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ABSTRACT
In this paper, we extend Grossmann and Lohse’s (GL) model [S. Grossmann and D. Lohse, “Thermal convection for large Prandtl numbers,”
Phys. Rev. Lett. 86, 3316 (2001)] for the predictions of Reynolds number (Re) and Nusselt number (Nu) in turbulent Rayleigh–Bénard
convection. Toward this objective, we use functional forms for the prefactors of the dissipation rates in the bulk and boundary layers. The
functional forms arise due to inhibition of nonlinear interactions in the presence of walls and buoyancy compared to free turbulence, along
with a deviation of the viscous boundary layer profile from Prandtl–Blasius theory. We perform 60 numerical runs on a three-dimensional
unit box for a range of Rayleigh numbers (Ra) and Prandtl numbers (Pr) and determine the aforementioned functional forms using machine
learning. The revised predictions are in better agreement with the past numerical and experimental results than those of the GL model,
especially for extreme Prandtl numbers.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0032498

I. INTRODUCTION

A classical problem in fluid dynamics is Rayleigh–Bénard con-
vection (RBC), where a fluid is enclosed between two horizontal
walls with the bottom wall kept at a higher temperature than the
top wall. RBC serves as a paradigm for many types of convective
flows occurring in nature and in engineering applications. RBC is
primarily governed by two parameters: the Rayleigh number, Ra,
which is the ratio of the buoyancy and the dissipative force, and the
Prandtl number, Pr, which is the ratio of kinematic viscosity and
thermal diffusivity of the fluid. In this paper, we derive a relation to
predict two important quantities—the Nusselt number, Nu, and the
Reynolds number, Re, which are respective measures of large-scale
heat transport and velocity in turbulent RBC.

The dependence of Nu and Re on RBC’s governing parame-
ters (Ra and Pr) has been extensively studied in the literature.1–5

Malkus6 proposed Nu ∼ Ra1/3 based on marginal stability theory.
For very large Ra called the ultimate regime, Kraichnan7 deduced
Nu ∼

√

RaPr, Re ∼
√

Ra/Pr for Pr ≤ 0.15 and Nu ∼
√

RaPr−1/2,
Re ∼

√

Ra/Pr3/2 for 0.15 < Pr ≤ 1, with logarithmic corrections.
Subsequently, Castaing et al.8 argued that Nu ∼ Ra2/7 and Re ∼ Ra3/7

based on the existence of a mixing zone in the central region of the
RBC cell, where hot rising plumes meet the mildly warm fluid. Cas-
taing et al.8 also deduced that Reω

∼ Ra1/2, where Reω is the Reynolds
number based on the frequency ω of torsional azimuthal oscillations
of the large-scale wind in RBC. Later, Shraiman and Siggia9 derived
that Nu ∼ Ra2/7Pr−1/7 and Re ∼ Ra3/7Pr−5/7 (with logarithmic cor-
rections) using the properties of boundary layers. They also derived
exact relations between Nu and the viscous and thermal dissipation
rates.

Many experiments and simulations of RBC have been per-
formed to obtain the scaling of Nu and Re. These studies also
revealed a power-law scaling of Nu and Re as Nu ∼ RaαPrβ and
Re ∼ RaγPrδ . For the scaling of Nu, the exponent α ranges from
1/4 for Pr ≪ 1 to approximately 1/3 for Pr ≳ 18,10–29 and β from
approximately zero for Pr ≳ 1 to 0.14 for Pr ≪ 1.30,31 Thus, Nu has
a relatively weaker dependence on Pr. For the scaling of Re, the
exponent γ was observed to be approximately 2/5 for Pr ≪ 1, 1/2
for Pr ∼ 1, and 3/5 for Pr ≫ 1;8,10,11,15–18,22–24,32–35 and δ has been
observed to range from −0.7 for Pr ≲ 1 to −0.95 for Pr ≫ 1.30,36 A
careful examination of the results of the above references reveals that
the above exponents also depend on the regime of Ra as well. The
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ultimate regime, characterized by Nu ∼
√

Ra, has been observed in
simulations of RBC with periodic boundary conditions,34,37 in free
convection with the density gradient,38–40 and in convection with
only lateral walls.41 Using numerical simulations, Calzavarini et al.42

showed that Re ∼ Pr1/2 and Nu ∼ Pr1/2 for convection with periodic
walls. However, some doubts have been raised on the ultimate scal-
ing observed in RBC with periodic walls because of the presence
of elevator modes in the system.43,44 Some experiments and simu-
lations of RBC with non-periodic walls and very large Ra (∼ 1015)
have reported a possible transition to the ultimate regime;15,38,45,46

however, some others47,48 argue against such transition.
The above studies show that the scaling of Re and Nu depends

on the regime of Ra and Pr, highlighting the need for a unified model
that encompasses all the regimes. Grossmann and Lohse49–52 con-
structed one such model, henceforth referred to as the GL model. To
derive this model, Grossmann and Lohse49,50 substituted the bulk
and boundary layer contributions of viscous and thermal dissipa-
tion rates in the exact relations of Shraiman and Siggia.9 The bulk
and boundary layer contributions were written in terms of Re, Nu,
Ra, and Pr using the properties of boundary layers (Prandtl–Blasius
theory)53 and those of hydrodynamic and passive scalar turbulence
in the bulk. Finally, using additional crossover functions, Gross-
mann and Lohse50 obtained a system of equations for Re and Nu
in terms of Ra, Pr, and four coefficients that were determined using
inputs from experimental data.54 Using the momentum equation of
RBC, Pandey et al.22,23 constructed a model to predict the Reynolds
number as a function of Ra and Pr. The predictions of Kraichnan,7
Castaing et al.,8 and Shraiman and Siggia9 are limiting cases of the
GL model.

The GL model has been quite successful in predicting large-
scale velocity and heat transport in many experiments and sim-
ulations. However, it does not capture large Pr convection very
accurately5 and has been reported to under-predict the Reynolds
number.1 Note that the scaling exponent for Re has a longer range
(0.40–0.60) compared to that for Nu (0.25–0.33); hence, the predic-
tions for Re are more sensitive to modeling parameters. Further-
more, the GL model is based on certain assumptions that are not
valid for RBC. For example, the model assumes the viscous and
the thermal dissipation rate in the bulk scale as U3

/d and UΔ2
/d

(for Pr ≲ 1), respectively, as in passive scalar turbulence with open
boundaries.55,56 Here, U is the large-scale velocity, and Δ and d
are, respectively, the temperature difference and distance between
the top and bottom walls. However, subsequent studies of RBC
have shown that the aforementioned viscous and thermal dissipa-
tion rates in the bulk are suppressed by approximately Ra−0.2 for
Pr ∼ 1.11,17,22,23,57–59 The above suppression is due to the inhibi-
tion of nonlinear interactions because of walls22,23 and buoyancy.60

Moreover, recent studies have revealed that the viscous boundary
layer thickness in RBC considerably deviate from Re−1/2 as assumed
in the GL model.58,61,62

In the present work, we address the above limitations of the
GL model and propose a new relation for the Reynolds and Nus-
selt numbers involving a cubic polynomial equation for Re and Nu.
For implementation of the viscous and thermal dissipation rates in
the bulk and boundary layers, we employ machine-learning tools on
60 datasets that were obtained using numerical simulations of RBC.
The new relation rectifies some of the limitations of the GL model,
especially for small and large Prandtl numbers.

