Books


  1. M. K. Verma, Energy Transfers in Fluid Flows: Multiscale and Spectral Perspectives, Cambridge University Press (2019).
  2. M. K. Verma, Physics of Buoyant Flows: From Instabilities to Turbulence, World Scientific (2018).
  3. M. K. Verma, Introduction to Mechanics, Second Edition, Universities Press, Hyderabad, (2016).

Review Papers


  1. M. K. Verma, Anisotropy in quasi-static magnetohydrodynamic turbulence, Rep. Prog. Phys. 80, 087001 (2017). PDF
  2. M. K. Verma, A. Kumar, and A. Pandey, Phenomenology of buoyancy-driven turbulence: recent results, New J. Physics, 19, 025012 (2017). PDF
  3. M. K. Verma, Introduction to Statstical Theory of Fluid Turbulence, (2005).PDF
  4. M. K. Verma, Statistical theory of magnetohydrodynamics turbulence: Recent results, Phys. Rep. 401, 229-380, (2004). PDF

Bouyancy-Driven Turbulence


  1. S. Alam, A. Guha, and M. K. Verma, Revisiting Bolgiano–Obukhov scaling for moderately stably stratified turbulence, J. Fluid Mech., 875, 961-973 (2019). PDF
  2. S. Bhattacharya, R. Samtaney, and M. K. Verma, Scaling and spatial intermittency of thermal dissipation in turbulent convection, Physics of Fluids, 31, 075104 (2019). PDF
  3. Y. Nandukumar, S. Chakraborty, M. K. Verma and R. Lakkaraju, On heat transport and energy partition in thermal convection with mixed boundary conditions, Phys. Fluids, 31, 066601 (2019). PDF
  4. M. K. Verma, Contrasting turbulence in stably stratified flows and thermal convection, Physica Scripta 94, 064003(9PP) (2019). PDF
  5. S. Vashishtha, M. K. Verma, and R. Samuel, Large-eddy simulations of turbulent thermal convection using renormalized viscosity and thermal diffusivity, Phys. Rev. E 98, 043109 (2018). PDF
  6. A. Pandey, M. K. Verma, and M. Barma, Reversals in Infinite-Prandtl-number Rayleigh-Benard Convection, Phys. Rev. E 98, 023109 (2018). PDF
  7. H. Khatri, J. Sukhatme, A. Kumar, and M. K. Verma, Surface Ocean Enstrophy, Kinetic Energy Fluxes, and Spectra From Satellite Altimetry, J. Geophys. Res.: Oceans, 123, 3875 (2018). PDF
  8. A. Kumar and M. K. Verma, Applicability of Taylor’s hypothesis in thermally driven turbulence, R. Soc. Open Sci., 5, 172152 (2018). PDF
  9. S. Bhattacharya, A. Pandey, A. Kumar, and M. K. Verma, Complexity of viscous dissipation in turbulent thermal convection, Phys. Fluids, 30, 031702 (2018). PDF
  10. M. Mannattil, A. Pandey, M. K. Verma, and S. Chakraborty, On the Applicability of Low-Dimensional Models for Convective Flow Reversals at extreme Prandtl numbers,Eur. Phys. J. B, 90:259 (2017). PDF
  11. M. K. Verma, A. Kumar, and A. Pandey, Phenomenology of buoyancy-driven turbulence: recent results, New J. Physics, 19, 025012 (2017). PDF
  12. A. Kumar, M. K. Verma, and J. Sukhatme, Phenomenology of two-dimensional stably stratified turbulence under large-scale forcing, J. Turb.,18, 3:219 (2017). PDF
  13. A. Pandey, A. Kumar, A. G. Chatterjee, and M. K. Verma, Dynamics of large-scale quantities in Rayleigh-Bénard convection, Phys. Rev. E 94, 053106 (2016). PDF
