(mkcx) sin(nπy), (5)

T =
∑

m,n

T̂m,n cos(mkcx) sin(nπy), (6)

where u = (u,v) is the velocity field, kc = π for � = 1, and
kc = π/2 for � = 2. We choose the Fourier basis over other
special functions such as Legendre or Chebyshev polynomials,
or proper orthogonal decomposition (POD) due to the elegant
form of the nonlinear interactions in the Fourier basis. Here the
interactions are triadic with k = p + q, where k, p, and q are
the interacting Fourier modes. Note, however, that the Fourier
basis functions do not satisfy the no-slip boundary condition,
yet they capture the convective flow profile quite well.

We compute the Fourier amplitudes using the FFTW library
through the PyFFTW interface [18]. For these transforms we
interpolate the NEK5000 data to a uniform 128 × 128 grid.
Higher grid resolution for the fast Fourier transform (FFT)
was used to avoid aliasing error. In Figs. 1(d) and 1(e), we
display the velocity profiles of the primary modes k = (1,1)
and (2,2), which are a single roll and four rolls, respectively.
The sign of the Fourier mode of Fig. 1(f) is reversed from
that of Fig. 1(d). The diagonally oriented roll and the corner
rolls of Fig. 1(a) can be well approximated as a superposition
of Figs. 1(d) and (e) with appropriate amplitudes. Similarly

Fig. 1(c) can be approximately described by Figs. 1(f) and
1(e). The corresponding primary modes for the � = 2 box are
k = (2,1) and (2,2).

In Fig. 2 we plot the time series of (a) the vertical velocity
Vy at (0.25,0.25), (b) the dominant Fourier modes v̂1,1,v̂2,2,

FIG. 2. (Color online) For � = 1, Pr = 1, and Ra = 2 × 107,
time series of (a) y component of the real velocity field at the point
(0.25,0.25), (b) the Fourier amplitudes v̂1,1 as blue (dark) line, and
v̂2,2 as red (light) line, (c) the ratio |v̂2,2/v̂1,1|, and (d) the Nusselt
number (Nu). During the reversal, the sign of mode v̂1,1 changes
after vanishing, while the mode v̂2,2 rises sharply. The Nusselt number
shows large fluctuations during the reversals.
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FIG. 3. (Color online) Convective flow profile for � = 2, Pr = 1,
(a) reversing case Ra = 107, and (b) nonreversing case Ra = 108.
The corner rolls of (a) are much larger than those of (b). The ratios of
the time-averaged Fourier amplitudes 〈|v̂2,2|〉t /〈|v̂2,1|〉t for the cases
are 0.12 (a) and 0.04 (b). Small amplitude of v̂2,2 makes the growth
of the corner rolls difficult.

(c) the ratio |v̂2,2/v̂1,1|, and (d) the Nusselt number, for � = 1.
The time series indicates that the mode k = (1,1) dominates
the mode (2,2) between the reversals. During the reversals,
however, the mode v̂1,1 crosses zero, while v̂2,2 shows a spike.
The mode v̂1,1 overshoots around 40% before it attains the
steady state. The vanishing of v̂1,1, and the peaking of v̂2,2 (the
corner rolls) are the reasons for the four rolls appearing during
the reversal [Fig. 1(b)]. This phenomenon is the same as the
cessation-led flow reversals reported by Brown and Ahlers [3]
and Mishra et al. [10].

The mode (1,1) changes sign due to the reversals but the
mode (2,2) does not. This is due to certain symmetries obeyed
by the governing equations which will be discussed later. As a
result, the velocity field near the corners does not reverse (see
Fig. 1). Figure 2 also shows that the Nusselt number becomes
negative during the reversals, i.e., the heat is transferred from
the cold plate to the hot plate for a small time interval while
the flow reverses.

For the � = 2 box, the dynamics of the modes are exactly
the same as above, except that the Fourier mode (2,1) takes
the role of the (1,1) mode. That is, the primary modes for the
� = 2 box are (2,1) and (2,2), which represent the two large
rolls and the corner rolls, respectively, of Fig. 3. Note, however,
that in the simulations of Brueur and Hansen [9] for � = 2
and Pr → ∞ fluid, the most dominant modes were (1,1) and
(2,1). Thus, a variation of the Prandtl number for the same box
can change the flow pattern. For our simulations the average
intervals between consecutive reversals for � = 1 and � = 2
are approximately 0.6 and 0.05 thermal diffusive time units,
respectively. The duration of the reversals is approximately
0.03 time units for both the cases.