The outline of the paper is as follows: In Sec. II, we discuss
the governing equations of RBC and briefly explain the GL model.
Then, we extend the GL framework by using functional forms for
the prefactors of the dissipation rates in the bulk and boundary lay-
ers and incorporate the deviation in the scaling of viscous boundary
layer thickness described earlier. Simulation details are provided in
Sec. III. In Sec. IV, we report the scaling of boundary layer thick-
nesses and dissipation rates using our data, following which we
describe the machine-learning tools used to determine the afore-
mentioned functional forms. We also test the revised predictions
with experiments and numerical simulations, and compare them
with those of the GL model. We conclude in Sec. V.

II. RBC EQUATIONS AND THE GL MODEL
We consider RBC under the Boussinesq approximation, whose

governing equations are as follows:5,63

∂u
∂t
+ (u ⋅ ∇)u = −∇p/ρ0 + αgTẑ + ν∇2u, (1)

∂T
∂t
+ (u ⋅ ∇)T = κ∇2T, (2)

∇ ⋅ u = 0, (3)

where u and p are the velocity and pressure fields, respectively, T
is the temperature field, ν is the kinematic viscosity, κ is the ther-
mal diffusivity, α is the thermal expansion coefficient, ρ0 is the mean
density of the fluid, and g is the acceleration due to gravity.

Using d as the length scale,
√

αgΔd as the velocity scale, and
Δ as the temperature scale, we non-dimensionalize Eqs. (1)–(3) that
yield

∂u
∂t
+ u ⋅ ∇u = −∇p + Tẑ +

√

Pr
Ra
∇

2u, (4)

∂T
∂t
+ u ⋅ ∇T =

1
√

RaPr
∇

2T, (5)

∇ ⋅ u = 0, (6)

where Ra = αgΔd3
/(νκ) is the Rayleigh number and Pr = ν/κ is the

Prandtl number. The large-scale velocity and heat transfer are quan-
tified by two important non-dimensional quantities, namely, the
Reynolds number (Re) and the Nusselt number (Nu). The Nusselt
number, Nu, is the ratio of the total heat flux to the conductive heat
flux and is defined as Nu = 1 + ⟨uzT⟩/(κΔ/d). The Reynolds num-
ber Re is defined as Re = Ud/ν, where U is the large-scale velocity. In
our work, we will consider U to be the root mean square (rms) veloc-

ity, that is, U =
√

⟨u2
x + u2

y + u2
z⟩, where ⟨⋅⟩ represents the volume

average.
The dissipation rates of kinetic and thermal energies, repre-

sented as ϵu and ϵT , respectively, are important quantities in our
study. These are defined as ϵu = 2ν⟨SijSij⟩ and ϵT = κ⟨∣∇T∣2⟩, where
Sij is the strain rate tensor. Shraiman and Siggia9 derived two exact
relations between Nu and the dissipation rates; these are

ϵu =
ν3

d4 (Nu − 1)
Ra
Pr2 , (7)
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ϵT =
κΔ2

d2 Nu. (8)

The above relations will be the backbone of our present work.
Now, we will briefly summarize the GL model to predict Nu

and Re. Grossmann and Lohse49,50 split the total viscous and thermal
dissipation rates (D̃u = ϵuV and D̃T = ϵTV , respectively, V being the
domain volume) into their bulk and boundary layer contributions.
Thus,

D̃u = D̃u,bulk + D̃u,BL, (9)

D̃T = D̃T,bulk + D̃T,BL. (10)

The GL model assumes the Prandtl–Blasius relation of δu ∼ Re−1/2

above a critical Reynolds number Rec for viscous boundary layers
and δT = d/2Nu for thermal boundary layers. Here, δu and δT are the
viscous and thermal boundary layer thicknesses, respectively. For
Re < Rec, the viscous boundary layer is assumed to occupy the entire
RBC cell. Using the above relations and the properties of hydro-
dynamic and passive scalar turbulence in the bulk (see Sec. IV A),
Grossmann and Lohse49,50 deduced that

1
V

D̃u,bulk ∼
U3

d
= c1

ν3

d4 Re3, (11)

1
V

D̃u,BL ∼
νU2

δ2
u

δu

d
= c2

ν3

d4 Re2.5, (12)

1
V

D̃T,bulk ∼
UΔ2

d
= c3

κΔ2

d2 RePr, (13)

1
V

D̃T,BL ∼
κΔ2

δ2
T

δT

d
= c4

κΔ2

d2 Nu, (14)

where c1, c2, c3, and c4 are constants. Note that for δu > δT (Pr ≫ 1),
Grossmann and Lohse49 modified Eq. (13) as

1
V

D̃T,bulk ∼
δT

δu

UΔ2

d
= c3

κΔ2

d
Re3/2PrNu−1. (15)

By approximating the dominant terms of Eq. (2) in the ther-
mal boundary layers, Grossmann and Lohse49,50 further deduced
that Nu ∼ Re1/2Pr1/2 for δu < δT and Nu ∼ Re1/2Pr1/3 for δu > δT . To
ensure smooth transition through different regimes of boundary
layer thicknesses and Reynolds number, Grossmann and Lohse50

introduced two crossover functions, f (x) = (1 + x4
)
−1/4 and

g(x) = x(1 + x4
)
−1/4, and applied them in the RHS of Eqs. (12)–(15).

Finally, Grossmann and Lohse50 put the modeling and splitting
assumptions [Eqs. (9)–(15)] together with the exact relations given
by Eqs. (7) and (8) to obtain the following set of equations for Nu
and Re:

(Nu − 1)
Ra
Pr2 = c1Re3

+ c2
Re2

g(
√

Rec/Re)
, (16)

Nu = c3PrRe f
⎡
⎢
⎢
⎢
⎢
⎣

2aNu
√

Rec
g
⎛

⎝

√

Rec

Re
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

+ c4
√

RePr
⎧
⎪⎪
⎨
⎪⎪
⎩

f
⎡
⎢
⎢
⎢
⎢
⎣

2aNu
√

Rec
g
⎛

⎝

√

Rec

Re
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

⎫
⎪⎪
⎬
⎪⎪
⎭

1/2

. (17)

The values of the constants, obtained from experiments, are
c1 = 1.38, c2 = 8.05, c3 = 0.0252, c4 = 0.487, a = 0.922, and Rec
= 3.401.54 The above equations can be solved iteratively to obtain
Re and Nu for given Ra and Pr.

Although the GL model has been quite successful in predict-
ing Re and Nu, it has certain deficiencies due to some assump-
tions that are invalid for RBC. First, recent studies reveal that the
relation δu ∼ Re−1/2 for the viscous boundary layers is not strictly
valid for RBC.58,61,62 The viscous boundary layer thickness becomes
a progressively weaker function of Re as Pr is increased.64 Thus,
the relation given by Eq. (12) is not accurate. Second, as discussed
earlier, studies have shown that for Pr ∼ 1, the thermal and vis-
cous dissipation rates in the bulk are suppressed relative to free
turbulence,17,57–59

1
V

D̃u,bulk ∼
U3

d
Ra−0.18,

1
V

D̃T,bulk ∼
UΔ2

d
Ra−0.20.

Contrast the above relations with Eqs. (11) and (13) 58,59 used in the
GL model. This clearly signifies that c1 and c3 from Eqs. (11) and
(13) cannot be treated as constants. Thus, it becomes imperative to
study how ci varies with Ra and Pr in different regimes of RBC.