  14. D. Nath, A. Pandey, A. Kumar, and M. K. Verma, Near isotropic behavior of turbulent thermal convection, Phys. Rev. Fluids, 1, 064302 (2016). PDF
  15. A. Pandey and M. K. Verma, Scaling of large-scale quantities in Rayleigh-Bénard convection, Phys. Fluids, 28, 095105 (2016). PDF
  16. A. Pandey, M. K. Verma, A. G. Chatterjee, and Biplab Dutta, Similarities between 2D and 3D convection for large Prandtl number, Pramana, 87, 13 (2016). PDF
  17. M. K. Verma, S. C. Ambhire, and A. Pandey, Flow reversals in turbulent convection with free-slip walls, Phys. Fluids, 27, 047102 (2015). PDF
  18. A. Kumar and M. K. Verma, Shell model for buoyancy-driven turbulence, Phys. Rev. E 91, 043014 (2015). PDF
  19. M. K. Verma, A. Kumar, and A. G. Chatterjee, Energy spectrum and flux of buoyancy-driven turbulence,,Physics Focus, AAPPS Bulletin, 25, 45 (2015). PDF
  20. A. Kumar, A. G. Chatterjee, and M. K. Verma, Energy spectrum of buoyancy-driven turbulence, Phys. Rev. E 90, 023016 (2014). PDF
  21. A. Pandey, M. K. Verma, and P. K. Mishra, Scaling of heat flux and energy spectrum for very large Prandtl number convection, Phys. Rev. E 89, 023006 (2014). PDF
  22. D. Nath and M. K. Verma, Numerical simulation of convection of argon gas in fast breeder reactor, Annals of Nuclear Energy 63, 51–58 (2014). PDF
  23. M. Chandra and M. K. Verma, Flow Reversals in Turbulent Convection via Vortex ReconnectionsPhys. Rev. Lett. 110, 114503 (2013). PDF
  24. S. Paul, M. K. Verma, P. Wahi, Sandeep K. Reddy, and K. Kumar, Bifurcation analysis of the flow patterns in two-dimensional Rayleigh-Bénard convection. Int. J. Bifurcation Chaos22, 1230018 (2012). PDF
  25. M. K. Verma, P. K. Mishra, A. Pandey, and S. Paul, Scalings of field correlations and heat transport in turbulent convection. PRE 85, 016310 (2012). PDF
  26. M. Chandra and M. K. Verma, Dynamics and symmetries of flow reversals in turbulent convection, PRE 83, 067303 (2011). PDF
  27. S. Paul, P. Pal, P. Wahi, and M. K. Verma, Dynamics of zero-Prandtl number convection near the onset, Chaos 21, 023118 (2011). PDF
  28. S. Paul, P. Wahi and M. K. Verma, Bifurcations and chaos in large Prandtl-number Rayleigh-Bénard convection,Int. J. Non-Lin. Mech. 46, pp 772 (2011). PDF
  29. P. K. Mishra, A. K. De, M. K. Verma, and V. Eswaran, Dynamics of reorientations and reversals of large-scale flow in Rayleigh-Bénard convection, JFM 668, pp 480-499 (2011). PDF
  30. P. K. Mishra and M. K. Verma, Energy spectra and fluxes for Rayleigh-Bénard convection, PRE 81, 056316 (2010). PDF
  31. P. K. Mishra, P. Wahi, and M. K. Verma, Patterns and Bifurcation in low-Prandtl-number Rayleigh-Bénard convection, EPL 89, 44003 (2010). PDF
  32. S. Paul, K. Kumar, M. K. Verma, D. Carati, A. De, and V. Eswaran, Chaotic traveling rolls in two-dimensional Rayleigh-Bénard convection, Pramana 74, 75 (2010). PDF
  33. P. Pal, P. Wahi, S. Paul, M. K. Verma, K. Kumar, and P. K. Mishra, Bifurcation and chaos in zero Prandtl number convection, EPL 87, 54003 (2009). PDF
  34. M. K. Verma, K. Kumar, and B. Kamble, Mode-to-mode Energy Transfers and Patterns in Convection, Pramana 67, 1129 (2006). PDF