The flow reversals are not observed for � = 1 and Ra =
108,109, and for � = 2 and Ra = 2 × 107,108 until several
thermal diffusive time units (maximum 10), though they may
occur after some more time, a result consistent with that of
Sugiyama et al. [5]. As the Rayleigh number is increased, the
flow reversals become more difficult due to suppression of
the corner rolls [(2,2) mode] by the dominant roll structure,
which is quantified by the ratio of the time-averaged Fourier
amplitudes of these modes. For our simulations on � = 2,
the ratio 〈|v̂2,2|〉t /〈|v̂2,1|〉t ranges from 0.12 for Ra = 107

(reversing) to 0.04 for Ra = 108 (nonreversing), which is
consistent with the convective flow profiles exhibited in
Figs. 3(a) and 3(b) for these two cases. For � = 1, the
corresponding ratio ranges from 0.44 for Ra = 2 × 107 to 0.12
for Ra = 109.

We deduce interesting features on the generation and
symmetry of the Fourier modes using the structure of the
two-dimensional RBC equations in the Fourier space [19]:

∂ûi(k)

∂t
= −ikj

∑

k=p+q

ûj (p)ûi(q) − ikiP (k)

+ RaPrθ̂ (k)δi,2 − Prk2ûi(k), (7)

∂θ̂(k)

∂t
= −ikj

∑

k=p+q

ûj (p)θ̂(q) + û2(k) − k2θ̂ (k), (8)

where θ is the perturbation of the temperature about the
conduction state. For a two-dimensional box, the Fourier
modes (coefficients of the basis functions) of the fields are
of the type E = (even, even), O = (odd, odd), Meo =
(even, odd), and Moe = (odd, even), where we refer to E,
O, and M as even, odd, and mixed modes, respectively. The
nonlinear interactions generate new modes with k = p + q.
For example, modes (m1,n1) and (m2,n2) generate modes
(|m1 ± m2|,|n1 ± n2|) [note that sin(mx) is a superposition of
both kx = ±m]. The nonlinear interactions satisfy the follow-
ing properties: O × O = E; O × E = O; E × E = E; E ×
Meo,oe = Meo,oe; O × Meo,oe = Moe,eo; Meo,oe × Meo,oe = E;
and Meo,oe × Moe,eo = O. Here O × O = E means that two
O modes interact to yield an E mode. As a result of these
properties, the two symmetry operations that keep Eqs. (7)
and (8) invariant are

(1) (E → E,O → −O,Meo → Meo,Moe → −Moe)
(2) (E → E,O → −O,Meo → −Meo,Moe → Moe)

That is, for case (i), if {E,O,Meo,Moe} is a solution of Eqs. (7)
and (8), then {E, − O,Meo, − Moe} is also a solution of these
equations. The system explores the solution space allowed by
these symmetry properties. The above symmetry properties are
related to the triad interactions of the RBC equations in Fourier
representation. Note that these properties are universal; that is,
they are independent of the box geometry, Prandtl number, etc.

To relate our simulations with the above-mentioned sym-
metry, we observe that the (1,1) (of O type) and (2,2) (of
E type) modes are the primary modes for the � = 1 system.
Our simulations show that the mode (1,1) and other O-type
modes switch sign after a reversal, while the sign of (2,2)
and other E-type modes remains unchanged. The M-type
modes have very small energy, hence both the symmetries
reduce to a single symmetry class, which is the symmetry
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of the � = 1 system. For the � = 2 box, the primary modes
are (2,1) (of Meo type) and (2,2) (of E type). These primary
modes and subsequently generated modes satisfy the second
symmetry mentioned above since the Meo-type modes flip,
while the E-type modes do not. By analogy, we expect the
solution of a � = 1/2 box (with finite Pr) to satisfy the first
symmetry, while the modes of Breuer and Hansen [9] satisfy
the second symmetry [with (1,1) and (2,1) as primary modes].
These symmetry arguments are general and thus useful for
understanding the dynamics of the Fourier modes.

We also point out that in magnetohydrodynamics (MHD),
{u → u,b → −b} is a symmetry of the MHD equations, so all
the Fourier modes of the magnetic field b change sign after the
reversal. The dynamical equations of RBC do not have such
global symmetry. This is one of the critical differences between
flow reversals of RBC and magnetic field reversals of dynamo.

To conclude, our numerical simulations and symmetry
arguments of RBC demonstrate the usefulness of large-scale
Fourier modes in describing various features of flow reversals,
such as the large-scale diagonal roll and corner rolls of

Sugiyama et al. [5], and the cessation-led reversals reported
by Brown and Ahlers [3] and Mishra et al. [10]. We also
find that the Nusselt number fluctuates wildly during the flow
reversals. We exploit the structures of the RBC equations in
the Fourier space to identify its symmetry transformations.
The symmetry arguments and the reversal dynamics described
in this paper are quite general, and they would be useful in
understanding of reversals in three-dimensional convective
flows.
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