We propose a modified relation for Re and Nu by incorporat-
ing the aforementioned suppression of the total dissipation rates, as
well as the modified law for the viscous boundary layers. Toward this
objective, we make the following modifications to Eqs. (11)–(14),

1
V

D̃u,bulk = f1(Ra, Pr)
U3

d
= f1(Ra, Pr)

ν3

d4 Re3, (18)

1
V

D̃u,BL = f2(Ra, Pr)
νU2

δ2
u

δu

d
= f2(Ra, Pr)

ν3

d4
d
δu

Re2, (19)

1
V

D̃T,bulk = f3(Ra, Pr)
UΔ2

d
= f3(Ra, Pr)

κΔ2

d2 RePr, (20)

1
V

D̃T,BL = f4(Ra, Pr)
κΔ2

δ2
T

δT

d
= f4(Ra, Pr)

κΔ2

d2 Nu. (21)

Note that we replaced the coefficients ci with functions fi(Ra, Pr).
Furthermore, we do not express d/δu in terms of Re in Eq. (19).
The above modified formulas are inserted in the exact relations of
Shraiman and Siggia9 that lead to

(Nu − 1)
Ra
Pr2 = f1(Ra, Pr)Re3

+ f2(Ra, Pr)
d
δu

Re2, (22)

Nu = f3(Ra, Pr)RePr + 2 f4(Ra, Pr)Nu. (23)

The functions fi(Ra, Pr) will be later determined using our simula-
tion results. For the sake of brevity, we will skip the arguments within
the parenthesis of f i’s henceforth.

Equations (22) and (23) constitute a system of two equations
with two unknowns (Re and Nu). To solve these equations, we
will now reduce them to a cubic polynomial equation for Re by
eliminating Nu. We rearrange Eq. (23) to obtain

Nu =
f3

1 − 2 f4
RePr. (24)
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Substitution of Eq. (24) in Eq. (22) yields the following cubic equa-
tion for Re:

f1Re3
+ f2

d
δu

Re2
−

f3

1 − 2 f4

Ra
Pr

Re +
Ra
Pr2 = 0. (25)

The above equation for Re can be solved for a given Ra and Pr once
fi and δu have been determined. We determine Nu using Eq. (24)
once Re has been computed.

Now, we will show that in the limit of the viscous dissipa-
tion rate dominating in the bulk or in the boundary layers (D̃u,bulk
≫ D̃u,BL or vice versa), Eqs. (22) and (23) are reduced to power-law
expressions for Re and Nu. In the following discussion, we consider
scaling for these limiting cases.

Case 1: D̃u,bulk ≫ D̃u,BL
First, let us consider the case where the viscous dissipation rate

in the bulk is dominant. This regime is expected for large Ra (≫ 108)
or for small Pr (≪ 1), where the boundary layers are thin. In this
regime, f 2(d/δu)Re2

≪ f 1Re3. Assuming Nu≫ 1, Eq. (22) reduces
to

Nu
Ra
Pr2 ≈ f 1Re3. (26)

Using Eqs. (24) and (26), we arrive at

Re =
√

f 3

f 1(1 − 2 f 4)

Ra
Pr

, (27)

Nu =

¿

Á
ÁÀ 1

f 1
(

f 3

1 − 2 f 4
)

3

RaPr. (28)

Note that f1 and f3 are expected to be constants and f4 ≈ 0 when
the boundary layers are absent (as in a periodic box) or weak (as
in the ultimate regime proposed by Kraichnan7). For this case,
Re ∼

√

Ra/Pr and Nu ∼
√

RaPr, consistent with the arguments of
Kraichnan7 for large Ra and small Pr. However, for RBC with walls,
the relations for Re and Nu will deviate from the above relations
because f1 and f3 are functions of Ra and Pr.

Case 2: D̃u,BL ≫ D̃u,bulk
Now, we consider the other extreme when the viscous dissipa-

tion rates in the boundary layers are dominant, which is expected for
small Ra (≪ 105) or for large Pr (≫ 7).49,50,57 In this regime, again
assuming Nu≫ 1, Eq. (22) reduces to

Nu
Ra
Pr2 ≈ f 2

d
δu

Re2. (29)

Using Eqs. (24) and (29), we obtain

Re = {
f3

f2(1 − 2 f4)

δu

d
}

Ra
Pr

, (30)

Nu =
1
f 2

δu

d
(

f 3

1 − 2 f 4
)

2

Ra. (31)

We will examine these cases once we deduce the forms of fi using
our numerical simulations.

We remark that the aspect ratio of the RBC cell also influences
the scaling of Ra and Pr.52 In the current work, we do not con-
sider the effect of aspect ratio. We intend to include the aspect ratio
dependence in a future work.

In Sec. III, we will discuss the simulation method.

III. SIMULATION DETAILS
We perform direct numerical simulations of RBC by solving

Eqs. (4)–(6) in a cubical box of unit dimensions using the finite dif-
ference code SARAS.66,67 We carry out 60 runs for Pr ranging from
0.02 to 100 and Ra ranging from 5 × 105 to 5 × 109. The grid size
was varied from 2573 to 10253 depending on parameters. Refer to
Tables I and II for the simulation details.

We impose isothermal boundary conditions on the horizontal
walls and adiabatic boundary conditions on the sidewalls. No-slip
boundary conditions were imposed on all the walls. A second-order
Crank–Nicholson scheme was used for time-advancement, with the
maximum Courant number kept at 0.2. The solver uses a multi-
grid method for solving the pressure-Poisson equations. We ensure
a minimum of five points in the viscous and thermal boundary
layers (see Tables I and II); this satisfies the resolution criterion
of Grötzbach,68 and Verzicco and Camussi.57 The simulations are
run up to 3–263 non-dimensional time units (tND) after attain-
ing a steady state. For post-processing, we employ a central differ-
ence method for spatial differentiation and Simpson’s method for
computing the volume average.

In order to resolve the smallest scales of the flow, we ensure
that the grid spacing Δx is smaller than the Kolmogorov length scale
η = (ν3ϵ−1

u )
1/4 for Pr ≤ 1 and the Batchelor length scale ηT

= (νκ2ϵ−1
u )

1/4 for Pr > 1. We numerically compute ϵu and ϵT and
use these values to compute Nuu and NuT employing Shraiman and
Siggia’s exact relations9 [see Eqs. (7) and (8)]. The Nusselt numbers
computed using ⟨uzT⟩match with Nuu and NuT within two percent
on an average; this further confirms that our runs are well-resolved
(see Tables I and II). All the above quantities are averaged over 12 to
259 snapshots taken at equal time intervals after attaining a steady
state.

In Sec. IV, we analyze our numerical results, construct the cubic
polynomial relation for Re and Nu using the data from our simu-
lations, and compare our revised predictions with those of the GL
model.

IV. RESULTS
Using our numerical data, we determine the scaling of dissi-

pation rates, boundary layer thicknesses, and the functional forms
of f i. We construct the relations for Re and Nu given by Eqs. (22)
and (23) using these inputs and compare the revised predictions
with those of the original GL model. We also analyze how the
proposed relation performs in the limit of D̃u,bulk ≫ D̃u,BL and
vice versa.

A. Viscous and thermal dissipation rates
Here, we examine the scaling of viscous and thermal dissipation

rates and explore how their scaling deviates from that of free turbu-
lence. First, we present theoretical arguments on the above scaling,
following which we verify our arguments with our numerical results.
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TABLE I. Details of our direct numerical simulations performed in a cubical box for Pr ≤ 1: the Prandtl number (Pr), the Rayleigh Number (Ra), the grid size, the ratio of the
Kolmogorov length scale65 (η) to the mesh width Δx, the number of grid points in viscous and thermal boundary layers (NVBL and NTBL, respectively), the Reynolds number
(Re), the Nusselt number computed using ⟨uzT⟩ and the exact relations given by Eqs. (7) and (8) (Nu, Nuu, and NuT , respectively), the ratio of the total viscous dissipation
rate in the boundary layer (D̃u,BL) and that in the bulk (D̃u,bulk), the ratio of the total thermal dissipation rate in the boundary layer (D̃T ,BL) and that in the bulk (D̃T ,bulk), and the
number of non-dimensional time units (tND) and snapshots over which the quantities are averaged.