Fluid Turbulence


  1. S. Vashishtha, R. Samuel, A. G. Chatterjee, R. Samtaney and M. K. Verma Large eddy simulation of hydrodynamic turbulence using renormalized viscosity, Phys. Fluids, 31, 065102 (2019). PDF
  2. M. K. Verma, A. Kumar, P. Kumar, S. Barman, A. G. Chatterjee, R. Samtaney, and R. A. Stepanov, Energy Spectra and Fluxes in Dissipation Range of Turbulent and Laminar Flows, Fluid Dynamics, 53, 6, 862-873 (2018). PDF
  3. A. S. Teimurazov, R. A. Stepanov, M. K. Verma, S. Barman, A. Kumar, and S. Sadhukhan, Direct Numerical Simulation of Homogeneous Isotropic Helical Turbulence with the TARANG Code, Journal of Applied Mechanics and Technical Physics, 59, No. 7, 1279-1287 (2018). PDF
  4. A. G. Chatterjee, M. K. Verma, A. Kumar, R. Samtaney, B. Hadri, and R. Khurram, Scaling of a Fast Fourier Transform and a pseudo-spectral fluid solver up to 196608 cores, J. Parallel Distrib. Comput., 113, 77-91 (2017). PDF
  5. P. K. Mishra, J. Herault, S. Fauve, and M. K. Verma, Dynamics of reversals and condenstaes in two-dimensional Kolmogorov flows, ,Phys. Rev. E, 91, 053005 (2015). PDF
  6. M. K. Verma, A. G. Chatterjee, K. S. Reddy, R. K. Yadav, S. Paul, M. Chandra, and R. Samtaney, Benchmarking and scaling studies of a pseudospectral code Tarang for turbulence simulations, Pramana 81, 617 (2013). PDF
  7. M. K. Verma, Variable enstrophy flux and energy spectrum in two-dimensional turbulence with Ekman friction, EPL 98, 14003 (2012). PDF
  8. M. K. Verma and D. Donzis, Energy transfer and bottleneck effect in turbulence, J. Phys. A 40, 4401 (2007). PDF
  9. V. Avinash, M. K. Verma, and A. V. Chandra, Field-theoretic Calculation of Kinetic Helicity Flux, Pramana 66, 447 (2006). PDF
  10. M. K. Verma, Incompressible turbulence as a non-local field theory, Pramana 64, 333 (2005). PDF
  11. M. K. Verma, A. Ayyer, O. Debliquy, Shishir Kumar, and A. V. Chandra, Local shell-to-shell energy transfer via nonlocal interactions in fluid turbulence, Pramana 65, 297 (2005). PDF
  12. M. K. Verma, Field theoretic calculation of scalar turbulence, Int. J. Modern Physics B 15, 3419 (2001). PDF
  13. M. K. Verma, Intermittency exponents and energy spectrum of the Burgers and KPZ equations with correlated noise, Physica A 277, 359-388 (2000). PDF