Pr Ra Grid size η/Δx NVBL NTBL Re Nu Nuu NuT
D̃u,BL

D̃u,bulk

D̃T,BL
D̃T,bulk

tND Snapshots

0.02 5 × 105 5133 1.99 7 58 2440 4.48 4.54 4.49 0.751 2.90 95 95
0.02 1 × 106 5133 1.55 6 46 3200 5.78 5.79 5.78 0.564 2.89 41 41
0.02 2 × 106 5133 1.24 5 38 4290 6.90 6.88 6.91 0.468 2.72 30 30
0.02 5 × 106 10253 1.81 7 59 6650 8.85 9.18 8.89 0.381 2.68 7 71
0.02 1 × 107 10253 1.45 7 48 9420 10.3 11.0 10.8 0.357 2.62 3 31
0.1 5 × 105 5133 4.06 11 43 749 6.11 6.11 6.11 0.911 2.89 107 107
0.1 1 × 106 5133 3.23 9 36 1030 7.34 7.39 7.35 0.787 2.71 66 66
0.1 2 × 106 5133 2.58 7 30 1380 8.85 8.83 8.86 0.646 2.66 88 88
0.1 5 × 106 5133 1.91 6 24 2090 11.3 11.4 11.3 0.539 2.63 83 83
0.1 1 × 107 5133 1.52 6 20 2870 13.9 14.0 13.9 0.474 2.63 33 66
0.1 2 × 107 5133 1.22 5 17 3870 16.4 16.4 16.4 0.389 2.41 37 73
0.1 5 × 107 10253 1.83 7 25 6020 20.8 20.8 21.3 0.337 2.22 12 12
0.1 1 × 108 10253 1.45 6 21 8140 26.7 26.1 26.3 0.288 2.28 5 26
0.5 1 × 106 5133 6.96 13 32 285 8.38 8.36 8.37 1.01 3.25 71 71
0.5 3 × 106 5133 4.85 10 24 482 11.4 11.4 11.4 0.745 2.94 140 140
0.5 1 × 107 5133 3.28 8 17 874 15.9 16.0 16.0 0.682 2.95 91 91
0.5 3 × 107 5133 2.30 7 13 1480 21.6 21.8 21.6 0.550 2.73 48 48
0.5 1 × 108 5133 1.55 5 9 2610 30.6 30.8 30.6 0.475 2.58 37 37
1 1 × 106 2573 4.92 7 17 147 8.18 8.45 8.48 0.765 2.83 101 101
1 2 × 106 2573 3.94 7 14 213 10.1 10.1 10.2 0.791 2.98 101 101
1 5 × 106 2573 2.90 6 11 340 13.3 13.3 13.4 0.709 2.97 101 101
1 1 × 107 2573 2.31 5 9 491 16.3 16.3 16.4 0.679 2.93 101 101
1 2 × 107 2573 1.85 5 7 702 19.8 19.7 19.9 0.682 2.91 91 91
1 5 × 107 5133 2.73 7 11 1100 26.0 26.0 26.1 0.561 2.81 103 103
1 1 × 108 5133 2.19 6 9 1530 31.4 31.3 31.5 0.512 2.69 101 101
1 2 × 108 5133 1.75 6 8 2170 38.6 38.3 38.7 0.490 2.68 101 101
1 5 × 108 5133 1.30 5 6 3330 49.2 49.6 49.2 0.437 2.51 101 101
1 1 × 109 10253 2.06 7 9 4700 61.2 61.6 61.4 0.426 2.35 15 30
1 2 × 109 10253 1.62 7 8 6580 76.8 81.1 76.7 0.392 2.47 13 26

In free turbulence, the viscous and scalar dissipation rates are
estimated as follows:

ϵu ∼
U3

d
, ϵT ∼

UΔ2

d
. (32)

However, in wall-bounded convection, the scaling of the dissipation
rates is different. To understand this, let us rewrite the exact relations
of Shraiman and Siggia9 given by Eqs. (7) and (8) as

ϵu =
U3

d
1

Re3 (Nu − 1)
Ra
Pr2 , (33)

ϵT =
UΔ2

d
1

RePr
Nu. (34)

Recall from Sec. I that the Reynolds number scales as Re ∼ Ra1/2 for
Pr ∼ 1 and Re ∼ Ra0.6 for Pr ≫ 1, and the Nusselt number scales as

Nu ∼ Ra0.3 for Pr ≳ 1. Substituting the above relations in Eqs. (33)
and (34) yields

ϵu ∼

⎧
⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪
⎩

U3

d
Ra−0.2, Pr ∼ 1,

U3

d
Ra−0.5, Pr≫ 1,

(35)

instead of U3
/d, and

ϵT ∼

⎧
⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪
⎩

UΔ2

d
Ra−0.2, Pr ∼ 1,

UΔ2

d
Ra−0.3 Pr≫ 1,

(36)

instead of UΔ2
/d. Pandey and Verma22 and Pandey et al.23 argued

that the additional Ra dependence is due to the suppression of
nonlinear interactions due to the presence of walls. Some Fourier
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TABLE II. Details of our direct numerical simulations performed in a cubical box for Pr > 1: the Prandtl number (Pr), the Rayleigh Number (Ra), the grid size, the ratio of the
Batchelor length scale65 (ηT ) to the mesh width Δx, the number of grid points in viscous and thermal boundary layers (NVBL and NTBL, respectively), the Reynolds number (Re),
the Nusselt number computed using ⟨uzT⟩ and the exact relations given by Eqs. (7) and (8) (Nu, Nuu, and NuT , respectively), the ratio of the total viscous dissipation rate in the
boundary layer (D̃u,BL) and that in the bulk (D̃u,bulk), the ratio of the total thermal dissipation rate in the boundary layer (D̃T ,BL) and that in the bulk (D̃T ,bulk), and the number of
non-dimensional time units (tND) and snapshots over which the quantities are averaged.

Pr Ra Grid size ηT/Δx NVBL NTBL Re Nu Nuu NuT
D̃u,BL

D̃u,bulk

D̃T,BL
D̃T,bulk

tND Snapshots

6.8 1 × 106 2573 5.02 9 17 24.9 7.90 7.87 7.87 0.822 3.08 101 101
6.8 2 × 106 2573 4.01 8 15 35.6 9.46 9.43 9.48 0.744 2.94 101 101
6.8 5 × 106 2573 2.93 7 11 59.7 12.9 12.9 13.0 0.646 2.97 101 101
6.8 1 × 107 2573 2.33 6 9 89.2 15.9 15.8 16.0 0.605 2.93 101 101
6.8 2 × 107 2573 1.85 6 8 128 19.5 19.4 19.3 0.579 2.97 107 101
6.8 5 × 107 2573 1.37 5 6 217 26.1 25.7 25.9 0.588 2.99 101 101
6.8 1 × 108 5133 2.18 8 9 314 31.6 31.6 31.7 0.614 2.85 56 56
6.8 2 × 108 5133 1.75 7 8 452 38.5 37.7 39.3 0.529 2.84 26 51
6.8 5 × 108 5133 1.29 7 6 729 50.5 50.4 50.8 0.521 2.83 58 58
6.8 1 × 109 10253 2.06 11 9 1070 65.7 61.9 62.0 0.518 2.69 14 28
6.8 2 × 109 10253 1.64 10 8 1520 77.0 77.6 77.5 0.463 2.83 20 40
6.8 5 × 109 10253 1.22 9 6 2400 101 101 101 0.440 2.72 17 33
50 1 × 106 5133 9.92 17 33 3.53 8.17 8.16 7.99 0.815 3.23 131 131
50 2 × 106 5133 7.96 16 27 5.19 9.66 9.60 9.61 0.722 3.42 51 51
50 5 × 106 5133 5.74 14 20 9.38 13.8 13.7 13.5 0.627 3.19 130 130
50 1 × 107 5133 4.58 13 17 14.0 16.7 16.7 16.2 0.581 3.12 65 65
50 2 × 107 5133 3.67 12 14 21.1 20.2 20.1 20.0 0.525 3.13 55 55
50 5 × 107 5133 2.72 11 11 35.2 26.4 26.2 26.0 0.489 3.07 57 57
50 1 × 108 5133 2.18 10 9 50.8 31.8 31.6 31.6 0.436 2.92 111 111
50 2 × 108 5133 1.74 9 8 76.4 38.7 38.8 38.7 0.433 3.10 101 101
50 5 × 108 5133 1.29 9 6 137 51.8 51.6 50.4 0.481 2.88 62 62
50 1 × 109 5133 1.03 8 5 202 61.5 63.0 69.3 0.599 2.79 101 101
100 1 × 106 2573 5.01 10 17 1.80 7.94 7.93 7.94 1.04 3.41 259 259
100 2 × 106 2573 3.91 9 14 2.78 10.4 10.3 10.2 0.862 3.42 263 263
100 5 × 106 2573 2.87 8 10 4.90 13.9 13.9 14.0 0.731 3.36 153 153
100 1 × 107 2573 2.30 7 9 7.02 16.8 16.7 16.6 0.585 3.30 101 101
100 2 × 107 2573 1.84 7 7 9.91 20.1 20.0 19.9 0.485 3.00 101 101
100 5 × 107 2573 1.37 6 6 17.1 26.1 25.9 26.1 0.467 3.20 101 101
100 1 × 108 5133 2.18 10 9 26.0 31.8 31.7 31.7 0.433 2.96 107 107
100 2 × 108 5133 1.74 9 8 37.5 39.1 38.8 38.8 0.373 3.08 108 108
100 5 × 108 5133 1.30 10 6 71.4 49.7 49.2 50.3 0.429 2.95 86 86

modes that are otherwise present in free turbulence are absent
in wall-bounded RBC; this results in several channels of nonlin-
ear interactions and energy cascades to be blocked.5 Note that the
horizontal walls seem to have a more pronounced effect on the afore-
mentioned suppression than the lateral walls, as Schmidt et al.41

observed passive scalar scaling for homogeneous laterally confined
RBC. In addition, buoyancy also appears to suppress the energy
cascade rate,60 similar to the role played by the magnetic field in
magnetohydrodynamic turbulence.69

Now, for Pr ≪ 1, recall that Re ∼ Ra0.42 and Nu ∼ Ra0.25 (see
Sec. I). Substitution of these expressions in Eqs. (33) and (34)
yields

ϵu ∼
U3

d
, ϵT ∼

UΔ2

d
Ra−0.17. (37)

Thus, the viscous dissipation rate scales similar to free turbulence
for small Pr. However, the additional Ra dependence is still present
in the scaling of thermal dissipation rates because of the presence of
thick thermal boundary layers.

Using our data, we numerically compute the viscous and ther-
mal dissipation rates and normalize them with U3

/d and UΔ2
/d,

respectively. We plot the normalized dissipation rates vs Ra and
exhibit these plots in Figs. 1(a) and 1(b). We observe that for small
Pr, the normalized viscous dissipation rate is independent of Ra,
whereas for larger Pr, the aforementioned quantity decreases with
Ra. The decrease becomes steeper as Pr increases, with ϵu/(U3d−1

)

∼ Ra−0.21 for Pr = 1 and ∼ Ra−0.45 for Pr = 100. The normalized
thermal dissipation rate decreases with Ra for all Pr values, with
ϵT/(UΔ2d−1

) ∼ Ra−0.15 for Pr = 0.02 to ∼ Ra−0.28 for Pr = 100,
which are consistent with the earlier estimates.
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FIG. 1. Plots of (a) normalized viscous dissipation rate vs Ra and (b) normalized
thermal dissipation rate vs Ra. The error bars represent the standard deviation of
the dataset with respect to the temporal average. Both the viscous and thermal
dissipation rates exhibit additional Ra dependence.

In Subsection IV B, we discuss the computations of the bound-
ary layer thicknesses and their dependence on Re and Nu for
different Pr.

B. Boundary layer thicknesses
There are several ways to define the viscous and thermal bound-

ary layer thicknesses in RBC.1,61 In our paper, the viscous boundary
layer thickness δu is defined as the depth where a linear fit of the
velocity profile near the wall intersects with the tangent to the veloc-
ity profile at its local maximum. Similarly, the thermal boundary
layer thickness δT is defined as the depth where a linear fit of the
temperature profile near the wall intersects with the mean temper-
ature T = 0.5. The above methods are described in detail in Refs. 1,
61, and 64.

Using the data generated from our simulations, we first com-
pute the thicknesses of the thermal and viscous boundary layers. We
report the average thicknesses of the viscous boundary layers near all
the six walls and the thermal boundary layers near the top and bot-
tom walls. We examine the validity of the Prandtl–Blasius relation
of δu ∼ Re−0.5 for the viscous boundary layers and δT = 0.5Nu−1 for
the thermal boundary layers. Toward this objective, we plot δTNu vs
Nu in Fig. 2(a) and δuRe1/2 vs Re in Fig. 2(b).

We observe from Fig. 2(a) that δTNu ≈ 1/2, independent of
Nu, which is consistent with the definition. On the other hand,
from Fig. 2(b), it is evident that δuRe1/2 is constant in Re only for
Pr = 0.5 and 0.1. However, δuRe1/2 increases as ∼ Re0.31 for large
Pr and decreases marginally as ∼ Re−0.07 for Pr = 0.02. This shows
that for large Pr, δu becomes a weak function of Re; this is consis-
tent with the observation of Breuer et al.64 We also plot Grossmann

FIG. 2. Plots of (a) normalized thermal boundary layer thickness vs Nu and (b)
normalized viscous boundary layer thickness vs Re. The error bars represent
the standard deviation of the dataset with respect to the temporal average. The
viscous boundary layer thickness deviates from the Prandtl–Blasius relation of
δu ∼ Re−1/2, as well as from Grossmann and Lohse’s estimate of g(

√
Rec/Re).

and Lohse’s50 estimate of viscous boundary layer thickness, which is
given by g(

√

Rec/Re); here, g(x) = x(1 + x4
)
−1/4 and Rec = 3.401. It

is clear that Grossmann and Lohse’s estimate deviates significantly
from the actual values.

Therefore, we cannot assume δu ∼ g(Re−1/2
) for viscous

boundary layers in RBC, and it is more prudent to obtain the
scaling of f2δ−1

u with Ra, where f2 is the function from Eq. (19).
The above deviation from the Prandtl–Blasius profile has also been
observed in previous studies.58,61,62 This is because δu ∼ Re−1/2 is
valid asymptotically for very large Reynolds numbers.53

C. fi vs Ra for different Pr
In this subsection, we numerically compute fi using our simula-

tion data and discuss how these quantities vary with Ra for different
Pr. We also obtain the limiting cases for the scaling of fi with Ra.