MHD Turbulence, Dynamo, Solar Wind


  1. V. Titov, R. Stepanov, N. Yokoi, M. K. Verma, and R. Samtaney, Cross Helicity Sign Reversals in the Dissipative Scales of Magnetohydrodynamic Turbulence, Magnetohydrodynamics, 55, No. 1-2, 225-231 (2019). PDF
  2. M. K. Verma, R. Stepanov, and F. Plunian, Energy Transfers in MHD Turbulence and its Applications to Dynamo, Magnetohydrodynamics, 55, No. 1-2, 215-223 (2019). PDF
  3. R. Kumar and M. K. Verma, Amplification of large-scale magnetic field in nonhelical magnetohydrodynamics,Phys. Plasmas, 24, 092301 (2017). PDF
  4. R. Kumar and Pankaj Wahi, Dynamo transition in a five-mode helical model, Phys. Plasmas, 24, 092305 (2017). PDF
  5. R. Bandopadhyay and M. K. Verma, Discrete symmetries in dynamo reversals, Phys. Plasmas, 24,  062307 (2017).  PDF
  6. M. K. Verma, Anisotropy in quasi-static magnetohydrodynamic turbulence, Rep. Prog. Phys. 80, 087001 (2017). PDF
  7. S. Sundar, M. K. Verma, A. Alexakis, and A. G. Chatterjee, Dynamic anisotropy in MHD turbulence induced by mean magnetic field,,Phys. Plasmas, 24, 022304 (2017). PDF
  8. M. K. Verma and R. Kumar, Dynamos at extreme magnetic Prandtl numbers: Insights from shell models,,J. Turb., 17:11, 1112 (2016). PDF
  9. R. Kumar, M. K. Verma, and R. Samtaney, Energy transfers in dynamos with small magnetic Prandtl numbers, J. Turb., 16:11, 1114 (2015). PDF
  10. M. K. Verma and K. S. Reddy, Modelling quasi-static magnetohydrodynamic turbulence with variable energy flux, Phys. Fluids 27, 025114 (2015). PDF
  11. K. S. Reddy, R. Kumar, and M. K. Verma, Anisotropic energy transfers in quasi-static magnetohydrodynamic turbulence, Phys. Plasmas 21, 102310 (2014). PDF
  12. K. S. Reddy and M. K. Verma, Strong anisotropy in quasi-static MHD turbulence for high interaction parameters, Phys. Fluids 26, 025109 (2014). PDF
  13. R. Kumar, M. K. Verma, and R. Samtaney, Energy transfers and magnetic energy growth in small-scale dynamo, EPL 104, 54001 (2013). PDF
  14. M. K. Verma, B. B. Karak, and R. Kumar, Dynamo in protostars, Pramana 81, 1037 (2013). PDF
  15. M. K. Verma and R. K. Yadav, Supercriticality to subcriticality in dynamo transitions, Phys. Plasmas 20, 072307 (2013). PDF
  16. R. K. Yadav, M. K. Verma, and P. Wahi, Bistability and chaos in the Taylor-Green dynamo, PRE 85, 036301 (2012). PDF
  17. R. K. Yadav, M. Chandra, M. K. Verma, S. Paul, and P. Wahi, Dynamo transition under Taylor-Green forcing, EPL 91, 69001 (2010). PDF
  18. T. Lessiness, D. Carati, and M. K. Verma, Energy transfers in shell modes for magnetohydrodynamic turbulence, PRE 79, 066307 (2009). PDF
  19. B. Teaca, M. K. Verma, B. Knaepen, and D. Carati, Energy transfer in anisotropic magnetohydrodynamic turbulence, PRE 79, 046312 (2009). PDF
  20. M. K. Verma, T. Lessinnes, D. Carati, I. Sarris, K. Kumar, and M. Singh, Dynamo transition in low-dimensional models, PRE 78, 036409 (2008). PDF
  21. D. Carati, O. Debliquy, B. Knaepen, B. Teaca, and M. K. Verma, Energy transfers in forced MHD turbulence, J. Turb., 7, N51 (2006). PDF
  22. M. K. Verma, A. Ayyer, and A. V. Chandra, Energy transfers and locality in magnetohydrodynamic turbulence, Phys. Plasmas 12, 82307 (2005). PDF
  23. O. Debliquy, M. K. Verma, and D. Carati, Energy fluxes and shell-to-shell transfers in three-dimensional decaying magnetohydrodynamic turbulence, Phys. Plasmas, 12, 42308 (2005). PDF
  24. M. K. Verma, Statistical theory of magnetohydrodynamics turbulence: Recent results, Phys. Rep. 401, 229-380 (2004). PDF, Errata
  25. M. K. Verma and S. Kumar, Large eddy simulations of fluid and magnetohydrodynamic turbulence using renormalized parameters, Pramana 63, 553 (2004). PDF
  26. M. K. Verma, Field theoretic calculation of energy cascade rates in nonhelical magnetohydrodynamic turbulence, Pramana, 61 577 (2003). PDF, Errata
  27. M. K. Verma, Energy fluxes in helical magnetohydrodynamics and dynamo action, Pramana 61, 707 (2003). PDF,Errata
  28. M. K. Verma, On generation of magnetic field in astrophysical bodies, Current Science 85, 620 (2002). PDF
  29. M. K. Verma, G. Dar, and V. Eswaran, Comment on “On two-dimensional magnetohydrodynamic turbulence” [Phys. Plasmas, 8, 3282 (2001)], Phys. Plasmas 9, 1484 (2002). PDF
  30. M. K. Verma, Field theoretic calculation of renormalized-viscosity, renormalized-resistivity, and energy fluxes of magnetohydrodynamic turbulence, PRE 64, 26305 (2001). PDF
  31. G. Dar, M. K. Verma, and V. Eswaran, Energy transfer in two-dimensional magnetohydrodynamic turbulence: formalism and numerical results, Physica D 157, 207 (2001). PDF, Errata
  32. M. K. Verma, Calculation of renormalized viscosity and resistivity in magnetohydrodynamic turbulence, Phys. Plasmas 8, 3945 (2001). PDF, Errata
  33. M. K. Verma, Mean magnetic field renormalization and Kolmogorov’s energy spectrum in magnetohydrodynamic turbulence, Phys. Plasmas 6, 1455 (1999). PDF, Errata
  34. G. Dar, M. K. Verma, and V. Eswaran, Initial condition sensitivity of  global quantities in MHD turbulence, Phys. Plasmas 5, 2528 (1998). PDF
  35. M. K. Verma, D. A. Roberts, M. L. Goldstein, S. Ghosh, and W. T. Stribling, A Numerical Study of Nonlinear Cascade of Energy in Magnetohydrodynamic Turbulence, J. Geophys. Res. 101, 21619 (1996). PDF
  36. M. K. Verma, Role of turbulent dissipation and thermal convection in solar wind’s temperature evolution, J. Geophys. Res. 101, 27543 (1996). PDF
  37. M. K. Verma, Nonclassical Viscosity and Resistivity of the Solar Wind Plasma, J. Geophys. Res. 101, 27549 (1996). PDF
  38. M. K. Verma, D. A. Roberts, and M. L. Goldstein, Turbulent Heating and Temperature Evolution in the Solar Wind Plasma, J. Geophys. Res. 100, 19839 (1995). PDF
  39. M. K. Verma and J. K. Bhattacharjee, Computation of Kolmogorov’s Constant in MHD Turbulence, Europhys. Lett., 31, 195 (1995). PDF
  40. M. K. Verma and D. A. Roberts, The Radial Evolution of the Amplitudes of “Dissipationless” Turbulent Solar Wind Fluctuations, J. Geophys. Res., 98, 5625 (1993). PDF