We numerically compute the total viscous and thermal dissipa-
tion rates in the bulk and in the boundary layers for all the simulation
runs. Using these values and boundary layer thicknesses, we com-
pute f1, f2, f3, and f4 and plot them vs Ra in Fig. 3. We observe
that f1 and f3 are, in general, not constants as in free turbulence.
f1 decreases with Ra except for Pr = 0.1 and 0.02, where it is nearly
constant. The above decrease is more prominent for large Pr (≥ 50),
where f1 ∼ Ra−0.35. In a similar fashion, f3 also decreases with Ra for
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FIG. 3. Plots of (a) f 1, (b) f 2, (c) f 3, and (d) f 4 vs Ra. The error bars represent the standard deviation of the dataset with respect to the temporal average. f 2 remains
roughly independent of Ra and Pr, albeit with fluctuations; however, f 1, f 3, and f 4 decrease with Ra.

all Pr values and is more pronounced for large Pr ( f3 ∼ Ra−0.26) and
less pronounced for small Pr ( f3 ∼ Ra−0.15). The above observations
imply that the scaling of the dissipation rates in the bulk is similar to
that in the entire volume58,59 (see Sec. IV A). This is because the bulk
occupies a large fraction of the total volume, and its contribution to
the total dissipation is significant.58,59

The Ra and Pr dependences of f2 cannot be clearly estab-
lished from Fig. 3(b); we can only infer that f2 is independent of
Ra and Pr, albeit with significant fluctuations. This is consistent with
ϵu,BL ∼ νU2

/δ2
u as predicted by Grossmann and Lohse.49,50 The func-

tion f4 of Fig. 3(d) appears flat, but a careful examination shows
that f4 decreases weakly with Ra, with f4 ∼ Ra−0.013 for small Pr and
f4 ∼ Ra−0.0036 for large Pr. The reason for the marginal decrease of f4
with Ra needs investigation and is not in the scope of this paper.

As discussed earlier, the solution of Eq. (25) for Re and Nu
depends on the quantity f 2δ−1

u . Hence, we plot this quantity vs Ra for
different Pr in Fig. 4. Since f 2 is nearly constant, f 2δ−1

u is inversely
proportional to the viscous boundary layer thickness. Thus, f 2δ−1

u
increases marginally for large Pr (∼ Ra0.052) and steeply for small
Pr (∼ Ra0.26), which is in agreement with the scaling of viscous
boundary layer thickness discussed in Sec. IV B.

In Subsection IV D, we describe the machine-learning tools
used to determine the functional forms of fi.

D. Machine-learning algorithm to obtain fi (Ra, Pr)
So far, we have examined the variation of fi with only Ra for dif-

ferent Prandtl numbers and obtained the limiting cases. Now, using

machine-learning and matching functions, we will combine these
scalings to determine fi as functions of both Ra and Pr. We make use
of the machine-learning software WEKA70 for obtaining the func-
tional forms of fi. The values of fi computed for every Ra and Pr
using our simulation data serve as training sets for our machine-
learning algorithm. For simplicity, we will look for a power-law rela-
tion of the form fi = ARaαPrβ, take logarithms of this expression, and
employ linear regression to obtain A, α, and β. The linear regression
algorithm works by estimating coefficients for a hyperplane that best
fits the training data using the least squares method.

FIG. 4. Plot of f 2δ−1
u vs Ra. The error bars represent the standard deviation of the

dataset with respect to the temporal average. The dependence of f 2δ−1
u on Ra is

stronger for small Pr and becomes weaker as Pr increases.
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Since the dependence of fi on Ra is not uniform (see Sec. IV C),
we split our parameter space into three regimes such that for each
regime, the scaling of fi with Ra is approximately the same. We
choose the regimes as follows:

Small Pr : Pr ≤ 0.5,
Moderate Pr : 0.5 ≤ Pr ≤ 6.8,

Large Pr : Pr ≥ 6.8.

We then determine the prefactor A and the exponents α and
β for each regime. To ensure continuity between the regimes, we
introduce the following matching functions:

H1(Pr) =
1

1 + e−k1(0.5−Pr) , (38)

H2(Pr) =
1

1 + e−k1(Pr−0.5) −
1

1 + e−k2(Pr−6.8) , (39)

H3(Pr) =
1

1 + e−k2(Pr−6.8) , (40)

where k1 and k2 are taken to be 10 and 0.75, respectively. The
functions H1, H2, and H3 become unity inside the regimes given
by Pr < 0.5, 0.5 < Pr < 6.8, and Pr > 6.8, respectively, and become
negligible outside their regimes. The value of these functions is 1/2 in
the boundaries of their respective regimes. See Fig. 5 for an illustra-
tion of the behavior of the matching functions. Using these functions
and employing regression for each regime, we obtain the following
fits for f i:

f 1 = 0.67H1Pr0.28
+ 27H2Ra−0.21Pr0.55

+ 170H3Ra−0.34Pr0.78, (41)

f 2

δu
= 4.4H1Ra0.25Pr−0.26

+ 7.4H2Ra0.22Pr−0.29
+ 27H3Ra0.14Pr−0.18,

(42)

FIG. 5. Plot of the matching functions Hi(Pr) vs Pr. H1, H2, and H3 become unity in
the regimes given by Pr < 0.5, 0.5 < Pr < 6.8, and Pr > 6.8, respectively. They
attain the value of 1/2 at the regime boundaries and become negligible outside
their respective regimes.

f 3 = 0.095H1Ra−0.15Pr−0.17
+ 0.25H2Ra−0.21Pr−0.17

+ 0.45H3Ra−0.25Pr−0.093, (43)

f 4 = 0.46H1Ra−0.013Pr0.010
+ 0.43H2Ra−0.0081Pr0.0053

+ 0.39H3Ra−0.0036Pr0.0093. (44)

The average deviation between the f i’s predicted by the fits and
the actual values are 24%, 19%, 12%, and 58% for f 1, f 2/δu, f 3, and
f 4, respectively. As we will see later, incorporation of the aforemen-
tioned functional forms results in more accurate predictions than
the GL model; thus, the above uncertainty in f i is acceptable. In the
Appendix, we employ the same regression algorithm over a reduced
training set consisting of half of our data points and show that the
fits so obtained are close to Eqs. (41)–(44). Thus, the estimated
parameter values are reasonably robust.

Having obtained the functional forms of f i, we can plug them
in Eqs. (25) and (24) to complete the relation for Re and Nu. We
remark that f i obtained above are valid for RBC cells with a unit
aspect ratio. We suspect that they are weak functions of the aspect
ratio; this study will be taken up in the future work. Furthermore,
efforts are ongoing to make the functional forms of f i(Ra, Pr)more
compact.

E. Enhancement of the GL model
In this subsection, we will examine the enhancement of the

GL model brought about by using the obtained functional forms
for the prefactors of the dissipation rates. We will test both, the
original GL model and the revised estimates with our numerical
results, as well as those of Scheel and Schumacher11 (Pr = 0.005 and
0.02), Wagner and Shishkina18 (Pr = 0.7), Emran and Schumacher17

(Pr = 0.7), Kaczorowski and Xia19 (Pr = 4.38), and Horn, Shishk-
ina, and Wagner16 (Pr = 2547.9). We also include the experimental
results of Cioni, Ciliberto, and Sommeria10 (Pr = 0.02), and Niemela
et al.32 (Pr = 0.7) for our comparisons. The simulations of Wagner
and Shishkina18 and Kaczorowski and Xia19 involved a cubical cell
such as ours, whereas the rest of the above simulations and exper-
iments involved a cylindrical cell. All the above work involve RBC
cells with a unit aspect ratio. We compute the percentage deviations
(DRe and DNu) between the estimated and actual values according to
the following formula:

D = ∣Predicted value −Actual value
Actual value

∣ × 100. (45)

In Table III, we list the average of the deviations computed for all the
points for every Pr.