Rotating Turbulence


  1. M. K. Sharma, M. K. Verma, and S. Chakraborty, On the energy spectrum of rapidly rotating forced turbulence, Physics of Fluids, 30, 115102 (2018). PDF
  2. M. K. Sharma, A. Kumar, M. K. Verma, and S. Chakraborty, Statistical features of rapidly rotating decaying turbulence: Enstrophy and energy spectra and coherent structures, Physics of Fluids, 30, 045103 (2018). PDF
  3. Sagar Chakraborty, Morgen H. Jensen, and Amartya Sarkar, On two-dimensionalization of three-dimensional turbulence in shell models, The European Physical Journal B, 73(3):447-453 (2010). Link
  4. Sagar Chakraborty and Jayanta K. Bhattacharjee, Third-order structure function for rotating three-dimensional homogeneous turbulent flow, Physical Review E, 76(3) (2007). Link
  5. Sagar Chakraborty, Signatures of two-dimensionalisation of 3d turbulence in the presence of rotation, EUROPHYSICS LETTERS, 79(1):14002 (2007). Link

Statistical Physics


  1. M. K. Verma, A. Kumar, and A. Pattanayak, Stochastic Bistable Systems: Competing Hysteresis and Phase Coexistence, Journal of Experimental and Theoretical Physics, 127, No. 3, 549–557 (2018). PDF

Astrophysical Fluids


  1. Shubhadeep Sadhukhan, Himanshu Gupta, and Sagar Chakraborty, On the helium fingers in the intracluster medium, Monthly Notices of the Royal Astronomical Society, Volume 469, Issue 3, Pages 2595–2601, (2017). Link
  2. Manu Mannattil, Himanshu Gupta, and Sagar Chakraborty, Revisiting evidence of chaos in X-ray light curves: The case of GRS 1915+105, The Astrophysical Journal, 833:208 (2016). Link
  3. Himanshu Gupta, Shailendra K. Rathor, Martin E. Pessah, and Sagar Chakraborty,  Stability analysis of convection in the intracluster medium, Physics Letters A, 380:2407-2415 (2016). Link
  4. Shubhadeep Sadhukhan, Surajit Mondal, and Sagar Chakraborty, Stability of rotating self-gravitating filaments: effects of magnetic field, Monthly Notices of the Royal Astronomical Society, 459(3):3059-3067 (2016). Link
  5. Surajit Mondal and Sagar Chakraborty, Effect of a tide on the parker-jeans instability, Monthly Notices of the Royal Astronomical Society, 450(2):1874-1878 (2015). Link
  6. Martin E. Pessah and Sagar Chakraborty, The stability of weakly collisional plasmas with thermal and composition gradients, The Astrophysical Journal, 764(1):13 (2013). Link
  7. Sagar Chakraborty, Arnab Rai Choudhuri, and Piyali Chatterjee. Why does the Sun’s torsional oscillation begin before the sunspot cycle? PHYSICAL REVIEW LETTERS, 102(4) (2009). LinkErratum