In Figs. 6(a) and 6(b), we plot the normalized Reynolds num-
ber, ReRa−0.5, computed using our simulation data and those of Refs.
10, 11, 16–18, and 32, vs Ra. To avoid clutter, we exhibit the results
for Pr < 1 in Fig. 6(a) and those for Pr ≥ 1 in Fig. 6(b). The dashed
and solid curves in Fig. 6 denote Re predicted by the GL model and
our revised estimates, respectively. From Fig. 6 and Table III, it is
clear that the revised estimates of Re are in better agreement with
the observed results compared to the original GL model, especially
for extreme Prandtl numbers. Furthermore, the trend of estimated
Re is also in better agreement with the numerical and experimental
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TABLE III. Quantitative comparison between the predictions the GL model and the revised estimates of Nu and Re for different sets of simulation and experimental data. DRe
is the percentage difference between the observed and predicted values of Re, and DNu is the percentage difference between the observed and predicted values of Nu [see
Eq. (45)]. Note that no data on Re are available for Pr = 4.38.19

Range of Ra DRe DRe Range of Ra DNu DNu
Pr (Re) (Revised estimate) (%) (GL Model) (%) (Nu) (Revised estimate) (%) (GL Model) (%)

0.005 3 × 105–107 11 48 3 × 105–107 9.6 17
0.02 3 × 105–3 × 109 9.1 62 3 × 105–3 × 109 10 15
0.1 5 × 105–108 1.3 30 5 × 105–108 3.1 5.0
0.5 106–108 1.9 14 106–108 1.4 5.4
0.7 105–1013 6.8 25 105–109 3.8 9.9
1.0 106–2 × 109 2.8 20 106–2 × 109 3.6 5.8
4.38 . . . . . . . . . 106–3 × 109 5.7 6.3
6.8 106–5 × 109 3.4 27 106–5 × 109 5.6 6.5
50 106–109 6.0 84 106–109 3.2 7.2
100 106–5 × 108 3.4 150 106–5 × 108 2.7 3.9
2547.9 105–109 85 560 105–109 2.3 17

results (note that the trend of Re computed based on different large-
scale velocities does not change even though there may be minor
differences in absolute values1). This improvement in the estimation
of Re is crucial because the predictions of Re are more sensitive to
modeling parameters compared to Nu due to a larger range of the
scaling exponent.

In Figs. 7(a) and 7(b), we plot the normalized Nusselt num-
ber, NuGr−0.3, computed using our simulation data along with those

FIG. 6. Comparison between the predictions of Re vs Ra using the original GL
model (dashed curves) and our proposed modifications (solid curves) with the
results from our work and from the literature10,11,16–18,32 for (a) Pr < 1 and (b)
Pr ≥ 1. The error bars (shown only for our datasets) represent the standard
deviation of the dataset with respect to the temporal average.

of Refs. 10, 11, and 16–19, vs Ra. We employ the Grashof num-
ber Gr = Ra/Pr in the y axis to avoid clutter; this is because Nu ∼
Ra0.3 (with a weak dependence on Pr). These figures, along with
Table III, indicate that the revised estimates of Nu (solid curves)
are more accurate compared to those predicted by the original GL
model (dashed curves). It is interesting to note that for extreme

FIG. 7. Comparison between the predictions of Nu vs Ra using the original GL
model (dashed curves) and our proposed modifications (solid curves) with the
results from our work and from the literature10,11,16–19 for (a) Pr < 1 and (b)
Pr ≥ 1. The error bars (shown only for our datasets) represent the standard
deviation of the dataset with respect to the temporal average.
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Prandtl numbers (Pr = 0.005, 2547.9), the accuracy of the revised
estimates of Nu is significantly improved with only 2.3% devia-
tion from the actual values for Pr = 2547.9% and 9.6% deviation
for Pr = 0.005. Contrast this with the GL model, where we observe
17% deviation for both Pr = 2547.9 and 0.005. For Pr ∼ 1, the accu-
racy of the revised estimates of Nu and those predicted by the GL
model are comparable, with the former being more accurate for
Ra < 108 but marginally less for larger Ra. Thus, we observe an
overall improvement in the predictions of Nu, though it is not as
significant as it was for Re.

In Figs. 8(a) and 8(b), we contrast the Pr dependence on our
estimates of Re and Nu and those of the GL model. Here, we plot
the predictions of Re(Pr) and Nu(Pr) along with the actual values
computed using our data and those of Refs. 11 and 16–19. We choose
four Rayleigh numbers for our comparisons: 106, 107, 108, and 109.
As expected based on our earlier discussions, the revised estimates of
Re(Pr) are more accurate than those of the GL model [see Fig. 8(a)].
We also observe improvements in the predictions of Nu, especially
for Pr ≪ 1 and Pr ≫ 1 [see Fig. 8(b)]. This is again consistent with
our earlier discussions.

The improvements, thus, in the predictions of Re and Pr
underscore the importance of considering the additional Ra and Pr
dependences on the scaling of the dissipation rates and the viscous
boundary layers in convection.

F. Limiting cases: Power-law expressions
Recall from Sec. II that Eqs. (22) and (23) reduce to power-

law scaling in the limiting cases: D̃u,bulk ≫ D̃u,BL and D̃u,bulk ≪ D̃u,BL.

FIG. 8. Comparison between the predictions of (a) Re and (b) Nu vs Pr using the
original GL model (dashed curves) and our proposed modifications (solid curves)
with the results from our work (filled markers) and from Refs. 11, and 16–19
(unfilled markers). The error bars (shown only for our datasets) represent the
standard deviation of the dataset with respect to the temporal average.

First, we will estimate the regimes of Ra and Pr, where the vis-
cous and thermal dissipation rates dominate in the bulk or in the
boundary layers. Using f i’s and Eqs. (11)–(14), we deduce that

D̃u,BL

D̃u,bulk
=

f 2

f 1

d
δu

1
Re

, (46)

D̃T,BL

D̃T,bulk
=

2 f 4

f 3

Nu
RePr

. (47)

In Figs. 9(a) and 9(b), we exhibit the plots of the above estimates
for Pr = 0.02, 1, and 50. We also exhibit the numerically computed
points in Fig. 9; these points are consistent with the estimates given
by Eqs. (46) and (47). On the other hand, the ratio of the dissipa-
tion rates estimated using the GL model [by employing the bulk and
the boundary layer terms of Eqs. (16) and (17)] deviates significantly
from the numerically computed points.

The plots show that the thermal dissipation rate in the bound-
ary layers exceeds that in the bulk by a factor of two to four for
all Pr values. On the other hand, the viscous dissipation rate in the
bulk exceeds that in the boundary layers for Ra ≳ 105. These obser-
vations are in agreement with previous studies.58,59 The plots imply
that D̃u,BL dominates D̃u,bulk only for Ra≪ 105, where Nu ≈ 1. How-
ever, recall that the power-law relations for this limiting case, given
by Eqs. (30) and (31), are invalid for small Nu. Thus, we do not
examine this limiting case further.

FIG. 9. Estimates of (a) D̃u,BL/D̃u,bulk and (b) D̃T ,BL/D̃T ,bulk using Eqs. (46) and
(47) (solid curves) and the GL model (dashed curves) for Pr = 0.02 (purple), Pr
= 1 (red), and Pr = 50 (black). Points obtained from our simulation data are
also displayed. The dotted horizontal lines in (a) and (b) represent D̃u,BL/D̃u,bulk

= 1 and D̃T ,BL/D̃T ,bulk = 1, respectively. The error bars represent the standard
deviation of the dataset with respect to the temporal average.
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For the regimes characterized by D̃u,bulk ≫ D̃u,BL, we plug the
best-fit relation for f i in Eqs. (27) and (28) to obtain the following:

Re =

⎧
⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪
⎩

0.76Ra0.42Pr−0.72, Small Pr,

0.20Ra0.50Pr−0.86, Moderate Pr,

0.11Ra0.55Pr−0.94, Large Pr,

(48)

Nu =

⎧
⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪
⎩

0.30Ra0.27Pr0.11, Small Pr,

0.21Ra0.29Pr−0.03, Moderate Pr,

0.21Ra0.30Pr−0.03, Large Pr.

(49)

Since f 4 is a very weak function of Ra and Pr, we assume it to
be a constant (≈ 0.37). The Ra dependence described by Eqs. (48)
and (49) is consistent with the scaling observed for large Rayleigh
numbers (108

≪ Ra≪ 1012) in the literature.8,11,16–18,22,23,36,57,61,71–73

Furthermore, the above relation for Re and Nu in the small Pr
regime is not very far from GL’s predictions of Re ∼ Ra2/5Pr−3/5 and
Nu ∼ Ra1/5Pr1/5. The derived relation for Nu is also in agreement
with analytically derived upper bounds of Nu ≲ Ra1/3 ln(Ra2/3

)
74

and Nu ≤ 0.644Ra1/3 ln(Ra1/3
).75 Equation (49) also suggests that Nu

is a weak function of Pr for moderate and large Pr [see Fig. 8(b)].
For very large Ra (≫ 1012), some recent works48,76 reveal that

the Nusselt number scales in the band from Ra0.33 to Ra0.35. Unfor-
tunately, our predictions are not very accurate in this regime;
this is because the functional forms of f i are constructed using
data from simulations with Ra ≲ 1010. Note that for larger Ra, we
expect the suppression of viscous and thermal dissipation rates to
weaken because of the thin boundary layers. This can, in turn, cause
the scaling exponent for Nu to increase. For example, f 1 and f 3
may scale as

f 1 ∼ Ra−0.14, f 3 ∼ Ra−0.16, (50)

instead of Ra−0.21 as per Eqs. (41) and (43). Plugging the above
expressions for f 1 and f 3 in Eq. (28) gives

Nu ∼ Ra0.33,

which is consistent with the results of Iyer et al.48 However, the scal-
ings for f 1 and f 3, given by Eq. (50), are conjectures that need to
be verified using simulations with large Ra’s. In a future work, we
plan to upgrade our present work by taking inputs from large Ra
simulations.

We conclude in Sec. V.

V. CONCLUSIONS
In this paper, we enhance Grossmann and Lohse’s model to

provide improved predictions of Reynolds and Nusselt numbers
in turbulent Rayleigh–Bénard convection. The process of obtain-
ing this relation involves Grossman and Lohse’s idea of splitting the
total viscous and thermal dissipation rates into bulk and bound-
ary layer contributions and using the exact relations of Shraiman
and Siggia. In the present work, we address the additional Ra and
Pr dependences on the viscous and thermal dissipation rates in the
bulk compared to free turbulence, as well as the deviation of viscous
boundary layer thickness from Prandtl–Blasius theory.

The Reynolds and Nusselt numbers are obtained by solving a
cubic polynomial equation consisting of four functions f i(Ra, Pr)
that are prefactors for the dissipation rates in the bulk and bound-
ary layers. Note that these prefactors were constants in the origi-
nal GL model. The aforementioned functions are determined using
machine learning (regression analysis) on 60 datasets obtained from
direct numerical simulations of RBC. The cubic polynomial equa-
tion reduces to power-law expressions in the limit of the viscous
dissipation rate dominating in the bulk.

Using functional forms for the prefactors for the dissipation
rates improves the predictions for both Re and Nu compared to the
GL model. We observe significant improvements in the predictions
of Re, which is important because Re is more sensitive to modeling
parameters compared to Nu. The improvement in the predictions
of Nu is more pronounced for extreme Pr regimes (Pr ≤ 0.02 and ≥
100). Our results underscore the importance of applying data-driven
methods to improve existing models, a practice that has recently
been picking up pace in research on turbulence.77,78 Presently, our
work takes inputs from data that are restricted to Ra < 1010 and unit
aspect ratio. Our predictions can be further enhanced after deter-
mining f i for Ra > 1010 and for different aspect ratios. Moreover, our
work can be extended to convection with magnetic fields following
the approach of Zürner et al.79,80

We believe that our results will be valuable to the scientific
and engineering community, especially where flows with extreme
Prandtl numbers are involved. For example, they will help under-
stand the fluid dynamics and heat transport in liquid metal batteries
that involve small Pr convection.81 On the other end, our analysis
will help strengthen our knowledge on mantle convection, which
involves a large Pr flow.1,2,82 This will, in turn, enable us to make
better predictions of seismic disturbances and the earth’s magnetic
field. Apart from this, our present work should also aid in expanding
our knowledge on oceanic and atmospheric flows and, thus, enable
us to make improved weather predictions.
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APPENDIX: ROBUSTNESS OF THE ESTIMATED
PARAMETER VALUES FOR fi (Ra, Pr)

In this section, we check the robustness of the parameter val-
ues for f i(Ra, Pr) estimated in Sec. IV D. Toward this objective, we
employ the regression algorithm, used in Sec. IV D, on a reduced
training set consisting of 30 data points, which is half of the total
number of data points, and test the algorithm on the remaining 30
data points. Starting from the point corresponding to Pr = 0.02 and
Ra = 5 × 105, we take alternate data points from Tables I and II for
training and the remaining data points for testing. We obtain the

Phys. Fluids 33, 015113 (2021); doi: 10.1063/5.0032498 33, 015113-12

Published under license by AIP Publishing

https://scitation.org/journal/phf


Physics of Fluids ARTICLE scitation.org/journal/phf

following fits for fi for the reduced training set:

f 1 = 0.72H1Pr0.30
+ 28H2Ra−0.21Pr0.52

+ 150H3Ra−0.33Pr0.79, (A1)

f 2

δu
= 4.1H1Ra0.26Pr−0.27

+ 6.9H2Ra0.23Pr−0.30
+ 21H3Ra0.15Pr−0.18,

(A2)

f 3 = 0.087H1Ra−0.14Pr−0.16
+ 0.26H2Ra−0.21Pr−0.17

+ 0.40H3Ra−0.24Pr−0.095, (A3)

f 4 = 0.45H1Ra−0.012Pr0.0075
+ 0.42H2Ra−0.0078Pr0.0050

+ 0.36H3Pr0.0161. (A4)

We observe that the fits given by Eqs. (A1)–(A4) are similar to those
of Eqs. (41)–(44), which correspond to the fits obtained when all the
data points were used as training sets. The average deviation between
the f i’s predicted by the fits and the actual values of the test set
are 25%, 20%, 13%, and 71% for f1, f2/δu, f3, and f4, respectively.
These deviations are almost the same as those observed when all the
datasets were used for training and testing. Furthermore, if we train
our algorithm using only 15 datasets (every fourth set from Tables I
and II), we obtain

f 1 = 0.68H1Pr0.31
+ 25H2Ra−0.20Pr0.47

+ 238H3Ra−0.37Pr0.81, (A5)

f 2

δu
= 3.7H1Ra0.26Pr−0.27

+ 5.8H2Ra0.24Pr−0.33
+ 23H3Ra0.15Pr−0.19,

(A6)

f 3 = 0.060H1Ra−0.12Pr−0.17
+ 0.23H2Ra−0.20Pr−0.19

+ 0.40H3Ra−0.24Pr−0.090, (A7)

f 4 = 0.42H1Ra−0.0099
+ 0.41H2Ra−0.0069Pr0.0059

+ 0.38H3, (A8)

with the average deviation between the f i’s predicted by the fits and
the actual values of the test set being 26%, 21%, 16%, and 71% for
f 1, f 2/δu, f 3, and f 4, respectively. We observe that there are visible
changes in the parameter values estimated using 15 datasets. Thus,
we infer that the parameter values estimated using more than 30
datasets are reasonably robust.
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