Conference Proceedings


  1. A. Teimurazov, R. Stepanov, M. K. Verma, S. Barman, A. Kumar, and S. Sadhukhan, Direct numerical simulation of  homogeneous isotropic turbulence with TARANG code, Computational Continuum Mechanics, Publications in conference proceedings, 10, 474 (2017). PDF
  2. R. Stepanov, A. Teimurazov, V. Titov, M. K. Verma, S. Barman, A. Kumar, and F. Plunian, Direct numerical simulation of  helical magnetohydrodynamic turbulence with TARANG code, ISPRAS Open Conference, 00022 (2017). PDF
  3. M. K. Verma, A. Kumar, and A. G. Chatterjee, Energy Spectrum and Flux of Buoyancy-Driven Turbulence, In Proc. “Advances in Computation, Modeling and Control of Transitional and Turbulent Flows”, Eds. T. K. Sengupta, S. Lele, K. R. Sreenivasan, and P. A. Davidson, p. 442, World Scientific (2016). PDF
  4. A. Kumar and M. K. Verma, Shell Model for Buoyancy-Driven Turbulent Flows, In Proc. “Advances in Computation, Modeling and Control of Transitional and Turbulent Flows”, Eds. T. K. Sengupta, S. Lele, K. R. Sreenivasan, and P. A. Davidson, p. 232, World Scientific (2016). PDF
  5. S. Paul and M. K. Verma, Proper Orthogonal Decomposition vs. Fourier Analysis for Extraction of Large-Scale Structures of Thermal Convection, In Proc. “Advances in Computation, Modeling and Control of Transitional and Turbulent Flows”, Eds. T. K. Sengupta, S. Lele, K. R. Sreenivasan, and P. A. Davidson, p. 433, World Scientific (2016). PDF
  6. M. K. Verma, A. Pandey, P. K. Mishra, and M. Chandra, “Role of bulk flow in turbulent convection”, AIP Conference Proceedings 1582, 224 (2014). PDF
  7. P. Wahi, P. K. Mishra, S. Paul, and M. K. Verma, Nonlinear dynamics of low-Prandtl number Rayleigh–Bénard convection, In Proc. “IUTAM Symposium on Nonlinear Dynamics for Advanced Technologies and Engineering Design”, 32, 123 (2013).
  8. M. K. Verma, A. Chatterjee, and S. Reddy, Object-oriented Pseudo-spectral code TARANG for turbulence simulation, In Proc. “ATIP/A*CRC Workshop on Accelerator Technologies for High-Performance Computing: Does Asia Lead the Way?”, Singapore (2012).
  9. M. K. Verma, P. K. Mishra, M. Chandra, and S. Paul, “Energy spectra in Rayleigh-Benard convection”, 13th European Turbulence Conference (ETC13), Journal of Physics: Conference series 082014, 318 (2012). PDF
  10. M. Chandra and M. K. Verma, On flow reversals in Rayleigh-Bénard convection, In Proc. 12th EUROMECH European Turbulence Conference, Warsaw, Poland, J. Phys.: Conf. Ser., 318, 082002 (2012).
  11. R. Yadav, M. K. Verma, M. Chandra, S. Paul, and P. Wahi, “Bifurcations and Chaos in Taylor-Green Dynamo”, UA Huntsville Workshop, Partially Ionized Plasmas throughout the Cosmos, Oct. 3-8, 2010, AIP Conf. Proc. 1366, 129 (2011). PDF
  12. M. K. Verma, R. Yadav, M. Chandra, S. Paul, and P. Wahi, “Dynamo Transition”, International Symposium on Waves, Coherent Structures & turbulence in Plasmas, Jan 12-15, 2010, AIP Conf. Proc. 1308, 25 (2010). PDF
  13. K. Kumar, S. Paul, P. Pal, and M. K, Verma, “A model of flow reversal in two-dimensional convection”, Recent Developments in Theoretical Physics, Kolkata, 2007; p. 365, World Scientific, Singapore, (2010) (Eds.: S. Ghosh and G. Kar).
  14. D. Nath, M. K. Verma, T. Lessiness, D. Carati, and I. Sarris, “Direct numerical simulation of dynamo transition for nonhelical MHD”, 23rd National Symposium on Plasma Science & Technology (PLASMA-2008), Mumbai 2008, Journal of Physics: Conference Series 208, p.012039 (2010).
  15. R. Kumar, M. K. Verma, and V. Kumar, “Anisotropic turbulence studies of liquid metal MHD flows using numerical simulations”, 23rd National Symposium on Plasma Science & Technology (PLASMA-2008), Mumbai 2008, Journal of Physics: Conference Series 208, p. 012007 (2010).
  16. B. Teaca, D. Carati, B. Knaepen, and M.K. Verma, “Spectral analysis of energy transfers in anisotropic MHD turbulence”, 12th EUROMECH European Turbulence Conference, Marburg, Germany, 07-10 September (2009).
  17. M. K. Verma, J. J. Niemela, K. Kumar, S. Pal, and D. Carati, “Large-scale behaviour of turbulent convection governed by low-dimensional fixed-points”, Advances in Turbulence XI, (ETC-11, Porto), p. 609 (2007) (Eds.: J. M. L. M. Palma and A. Silva Lopes).
  18. M. K. Verma, “Recent developments in Rayleigh-Bénard convection”, Proceeding of the National Conference on Nonlinear Systems and Dynamics 2006 (Chennai), Eds.: M. Lakshmanan and R. Sahadevan, p. 137 (2006).
  19. D. Carati, O. Debliquy, B. Knaepen, B. Teaca, and M. K. Verma, “Energy fluxes and shell-to-shell transfers in MHD turbulence”, Proceedings of the Cyprus International Symposium on Complex Effects in Large Eddy Simulations (CY-LES 2005), Lecture Notes in Computational Science and Engineering, Vol. 56, p. 401 (2007).
  20. M. K. Verma, K. Kumar, and B. Kamble, “Mode-to-mode energy transfers and patterns in convection”, Proceedings of National Conference on Nonlinear Systems and Dynamics- (2005) (Aligarh).
  21. M. K. Verma, “Incompressible turbulence as a non-local field theory“, Pramana, 64, 333 (2005).
  22. M. K. Verma, “Energy cascade in magnetohydrodynamic turbulence”, Proceedings of The First National Conference on Nonlinear Systems and Dynamics- 2003 (Kharagpur), Eds.: S. Banerjee et al., p. 259 (2003).
  23. M. K. Verma, “Magnetohydrodynamic turbulence in the solar wind”, Proceeding of PRL Golden Jubilee Workshop on Solar Physics, in Bull. Astr. Soc. India, 26, 231 (1998).
  24. M. K. Verma and G. Dar, “Probing physics of magnetohydrodynamic turbulence using direct numerical simulations”, Proceedings of Nonlinear Dynamics and Computational Physics, Ed.: V. Sheorey, p. 192, Narosa, New Delhi (1998).
  25. G. Dar and M. K. Verma, “Parallelization of spectral MHD turbulence”, Proceedings of Parallel Computing Applications in Science and Engineering, Ed. M. K. Verma, p. 61, IIT Kanpur (1997).

PhD Thesis


  1. Anando Gopal Chatterjee, Spectral Simulations of Hydrodynamic and Thermal Turbulence for Extreme Resolutions,PhD Thesis (2018). PDF
  2. Abhishek Kumar, Energy Spectra and Fluxes of Buoyancy-Driven Turbulent Flows,PhD Thesis (2016). PDF
  3. Ambrish Pandey, Scaling of large-scale quantities in Rayleigh-Benard convection,PhD Thesis (2016). PDF
  4. Rohit Kumar, Energy Transfers in Dynamos with Small and Large Magnetic Prandtl Numbers,PhD Thesis (2015). PDF
  5. K. Sandeep Reddy, Anisotropic Energy Spectrum, Flux and Transfers in Quasi-Static Magnetohydrodynamic Turbulence,PhD Thesis (2014). PDF
  6. Pankaj K. Mishra, Instabilities and Turbulence in Rayleigh-Bénard Convection: Numerical and Phenomenological Studies,PhD Thesis (2011). PDF
  7. Gaurav Dar, Energy Spectra and Transfers in Magnetohydrodynamic Turbulence, PhD Thesis (2000). PDF

Preprints


    1. A. Gupta, R. Jayaram, A. G. Chatterjee, S. Sadhukhan, R. Samtaney, and M. K. Verma, Energy and enstrophy spectra and fluxes for the inertial-dissipation range of two-dimensional turbulence, Phys. Fluids, (Submitted). PDF
    2. M. K. Verma and A. Kumar, and A. Gupta, Sweeping effect and Taylor’s hypothesis via correlation function, Journal of Fluid Mechanics, (Submitted). PDF
    3. S. Vashishtha, A. G. Chatterjee, A. Kumar, and M. K. Verma, Large eddy simulations using recursive renormalization-group based eddy viscosity, (Submitted). PDF